RESUMEN
Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway capable of interacting with collectin-10 (CL-10) and the MASPs to activate the complement cascade. Alternative splicing of the COLEC11 gene gives rise to two different isoforms found in serum (A and D). These isoforms vary in the length of their collagen-like region, which is involved in the stabilization of the trimeric subunit and the interaction with the MASPs. Here we aim at elucidating the biological differences of naturally occurring CL-11 isoforms A and D. We produced recombinant CL-11 as independent isoforms (CL-11A and CL-11D) and together with CL-10 (CL-10/11A, CL-10/11D). Both CL-11 isoforms associated with CL-10, but CL-11D did so to a lesser extent. CL-10/11 heterocomplexes were composed of trimeric subunits of CL-10 and CL-11, as opposed to CL-10 and CL-11 homotrimers. Heterocomplexes were more stable and migrated with higher apparent molecular weights. Immunoprecipitation of serum CL-11 and subsequent mass spectrometry analysis confirmed that native CL-11 circulates in the form of CL-10/11 heterocomplexes that associate with MASP-1, and MASP-3, but not necessarily MASP-2. Despite a shorter collagen region, CL-11D was capable to bind to the MASPs, suggesting that the missing exon 4 is not required for MASP association CL-11D had a reduced ligand binding compared to full-length CL-11A. Based on its reduced ability to oligomerize, form CL-10/11 heterocomplexes, and bind to ligands, we hypothesize that CL-11D may have a limited complement activation potential compared to full-length CL-11A.
Asunto(s)
Empalme Alternativo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Isoformas de Proteínas/genética , Colágeno , Colectinas/genéticaRESUMEN
The urinary tract is constantly exposed to microorganisms. Host defense mechanisms in protection from microbial colonization and development of urinary tract infections require better understanding to control kidney infection. Here we report that the lectin collectin 11 (CL-11), particularly kidney produced, has a pivotal role in host defense against uropathogen infection. CL-11 was found in mouse urine under normal and pathological conditions. Mice with global gene ablation of Colec11 had increased susceptibility to and severity of kidney and to an extent, bladder infection. Mice with kidney-specific Colec11 ablation exhibited a similar disease phenotype to that observed in global Colec11 deficient mice, indicating the importance of kidney produced CL-11 for protection against kidney and bladder infection. Conversely, intravesical or systemic administration of recombinant CL-11 reduced susceptibility to and severity of kidney and bladder infection. Mechanism analysis revealed that CL-11 can mediate several key innate defense mechanisms (agglutination, anti- adhesion, opsonophagocytosis), and limit local inflammatory responses to pathogens. Furthermore, CL-11-mediated innate defense mechanisms can act on clinically relevant microorganisms including multiple antibiotic resistant strains. CL-11 was detectable in eight of 24 urine samples from patients with urinary tract infections but not detectable in urine samples from ten healthy individuals. Thus, our findings demonstrate that CL-11 is a key factor of host defense mechanisms in kidney and bladder infection with therapeutic potential for human application.
Asunto(s)
Cistitis , Infecciones por Escherichia coli , Infecciones Urinarias , Humanos , Ratones , Animales , Vejiga Urinaria , Riñón , Colectinas/genéticaRESUMEN
It has been known that vitamin D3 (VD3) not only plays an important role in regulating calcium and phosphorus metabolism in animals, but also has extensive effects on immune functions. In this study, the mechanism how VD3 influences bactericidal ability in turbot was explored. The transcriptomic analysis identified that dietary VD3 significantly upregulated the gene expression of C-type lectin receptors (CLRs), including mannose receptors (mrc1, mrc2, pla2r1) and collectins (collectin 11 and collectin 12) in turbot intestine. Further results obtained from in vitro experiments confirmed that the gene expression of mannose receptors and collectins in head-kidney macrophages (HKMs) of turbot was induced after the cells were incubated with different concentrations of VD3 (0, 1, 10 nM) or 1,25(OH)2D3 (0, 10, 100 pM). Meanwhile, both phagocytosis and bactericidal functions of HKMs were significantly improved in VD3 or 1,25(OH)2D3-incubated HKMs. Furthermore, phagocytosis and bacterial killing of HKMs decreased after collectin 11 was knocked down. Moreover, VD3-enhanced antibacterial activities diminished in collectin 11-interfered cells. Interestingly, the evidence was provided in the present study that inactive VD3 could be metabolized into active 1,25(OH)2D3 via hydroxylases encoded by cyp27a1 and cyp27b1 in fish macrophages. In conclusion, VD3 could be metabolized to 1,25(OH)2D3 in HKMs, which promoted the expression of CLRs in macrophages, leading to enhanced bacterial clearance.
Asunto(s)
Colecalciferol , Peces Planos , Animales , Colecalciferol/farmacología , Colecalciferol/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Receptor de Manosa , Peces Planos/genética , Peces Planos/metabolismo , Macrófagos , Colectinas , Riñón/metabolismoRESUMEN
With the tremendous success of the artificial breeding of Hexagrammos otakii, the yield has been substantially improved. However, intensive farming often results in bacterial diseases; hence it is imperative to find new antimicrobial molecules. In the present study, we identified a homologous cDNA fragment of collectin-10 from H. otakii, designated as HoCL-10. The cDNA length is 899 bp, which contains an open reading frame (ORF) of 816 bp encoding a secreted protein with 272 amino acid residues. The peptide of HoCL-10 contains an N-terminal collagen domain, a neck region, and a C-terminal carbohydrate recognition domain. The qRT-PCR results revealed that HoCL-10 mRNA was highest expressed in the liver and skin and was significantly induced post-LPS stimulation. The sugar and bacteria binding assay suggested that the recombinant HoCL-10 (rHoCL-10) could recognize various pathogen-associated molecular patterns (PAMPs) and bacteria. For effect on cells, rHoCL-10 enhanced the phagocytosis and migration ability of the macrophage indicated using pro-phagocytosis assay and trans-well assay. To determine the role of HoCL-10 in the complement system, the interaction between HoCL-10 and mannose-binding lectin associated serine protease 1, 2 (MASP-1, 2) were analyzed and demonstrated using ELISA and Far-western. And in vivo, the concentration of membrane-attack complex (MAC) in fish plasma was significantly down-regulated post-injection with HoCL-10 antibody. Finally, the bacteria challenge experiment was performed, implying that HoCL-10 may assist the host in defending against microbial invasion. The findings suggest that HoCL-10 may play crucial roles in host defense against microorganisms, possibly through opsonizing pathogens and activating the complement system.
Asunto(s)
Infecciones Bacterianas , Perciformes , Animales , ADN Complementario , Bacterias/genética , Activación de Complemento , Perciformes/genética , Proteínas del Sistema Complemento , Carbohidratos , Colectinas/genéticaRESUMEN
The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.
Asunto(s)
Glicosiltransferasas , N-Acetilglucosaminiltransferasas , Carcinogénesis , Glicosiltransferasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular , N-Acetilglucosaminiltransferasas/metabolismo , Transducción de SeñalRESUMEN
CL-11 (Collectin-11, also known as Collectin kidney-1 or CL-K1) is a member of collectin family that works as a pattern recognition molecule (PRM) and participating in lectin-complement pathway in host defense against pathogens. We identified the CL-11 homologue SsCL-11 in black rockfish (Sebastes schlegelii) and investigated the functional characteristics in this study. The SsCL-11 has conserved protein modules, i.e. an N-terminal hydrophobic region, a collagen-like region, an α-helical neck region and a carbohydrate recognition domain (CRD). SsCL-11 has varying degrees of expressions in difference tissues, among which the highest expression is observed in liver. It also shows induced expressions in immune-related tissues following Aeromonas salmonicida (A. salmonicida) infection. In addition, SsCL-11 exhibits binding abilities to different kinds of carbohydrates, pathogen-associated molecular patterns (PAMPs) and bacteria. It exhibits comparatively strong binding to l-fucose, d-mannose, and d-glucose, which is consistent with the functional EPN motif in its CRD. SsCL-11 also shows agglutinating effects on various bacteria in the presence of Ca2+. Furthermore, SsCL-11 is confirmed to be a secretory lectin and can form multimers. These findings collectively demonstrate that SsCL-11 can function as a recognition molecule in pathogen resistance in black rockfish, which will promote our understanding of immunological roles of fish collectins.
Asunto(s)
Enfermedades de los Peces , Perciformes , Animales , Proteínas de Peces , Secuencia de Aminoácidos , Colectinas , Moléculas de Patrón Molecular Asociado a PatógenosRESUMEN
BACKGROUND: The incidence of nontuberculous mycobacterial lung disease (NTM-LD) peaks in middle- and old age groups, coinciding with senescence; thus, chronic infectious diseases can accelerate frailty and worsen mental health in the elderly. In this study, we aimed to compare the prevalence of physical and psychiatric frailty between patients with NTM-LD and bronchiectasis (BE). METHODS: The Kihon Checklist Questionnaire (KCQ) was used to assess physical and psychiatric frailties and identify those at risk of requiring care among patients with newly diagnosed NTM-LD and BE. Additionally, the Hospital Anxiety and Depression Scale (HADS) scores and chronic inflammatory biomarkers of the alveolar region (surfactant protein [SP]-A, SP-D, and human cationic antibacterial protein [hCAP]/LL-37) were assessed and compared between NTM-LD and BE patients. RESULTS: There were no significant differences in the background characteristics between the 33 NTM and 36 BE patients recruited. The KCQ revealed that the proportion of frail NTM patients at diagnosis was higher than that of frail BE patients (48.5% vs. 22.2%, p = 0.026). HADS scores were significantly higher in the NTM group than in the BE group (p < 0.01). Bronchoalveolar lavage fluid (BALF) hCAP/LL-37 and SP-D levels were significantly higher (p = 0.001), but serum hCAP/LL-37 levels were significantly lower in the NTM group than in the BE group (p = 0.023). However, there were no significant differences in the BALF and serum SP-D levels between the two groups. CONCLUSIONS: The number of frail NTM patients at diagnosis was significantly higher than that of frail BE patients. Biomarker analysis suggested that the former had more localized lung inflammation than the latter. TRIAL REGISTRATION: This trial was prospectively registered in the Clinical Trials Registry (UMIN 000027652).
Asunto(s)
Bronquiectasia , Fragilidad , Infecciones por Mycobacterium no Tuberculosas , Neumonía , Anciano , Humanos , Antibacterianos/uso terapéutico , Bronquiectasia/epidemiología , Fragilidad/epidemiología , Infecciones por Mycobacterium no Tuberculosas/diagnóstico , Micobacterias no Tuberculosas , Estudios Prospectivos , Proteína D Asociada a Surfactante PulmonarRESUMEN
C-type lectins that contain collagen-like domains are known as collectins. These proteins are present both in the circulation and in extravascular compartments and are central players of the innate immune system, contributing to first-line defenses against viral, bacterial, and fungal pathogens. The collectins mannose-binding lectin (MBL) and surfactant protein D (SP-D) are regulated by tissue fibroblasts at extravascular sites via an endocytic mechanism governed by urokinase plasminogen activator receptor-associated protein (uPARAP or Endo180), which is also a collagen receptor. Here, we investigated the molecular mechanisms that drive the uPARAP-mediated cellular uptake of MBL and SP-D. We found that the uptake depends on residues within a protruding loop in the fibronectin type-II (FNII) domain of uPARAP that are also critical for collagen uptake. Importantly, however, we also identified FNII domain residues having an exclusive role in collectin uptake. We noted that these residues are absent in the related collagen receptor, the mannose receptor (MR or CD206), which consistently does not interact with collectins. We also show that the second C-type lectin-like domain (CTLD2) is critical for the uptake of SP-D, but not MBL, indicating an additional level of complexity in the interactions between collectins and uPARAP. Finally, we demonstrate that the same molecular mechanisms enable uPARAP to engage MBL immobilized on the surface of pathogens, thereby expanding the potential biological implications of this interaction. Our study reveals molecular details of the receptor-mediated cellular regulation of collectins and offers critical clues for future investigations into collectin biology and pathology.
Asunto(s)
Colectinas/metabolismo , Endocitosis/fisiología , Receptores Mitogénicos/genética , Animales , Células CHO , Proteínas Portadoras/metabolismo , Colágeno/metabolismo , Cricetulus , Fibroblastos/metabolismo , Células HEK293 , Humanos , Lectinas Tipo C , Receptor de Manosa , Lectina de Unión a Manosa/metabolismo , Lectinas de Unión a Manosa , Glicoproteínas de Membrana/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Receptores de Superficie Celular , Receptores de Colágeno/metabolismo , Receptores Mitogénicos/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismoRESUMEN
Seasonal influenza carrying key hemagglutinin (HA) head region glycosylation sites can be removed from the lung by pulmonary surfactant protein D (SP-D). Little is known about HA head glycosylation of low-pathogenicity avian influenza virus (LPAIV) subtypes. These can pose a pandemic threat through reassortment and emergence in human populations. Since the presence of head region high-mannose glycosites dictates SP-D activity, the ability to predict these glycosite glycan subtypes may be of value. Here, we investigate the activities of two recombinant human SP-D forms against representative LPAIV strains, including H2N1, H5N1, H6N1, H11N9, an avian H3N8, and a human seasonal H3N2 subtype. Using mass spectrometry, we determined the glycan subclasses and heterogeneities at each head glycosylation site. Sequence alignment and molecular structure analysis of the HAs were performed for LPAIV strains in comparison to seasonal H3N2 and avian H3N8. Intramolecular contacts were determined between the protein backbone and glycosite glycan based on available three-dimensional structure data. We found that glycosite "N165" (H3 numbering) is occupied by high-mannose glycans in H3 HA but by complex glycans in all LPAIV HAs. SP-D was not active on LPAIV but was on H3 HAs. Since SP-D affinity for influenza HA depends on the presence of high-mannose glycan on the head region, our data demonstrate that SP-D may not protect against virus containing these HA subtypes. Our results also demonstrate that glycan subtype can be predicted at some glycosites based on sequence comparisons and three-dimensional structural analysis.IMPORTANCE Low-pathogenicity avian influenza virus (LPAIV) subtypes can reassort with circulating human strains and pandemic viruses can emerge in human populations, as was seen in the 1957 pandemic, in which an H2 virus reassorted with the circulating H1N1 to create a novel H2N2 genotype. Lung surfactant protein D (SP-D), a key factor in first-line innate immunity defense, removes influenza type A virus (IAV) through interaction with hemagglutinin (HA) head region high-mannose glycan(s). While it is known that both H1 and H3 HAs have one or more key high-mannose glycosites in the head region, little is known about similar glycosylation of LPAIV strains H2N1, H5N1, H6N1, or H11N9, which may pose future health risks. Here, we demonstrate that the hemagglutinins of LPAIV strains do not have the required high-mannose glycans and do not interact with SP-D, and that sequence analysis can predict glycan subtype, thus predicting the presence or absence of this virulence marker.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno/fisiología , Virus de la Influenza A/metabolismo , Polisacáridos/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Secuencia de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Humanos , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Subtipo H3N8 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Modelos Moleculares , Polisacáridos/química , Conformación Proteica , Análisis de Secuencia de Proteína , VirulenciaRESUMEN
Type I and type II pneumocytes are two forms of epithelial cells found lining the alveoli in the lungs. Type II pneumocytes exclusively secrete 'pulmonary surfactants,' a lipoprotein complex made up of 90% lipids (mainly phospholipids) and 10% surfactant proteins (SP-A, SP-B, SP-C, and SP-D). Respiratory diseases such as influenza, severe acute respiratory syndrome coronavirus infection, and severe acute respiratory syndrome coronavirus 2 infection are reported to preferentially attack type II pneumocytes of the lungs. After viral invasion, consequent viral propagation and destruction of type II pneumocytes causes altered surfactant production, resulting in dyspnea and acute respiratory distress syndrome in patients with coronavirus disease 2019. Exogenous animal-derived or synthetic pulmonary surfactant therapy has already shown immense success in the treatment of neonatal respiratory distress syndrome and has the potential to contribute efficiently toward repair of damaged alveoli and preventing severe acute respiratory syndrome coronavirus 2-associated respiratory failure. Furthermore, early detection of surfactant collectins (SP-A and SP-D) in the circulatory system can be a significant clinical marker for disease prognosis in the near future.
RESUMEN
In a recent study, we identified a fucosylated damage-associated ligand exposed by ischemia on renal tubule epithelial cells, which after recognition by collectin-11 (CL-11 or collectin kidney 1 (CL-K1)), initiates complement activation and acute kidney injury. We exploited the ability to increase the local tissue concentration of free l-fucose following systemic administration, in order to block ligand binding by local CL-11 and prevent complement activation. We achieved a thirty-five-fold increase in the intrarenal concentration of l-fucose following an IP bolus given before the ischemia induction procedure - a concentration found to significantly block in vitro binding of CL-11 on hypoxia-stressed renal tubule cells. At this l-fucose dose, complement activation and acute post-ischemic kidney injury are prevented, with additional protection achieved by a second bolus after the induction procedure. CL-11-/- mice gained no additional protection from l-fucose administration, indicating that the mechanism of l-fucose therapy was largely CL-11-dependent. The hypothesis is that a high dose of l-fucose delivered to the kidney obstructs the carbohydrate recognition site on CL-11 thereby reducing complement-mediated damage following ischemic insult. Further work will examine the utility in preventing post-ischemic injury during renal transplantation, where acute kidney injury is known to correlate with poor graft survival.
Asunto(s)
Activación de Complemento/efectos de los fármacos , Fucosa/farmacocinética , Isquemia/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Animales , Proteínas del Sistema Complemento/efectos de los fármacos , Proteínas del Sistema Complemento/metabolismo , Fucosa/metabolismo , Supervivencia de Injerto/efectos de los fármacos , Isquemia/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Trasplante de Riñón/métodos , Ratones Noqueados , Daño por Reperfusión/metabolismoRESUMEN
Ischaemia/reperfusion injury (IRI) is an inevitable and damaging consequence of the process of kidney transplantation, ultimately leading to delayed graft function and increased risk of graft loss. A key driver of this adverse reaction in kidneys is activation of the complement system, an important part of the innate immune system. This activation causes deposition of complement C3 on renal tubules as well as infiltration of immune cells and ultimately damage to the tubules resulting in reduced kidney function. Collectin-11 (CL-11) is a pattern recognition molecule of the lectin pathway of complement. CL-11 binds to a ligand that is exposed on the renal tubules by the stress caused by IRI, and through attached proteases, CL-11 activates complement and this contributes to the consequences outlined above. Recent work in our lab has shown that this damage-associated ligand contains a fucose residue that aids CL-11 binding and promotes complement activation. In this review, we will discuss the clinical context of renal transplantation, the relevance of the complement system in IRI, and outline the evidence for the role of CL-11 binding to a fucosylated ligand in IRI as well as its downstream effects. Finally, we will detail the simple but elegant theory that increasing the level of free fucose in the kidney acts as a decoy molecule, greatly reducing the clinical consequences of IRI mediated by CL-11.
Asunto(s)
Colectinas/metabolismo , Fucosa/metabolismo , Trasplante de Riñón , Daño por Reperfusión , Humanos , Riñón , Trasplante de Riñón/efectos adversos , Ligandos , Daño por Reperfusión/etiologíaRESUMEN
Both Tamm-Horsfall protein (THP) and collectin-11 (CL-11) are important molecules in acute kidney injury (AKI). In this study, we measured the change of glycosylation of THP in patients with AKI after surgery, using MALDI-TOF MS and lectin array analysis. The amount of high-mannose and core fucosylation in patients with AKI were higher than those in healthy controls. In vitro study showed that THP could bind to CL-11 with affinity at 9.41 × 10-7 mol/L and inhibited activation of complement lectin pathway. The binding affinity decreased after removal of glycans on THP. Removal of fucose completely ablated the binding between the two proteins. While removal of high-mannose or part of the N-glycan decreased the binding ability to 30% or 60%. The results indicated that increase of fucose on THP played an important role via complement lectin pathway in AKI.
Asunto(s)
Lesión Renal Aguda/metabolismo , Colectinas/metabolismo , Uromodulina/metabolismo , Anciano , Animales , Estudios de Casos y Controles , Pollos , Eritrocitos/metabolismo , Femenino , Glicosilación , Hemólisis , Humanos , Lectinas/metabolismo , Masculino , Persona de Mediana Edad , Polisacáridos/metabolismo , Unión Proteica , FicolinasRESUMEN
Bovine conglutinin is an immune protein that is involved in host resistance to microbes and parasites and interacts with complement component iC3b, agglutinates erythrocytes, and neutralizes influenza A virus. Here, we determined the high-resolution (0.97-1.46 Å) crystal structures with and without bound ligand of a recombinant fragment of conglutinin's C-terminal carbohydrate-recognition domain (CRD). The structures disclosed that the high-affinity ligand N-acetyl-d-glucosamine (GlcNAc) binds in the collectin CRD calcium site by interacting with the O3' and O4' hydroxyls alongside additional specific interactions of the N-acetyl group oxygen and nitrogen with Lys-343 and Asp-320, respectively. These residues, unique to conglutinin and differing both in sequence and in location from those in other collectins, result in specific, high-affinity binding for GlcNAc. The binding pocket flanking residue Val-339, unlike the equivalent Arg-343 in the homologous human surfactant protein D, is sufficiently small to allow conglutinin Lys-343 access to the bound ligand, whereas Asp-320 lies in an extended loop proximal to the ligand-binding site and bounded at both ends by conserved residues that coordinate to both calcium and ligand. This loop becomes ordered on ligand binding. The electron density revealed both α and ß anomers of GlcNAc, consistent with the added α/ßGlcNAc mixture. Crystals soaked with α1-2 mannobiose, a putative component of iC3b, reported to bind to conglutinin, failed to reveal bound ligand, suggesting a requirement for presentation of mannobiose as part of an extended physiological ligand. These results reveal a highly specific GlcNAc-binding pocket in conglutinin and a novel collectin mode of carbohydrate recognition.
Asunto(s)
Acetilglucosamina/metabolismo , Colectinas/química , Colectinas/metabolismo , Seroglobulinas/química , Seroglobulinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Bovinos , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Unión Proteica , Conformación ProteicaRESUMEN
Mannose-binding lectin (MBL)-associated serine protease-2 (MASP-2) is an indispensable enzyme for the activation of the lectin pathway of complement. Its deficiency is classified as a primary immunodeficiency associated to pyogenic bacterial infections, inflammatory lung disease, and autoimmunity. In Europeans, MASP-2 deficiency, due to homozygosity for c.359A > G (p.D120G), occurs in 7 to 14/10,000 individuals. We analyzed the presence of the p.D120G mutation in adults (increasing the sample size of our previous studies) and children. Different groups of patients (1495 adults hospitalized with community-acquired pneumonia, 186 adults with systemic lupus erythematosus, 103 pediatric patients with invasive pneumococcal disease) and control individuals (1119 healthy adult volunteers, 520 adult patients without history of relevant infectious diseases, and a pediatric control group of 311 individuals) were studied. Besides our previously reported MASP-2-deficient healthy adults, we found a new p.D120G homozygous individual from the pediatric control group. We also reviewed p.D120G homozygous individuals reported so far: a total of eleven patients with a highly heterogeneous range of disorders and nine healthy controls (including our four MASP-2-deficient individuals) have been identified by chance in association studies. Individuals with complete deficiencies of several pattern recognition molecules of the lectin pathway (MBL, collectin-10 and collectin-11, and ficolin-3) as well as of MASP-1 and MASP-3 have also been reviewed. Cumulative evidence suggests that MASP-2, and even other components of the LP, are largely redundant in human defenses and that individuals with MASP-2 deficiency do not seem to be particularly prone to infectious or autoimmune diseases.
Asunto(s)
Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/deficiencia , Enfermedades de Inmunodeficiencia Primaria/genética , Transducción de Señal/genética , Adulto , Niño , Infecciones Comunitarias Adquiridas/genética , Femenino , Genotipo , Humanos , Lectinas/genética , Lupus Eritematoso Sistémico/genética , Masculino , Lectina de Unión a Manosa/genética , Mutación/genéticaRESUMEN
Biological activities in ectothermic vertebrates depend to a great extent on ambient temperature. Adapting their biological systems to annual or short-term alterations in temperature may play an important role in thermal resistance or overwintering survival. Using SDS-PAGE and western blot, we examined plasma proteins in bullfrog (Rana catesbeiana) tadpoles that were seasonally acclimatized (winter vs. summer) or thermally acclimated (4 °C vs. 21 °C) and identified two season-responsive proteins. The first, transthyretin (TTR), is a plasma thyroid hormone distributor protein that was abundant in summer, and the second is a protein containing C-type lectin-like domain (CTLD) that was abundant in winter and cold acclimation of 4 weeks. Sequence analysis revealed that the C-terminal carbohydrate recognition domain of this CTLD protein (termed collectin X) was highly similar to those of the collectin family members, which participate in complement activation of the innate immune system; however, it lacked most of collagen-like domain. Among the hepatic genes involved in the thyroid system, ttr and dio3 were up-regulated, whereas thra and thrb were down-regulated, in summer acclimatization or warm acclimation. In contrast, the collectin X gene (colectx), as well as colect10 and colect11 in the collectin family involved in the innate immune system, were down-regulated during warm acclimation, although fcn2 in the ficolin family was up-regulated during summer acclimatization and warm acclimation. These findings indicate that seasonal acclimatization and thermal acclimation differentially affect some components of the thyroid and innate immune systems at protein and transcript levels.
Asunto(s)
Aclimatación/fisiología , Proteínas Sanguíneas/metabolismo , Larva , Rana catesbeiana , Animales , Estaciones del Año , TemperaturaRESUMEN
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (C1q, C1r, and C1s) and lectin (mannose binding lectin A, mannose binding lectin C, collectin 11, ficolin A, and ficolin B) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (C1q, C1s, C1r) and some lectin (collectin 11, ficolin A, ficolin B) initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (Cd177), T cells (Cd8), astrocytes (glial fibrillary acidic protein-GFAP), microglia/macrophages (allograft inflammatory factor 1-IBA-1), and microglia (transmembrane protein 119-TMEM119); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , Activación de Complemento/genética , Lectina de Unión a Manosa de la Vía del Complemento/genética , Lectinas/genética , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Células Cultivadas , Corteza Cerebral/metabolismo , Complemento C1/genética , Complemento C1/metabolismo , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C1r/genética , Complemento C1r/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Hipocampo/metabolismo , Humanos , Lectinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Microglía/metabolismo , Neostriado/metabolismo , Tálamo/metabolismo , Factores de TiempoRESUMEN
Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D-/- mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response.
Asunto(s)
Aspergillus fumigatus/inmunología , Polisacáridos Fúngicos/inmunología , Melaninas/inmunología , Fagocitosis , Aspergilosis Pulmonar/inmunología , Proteína D Asociada a Surfactante Pulmonar/inmunología , Esporas Fúngicas/inmunología , Animales , Aspergillus fumigatus/genética , Polisacáridos Fúngicos/genética , Melaninas/genética , Ratones , Ratones Noqueados , Aspergilosis Pulmonar/genética , Aspergilosis Pulmonar/patología , Proteína D Asociada a Surfactante Pulmonar/genética , Esporas Fúngicas/genéticaRESUMEN
Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD glycosylation provides interactions with the sialic acid-binding site of IAV, and a tripeptide loop at the lectin-binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neck-CRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure, including the lectin site conformation, but revealed a potential second nonlectin-binding site for glycans. IAV hemagglutination inhibition, IAV aggregation, and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn-303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3)-sialylated oligosaccharides. Glycan-binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures, whereas RhNCRD bound polylactosamine-containing glycans. The presence of the N-glycan in the CRD increases the glycan-binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform the design of recombinant SP-D-based antiviral drugs.
Asunto(s)
Inmunidad Innata/inmunología , Virus de la Influenza A/inmunología , Lectinas/metabolismo , Infecciones por Orthomyxoviridae/prevención & control , Polisacáridos/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Conformación de Carbohidratos , Glicosilación , Pruebas de Inhibición de Hemaglutinación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Polisacáridos/química , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/genética , Homología de Secuencia , PorcinosRESUMEN
BACKGROUND: The incidence of infectious disease caused by nontuberculous mycobacteria is increasing worldwide. Pulmonary Mycobacterium avium complex (MAC) disease is difficult to treat with chemotherapy, and its mechanism of infection, infection route, disease onset, and severity remain unknown. Ficolins are oligomeric defense lectins. L-ficolin plays an important role in innate immunity. This study's aim was to identify L-ficolin's role in patients with pulmonary MAC disease. METHODS: Between April 2011 and September 2017, 61 Japanese patients with pulmonary MAC disease were seen at our hospital. A control group, comprising 30 healthy individuals, without respiratory disease were enrolled in our study. The relationship between serum L-ficolin levels and disease severity was assessed, and L-ficolin's antibacterial role was examined. RESULTS: Serum L-ficolin levels were significantly lower in patients with pulmonary MAC disease than in healthy subjects (1.69 ± 1.27 µg/ml vs. 3.96 ± 1.42 µg/ml; p < 0.001). The cut-off value, based on receiver operating characteristic (ROC) analysis results, was 2.48 µg/ml (area under the curve (AUC) 0.90, sensitivity and specificity 83.6 and 86.7%, respectively). Serum L-ficolin levels were significantly lower in the patients with nodular bronchiectatic type disease compared with the patients with fibrocavitary type disease and were lower in the high-resolution computed tomography high-scoring group compared with low-scoring group. An in vitro analysis showed that purified recombinant L-ficolin bound to M. avium and its major cell wall component, lipoarabinomannan, in a concentration-dependent manner. In addition, recombinant L-ficolin suppressed M. avium growth in a concentration-dependent manner. CONCLUSIONS: Insufficient serum L-ficolin is associated with disease progression in pulmonary MAC disease, and the level of serum L-ficolin is a possible biomarker. TRIAL REGISTRATION: This study is registered with UMIN ( UMIN000022392 ).