Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 19(2): 532-546, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34958588

RESUMEN

The present study systematically investigates the effect of annealing conditions and the Kolliphor P 407 content on the physicochemical and structural properties of Compritol (glyceryl behenate) and ternary systems prepared via melt cooling (Kolliphor P 407, Compritol, and a hydrophilic API) representing solid-lipid formulations. The physical properties of Compritol and the ternary systems with varying ratios of Compritol and Kolliphor P 407 were characterized using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS) and infrared (IR) spectroscopy, and hot-stage microscopy (HSM), before and after annealing. The change in the chemical profiles of different Compritol components as a function of annealing was evaluated using 1H NMR spectroscopy. While no change in the polymorphic form of API and Kolliphor P 407 occurred during annealing, a systematic conversion of the α- to ß-form was observed in the case of Compritol. Furthermore, the polymorphic transformation of Compritol was found to be dependent on the Kolliphor P 407 content. As per the Flory-Huggins mixing theory, higher miscibility was observed in the case of monobehenin-Kolliphor P 407, monobehenin-dibehenin, and dibehenin-tribehenin binary mixtures. The miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin was confirmed by 1H NMR analysis. The observed higher miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin is proposed as the trigger for the physical separation from the 1,3-diglyceride and triglycerides during melt solidification of the formulations. The phase separation is postulated as the mechanism underlying the formation of a stable ß-polymorphic form (a native form of 1,3-diglyceride) of Compritol upon annealing. This finding is expected to have an important implication for developing stable solid-lipid-surfactant-based drug formulations.


Asunto(s)
Excipientes , Tensoactivos , Rastreo Diferencial de Calorimetría , Composición de Medicamentos , Excipientes/química , Transición de Fase , Solubilidad , Tensoactivos/química
2.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012770

RESUMEN

This study aimed to develop and assess the long-term stability of drug-loaded solid lipid nanoparticles (SLNs). The SLNs were designed to extend the release profile, overcome the problems of bioavailability and solubility, investigate toxicity, and improve the antischistosomal efficacy of praziquantel. The aim was pursued using solvent injection co-homogenization techniques to fabricate SLNs in which Compritol ATO 888 and lecithin were used as lipids, and Pluronic F127 (PF127) was used as a stabilizer. The long-term stability effect of the PF127 as a stabilizer on the SLNs was evaluated. Dynamic light scattering (DLS) was used to determine the particle size, stability, and polydispersity. The morphology of the SLNs was examined through the use of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The chemical properties, as well as the mechanical, thermal, and crystal behaviours of SLNs were evaluated using FTIR, ElastoSens Bio2, XRPD, DSC, and TGA, respectively. SLNs with PF127 depicted an encapsulation efficiency of 71.63% and a drug loading capacity of 11.46%. The in vitro drug release study for SLNs with PF127 showed a cumulative release of 48.08% for the PZQ within 24 h, with a similar release profile for SLNs' suspension after 120 days. DLS, ELS, and optical characterization and stability profiling data indicate that the addition of PF127 as the surfactants provided long-term stability for SLNs. In vitro cell viability and in vivo toxicity evaluation signify the safety of SLNs stabilized with PF127. In conclusion, the parasitological data showed that in S. mansoni-infected mice, a single (250 mg/kg) oral dosage of CLPF-SLNs greatly improved PZQ antischistosomal efficacy both two and four weeks post-infection. Thus, the fabricated CLPF-SLNs demonstrated significant efficiency inthe delivery of PZQ, and hence are a promising therapeutic strategy against schistosomiasis.


Asunto(s)
Nanopartículas , Praziquantel , Animales , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Lípidos/química , Liposomas , Ratones , Nanopartículas/química , Tamaño de la Partícula , Praziquantel/química , Praziquantel/farmacología , Praziquantel/uso terapéutico
3.
Pharmaceutics ; 12(2)2020 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079103

RESUMEN

We have developed a new cationic solid lipid nanoparticle (SLN) formulation, composed of Compritol ATO 888, poloxamer 188 and cetyltrimethylammonium bromide (CTAB), to load perillaldehyde 1,2-epoxide, and surface-tailored with a monoclonal antibody for site-specific targeting of human epithelial growth receptor 2 (HER2). Perillaldehyde 1,2-epoxide-loaded cationic SLN (cPa-SLN), with a mean particle size (z-Ave) of 275.31 ± 4.78 nm and polydispersity index (PI) of 0.303 ± 0.081, were produced by high shear homogenization. An encapsulation efficiency of cPa-SLN above 80% was achieved. The release of perillaldehyde 1,2-epoxide from cationic SLN followed the Korsemeyer-Peppas kinetic model, which is typically seen in nanoparticle formulations. The lipid peroxidation of cPa-SLN was assessed by the capacity to produce thiobarbituric acid-reactive substances, while the antioxidant activity was determined by the capacity to scavenge the stable radical DPPH. The surface functionalization of cPa-SLN with the antibody was done via streptavidin-biotin interaction, monitoring z-Ave, PI and ZP of the obtained assembly (cPa-SLN-SAb), as well as its stability in phosphate buffer. The effect of plain cationic SLN (c-SLN, monoterpene free), cPa-SLN and cPa-SLN-SAb onto the MCF-7 cell lines was evaluated in a concentration range from 0.01 to 0.1 mg/mL, confirming that streptavidin adsorption onto cPa-SLN-SAb improved the cell viability in comparison to the cationic cPa-SLN.

4.
Res Pharm Sci ; 4(2): 63-75, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21589801

RESUMEN

A controlled release matrix formulation for mesalamine was designed and developed to achieve a 24 h release profile. Using compritol 888 ATO (glyceryl behenate) as an inert matrix-forming agent to control the release of mesalamine, formulation granules containing the solid dispersions were investigated. Pectin, a polysaccharide, was used as bacterial dependent polymer for colon targeting. The matrix tablets for these formulations were prepared by direct compression and their in vitro release tests were carried out. A 3(2) full factorial design was used for optimization by taking the amounts of glyceryl behenate (X(1)) and pectin (X(2)) as independent variables and percentage drug released at 2 (Q(2)), 16 (Q(16)) and 24 (Q(24)) h as dependent variables. Drug release from the matrix tablets formulations lasted for over 24 h. Images of the tablet surface and cross-section were characterized by scanning electron microscopy to show the formed pores and channels in the matrices. These may provide the release pathway for the inner embedded drugs. The co-mixing of polysaccharide pectin, into the waxy matrices played a meaningful role in targeting the tablets to colon. The drug release from the novel formulation may be attributed to the diffusion-controlled mechanism. The results of the full factorial design indicated that an optimum amount of compritol ATO 888 and a high amount of pectin favors the colon targeting and controlled release of mesalamine from dosage form.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA