Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Syst ; 48(1): 10, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193948

RESUMEN

Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Personal de Salud , Aprendizaje Automático , Máquina de Vectores de Soporte
2.
BMC Bioinformatics ; 24(1): 479, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102551

RESUMEN

Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Análisis por Micromatrices , Neoplasias/genética , Técnicas Genéticas , Aprendizaje Automático
3.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420573

RESUMEN

Wearable exoskeletons can help people with mobility impairments by improving their rehabilitation. As electromyography (EMG) signals occur before movement, they can be used as input signals for the exoskeletons to predict the body's movement intention. In this paper, the OpenSim software is used to determine the muscle sites to be measured, i.e., rectus femoris, vastus lateralis, semitendinosus, biceps femoris, lateral gastrocnemius, and tibial anterior. The surface electromyography (sEMG) signals and inertial data are collected from the lower limbs while the human body is walking, going upstairs, and going uphill. The sEMG noise is reduced by a wavelet-threshold-based complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) reduction algorithm, and the time-domain features are extracted from the noise-reduced sEMG signals. Knee and hip angles during motion are calculated using quaternions through coordinate transformations. The random forest (RF) regression algorithm optimized by cuckoo search (CS), shortened as CS-RF, is used to establish the prediction model of lower limb joint angles by sEMG signals. Finally, root mean square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) are used as evaluation metrics to compare the prediction performance of the RF, support vector machine (SVM), back propagation (BP) neural network, and CS-RF. The evaluation results of CS-RF are superior to other algorithms under the three motion scenarios, with optimal metric values of 1.9167, 1.3893, and 0.9815, respectively.


Asunto(s)
Rodilla , Músculo Esquelético , Humanos , Electromiografía/métodos , Músculo Esquelético/fisiología , Extremidad Inferior , Articulación de la Rodilla/fisiología , Algoritmos
4.
Sensors (Basel) ; 22(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35746432

RESUMEN

During lower-extremity rehabilitation training, muscle activity status needs to be monitored in real time to adjust the assisted force appropriately, but it is a challenging task to obtain muscle force noninvasively. Mechanomyography (MMG) signals offer unparalleled advantages over sEMG, reflecting the intention of human movement while being noninvasive. Therefore, in this paper, based on MMG, a combined scheme of gray relational analysis (GRA) and support vector regression optimized by an improved cuckoo search algorithm (ICS-SVR) is proposed to estimate the knee joint extension force. Firstly, the features reflecting muscle activity comprehensively, such as time-domain features, frequency-domain features, time-frequency-domain features, and nonlinear dynamics features, were extracted from MMG signals, and the relational degree was calculated using the GRA method to obtain the correlation features with high relatedness to the knee joint extension force sequence. Then, a combination of correlated features with high relational degree was input into the designed ICS-SVR model for muscle force estimation. The experimental results show that the evaluation indices of the knee joint extension force estimation obtained by the combined scheme of GRA and ICS-SVR were superior to other regression models and could estimate the muscle force with higher estimation accuracy. It is further demonstrated that the proposed scheme can meet the need of muscle force estimation required for rehabilitation devices, powered prostheses, etc.


Asunto(s)
Rodilla , Músculo Esquelético , Algoritmos , Electromiografía/métodos , Humanos , Rodilla/fisiología , Articulación de la Rodilla/fisiología , Movimiento , Músculo Esquelético/fisiología
5.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684670

RESUMEN

This article presents the use of the equations of the dynamic response to a step input in metaheuristic algorithm for the parametric estimation of a motor model. The model equations are analyzed, and the relations in steady-state and transient-state are used as delimiters in the search. These relations reduce the number of random parameters in algorithm search and reduce the iterations to find an acceptable result. The tests were implemented in two motors of known parameters to estimate the performance of the modifications in the algorithms. Tests were carried out with three algorithms (Gray Wolf Optimizer, Jaya Algorithm, and Cuckoo Search Algorithm) to prove that the benefits can be extended to various metaheuristics. The search parameters were also varied, and tests were developed with different iterations and populations. The results show an improvement for all the algorithms used, achieving the same error as the original method but with 10 to 50% fewer iterations.


Asunto(s)
Algoritmos , Modelos Teóricos
6.
BMC Med Inform Decis Mak ; 21(1): 81, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653325

RESUMEN

BACKGROUND: Retrieving gene and disease information from a vast collection of biomedical abstracts to provide doctors with clinical decision support is one of the important research directions of Precision Medicine. METHOD: We propose a novel article retrieval method based on expanded word and co-word analyses, also conducting Cuckoo Search to optimize parameters of the retrieval function. The main goal is to retrieve the abstracts of biomedical articles that refer to treatments. The methods mentioned in this manuscript adopt the BM25 algorithm to calculate the score of abstracts. We, however, propose an improved version of BM25 that computes the scores of expanded words and co-word leading to a composite retrieval function, which is then optimized using the Cuckoo Search. The proposed method aims to find both disease and gene information in the abstract of the same biomedical article. This is to achieve higher relevance and hence score of articles. Besides, we investigate the influence of different parameters on the retrieval algorithm and summarize how they meet various retrieval needs. RESULTS: The data used in this manuscript is sourced from medical articles presented in Text Retrieval Conference (TREC): Clinical Decision Support (CDS) Tracks of 2017, 2018, and 2019 in Precision Medicine. A total of 120 topics are tested. Three indicators are employed for the comparison of utilized methods, which are selected among the ones based only on the BM25 algorithm and its improved version to conduct comparable experiments. The results showed that the proposed algorithm achieves better results. CONCLUSION: The proposed method, an improved version of the BM25 algorithm, utilizes both co-word implementation and Cuckoo Search, which has been verified achieving better results on a large number of experimental sets. Besides, a relatively simple query expansion method is implemented in this manuscript. Future research will focus on ontology and semantic networks to expand the query vocabulary.


Asunto(s)
Sistemas de Apoyo a Decisiones Clínicas , Algoritmos , Humanos , Almacenamiento y Recuperación de la Información , Medicina de Precisión
7.
Sensors (Basel) ; 21(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063819

RESUMEN

Node localisation plays a critical role in setting up Wireless Sensor Networks (WSNs). A sensor in WSNs senses, processes and transmits the sensed information simultaneously. Along with the sensed information, it is crucial to have the positional information associated with the information source. A promising method to localise these randomly deployed sensors is to use bio-inspired meta-heuristic algorithms. In this way, a node localisation problem is converted to an optimisation problem. Afterwards, the optimisation problem is solved for an optimal solution by minimising the errors. Various bio-inspired algorithms, including the conventional Cuckoo Search (CS) and modified CS algorithm, have already been explored. However, these algorithms demand a predetermined number of iterations to reach the optimal solution, even when not required. In this way, they unnecessarily exploit the limited resources of the sensors resulting in a slow search process. This paper proposes an Enhanced Cuckoo Search (ECS) algorithm to minimise the Average Localisation Error (ALE) and the time taken to localise an unknown node. In this algorithm, we have implemented an Early Stopping (ES) mechanism, which improves the search process significantly by exiting the search loop whenever the optimal solution is reached. Further, we have evaluated the ECS algorithm and compared it with the modified CS algorithm. While doing so, note that the proposed algorithm localised all the localisable nodes in the network with an ALE of 0.5-0.8 m. In addition, the proposed algorithm also shows an 80% decrease in the average time taken to localise all the localisable nodes. Consequently, the performance of the proposed ECS algorithm makes it desirable to implement in practical scenarios for node localisation.

8.
Appl Soft Comput ; 101: 107052, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33519325

RESUMEN

Classification of COVID-19 X-ray images to determine the patient's health condition is a critical issue these days since X-ray images provide more information about the patient's lung status. To determine the COVID-19 case from other normal and abnormal cases, this work proposes an alternative method that extracted the informative features from X-ray images, leveraging on a new feature selection method to determine the relevant features. As such, an enhanced cuckoo search optimization algorithm (CS) is proposed using fractional-order calculus (FO) and four different heavy-tailed distributions in place of the Lévy flight to strengthen the algorithm performance during dealing with COVID-19 multi-class classification optimization task. The classification process includes three classes, called normal patients, COVID-19 infected patients, and pneumonia patients. The distributions used are Mittag-Leffler distribution, Cauchy distribution, Pareto distribution, and Weibull distribution. The proposed FO-CS variants have been validated with eighteen UCI data-sets as the first series of experiments. For the second series of experiments, two data-sets for COVID-19 X-ray images are considered. The proposed approach results have been compared with well-regarded optimization algorithms. The outcomes assess the superiority of the proposed approach for providing accurate results for UCI and COVID-19 data-sets with remarkable improvements in the convergence curves, especially with applying Weibull distribution instead of Lévy flight.

9.
Sensors (Basel) ; 20(7)2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-32230870

RESUMEN

Wireless Sensor Networks (WSNs) consist of multiple sensor nodes, each of which has the ability to collect, receive and send data. However, irregular data sources can lead to severe network congestion. To solve this problem, the Proportional Integral Derivative (PID) controller is introduced into the congestion control mechanism to control the queue length of messages in nodes. By running the PID algorithm on cluster head nodes, the effective collection of sensor data is realized. In addition, a fuzzy control algorithm is proposed to solve the problems of slow parameter optimization, limited adaptive ability and poor optimization precision of traditional PID controller. However, the parameter selection of the fuzzy control algorithm relies too much on expert experience and has certain limitations. Therefore, this manuscript proposes the Cuckoo Fuzzy-PID Controller (CFPID), whose core idea is to apply the cuckoo search algorithm to optimize the fuzzy PID controller's quantization factor and PID parameter increment. Simulation results show that in comparison with the existing methods, the instantaneous queue length and real-time packet loss rate of CFPID are better.

10.
Entropy (Basel) ; 22(6)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33286433

RESUMEN

Image registration has an imperative role in medical imaging. In this work, a grey-wolf optimizer (GWO)-based non-rigid demons registration is proposed to support the retinal image registration process. A comparative study of the proposed GWO-based demons registration framework with cuckoo search, firefly algorithm, and particle swarm optimization-based demons registration is conducted. In addition, a comparative analysis of different demons registration methods, such as Wang's demons, Tang's demons, and Thirion's demons which are optimized using the proposed GWO is carried out. The results established the superiority of the GWO-based framework which achieved 0.9977 correlation, and fast processing compared to the use of the other optimization algorithms. Moreover, GWO-based Wang's demons performed better accuracy compared to the Tang's demons and Thirion's demons framework. It also achieved the best less registration error of 8.36 × 10-5.

11.
Sensors (Basel) ; 19(8)2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31013613

RESUMEN

Following the development of wireless multimedia sensor networks (WMSN), the coverage of the sensors in the network constitutes one of the key technologies that have a significant influence on the monitoring ability, quality of service, and network lifetime. The application environment of WMSN is always a complex surface, such as a hilly surface, that would likely cause monitoring shadowing problems. In this study, a new coverage-enhancing algorithm is presented to achieve an optimal coverage ratio of WMSN based on three-dimensional (3D) complex surfaces. By aiming at the complex surface, the use of a 3D sensing model, including a sensor monitoring model and a surface map calculation algorithm, is proposed to calculate the WMSN coverage information in an accurate manner. The coverage base map allowed the efficient estimation of the degree of monitoring occlusion efficiently and improved the system's accuracy. To meet the requests of complex 3D surface monitoring tasks for multiple sensors, we propose a modified cuckoo search algorithm that considers the features of the WMSN coverage problem and combines the survival of the fittest, dynamic discovery probability, and the self-adaptation strategy of rotation. The evaluation outcomes demonstrate that the proposed algorithm can describe the 3D covering field but also improve both the coverage quality and efficiency of the WMSN on a complex surface.

12.
J Med Syst ; 43(3): 77, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30758682

RESUMEN

The Lung nodules are very important to indicate the lung cancer, and its early detection enables timely treatment and increases the survival rate of patient. Even though lots of works are done in this area, still improvement in accuracy is required for improving the survival rate of the patient. The proposed method can classify the stages of lung cancer in addition to the detection of lung nodules. There are two parts in the proposed method, the first part is used for classifying normal/abnormal and second part is used for classifying stages of lung cancer. Totally 10 features from the lung region segmented image are considered for detection and classification. The first part of the proposed method classifies the input images with the aid of Naive Bayes classifier as normal or abnormal. The second part of the system classifies the four stages of lung cancer using Neuro Fuzzy classifier with Cuckoo Search algorithm. The results of proposed system show that the rate of accuracy of classification is improved and the results are compared with SVM, Neural Network and Neuro Fuzzy Classifiers.


Asunto(s)
Lógica Difusa , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Redes Neurales de la Computación , Algoritmos , Teorema de Bayes , Diagnóstico por Computador/métodos , Detección Precoz del Cáncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
13.
J Med Syst ; 43(10): 307, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420756

RESUMEN

The image restoration has emerged as a very vital investigation technique in the domain of the image processing. The underlying motive behind the image restoration is devoted to the augmentation of the perceived visual impact of image so as to make it almost identical to the original image. A host of exploration approaches are now in vogues which are intended to steer clear of the noise, thereby regaining the images with original quality. In our earlier research, two distinct noise elimination methods like the (OGHP) and SURE shrinkage were effectively employed for the purpose of denoising, though the relative PSNR and SSIM efficiencies did not come up to the desired level. In the innovative approach envisaged in the document, at the outset, the noise is included by means of two processes like the salt and pepper and impulse noise. Subsequently, the pre-processing methods are performed with the able assistance of two novel filters such as the adaptive median filter and adaptive fuzzy switching. Thereafter, the preprocessed image is furnished to the succeeding function of noise elimination like the (OGHP) and SURE shrinkage. In the course of the OGHP noise elimination technique, the GHP constraints are optimized by employing the Cuckoo Search Algorithm. Thereafter, the noise-eliminated image is effectively estimated with the help of the Discrete Wavelet Transform (DWT). The consequential noiseless images are subjected to the image restoration procedure by efficiently employing the AGA approach. The cheering performance outcomes chant the success stories of the novel image restoration method, highlighting its superlative efficiency. Moreover, the efficacy of the innovative approach is assessed by means of a set of noise-polluted images and contrasted with the modern noiseless image restoration technique.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido , Análisis de Ondículas
14.
Sensors (Basel) ; 18(12)2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30558208

RESUMEN

An emerging prognostic and health management (PHM) technology has recently attracted a great deal of attention from academies, industries, and governments. The need for higher equipment availability and lower maintenance cost is driving the development and integration of prognostic and health management systems. PHM models depend on the smart sensors and data generated from sensors. This paper proposed a machine learning-based methods for developing PHM models from sensor data to perform fault diagnostic for transformer systems in a smart grid. In particular, we apply the Cuckoo Search (CS) algorithm to optimize the Back-propagation (BP) neural network in order to build high performance fault diagnostics models. The models were developed using sensor data called dissolved gas data in oil of the power transformer. We validated the models using real sensor data collected from power transformers in China. The results demonstrate that the developed meta heuristic algorithm for optimizing the parameters of the neural network is effective and useful; and machine learning-based models significantly improved the performance and accuracy of fault diagnosis/detection for power transformer PHM.

15.
Sensors (Basel) ; 18(11)2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404236

RESUMEN

Aiming at the problem that the composite fault signal of the gearbox is weak and the fault characteristics are difficult to extract under strong noise environment, an improved singular spectrum decomposition (ISSD) method is proposed to extract the composite fault characteristics of the gearbox. Singular spectrum decomposition (SSD) has been proved to have higher decomposition accuracy and can better suppress modal mixing and pseudo component. However, noise has a great influence on it, and it is difficult to extract weak impact components. In order to improve the limitations of SSD, we chose the minimum entropy deconvolution adjustment (MEDA) as the pre-filter of the SSD to preprocess the signal. The main function of the minimum entropy deconvolution adjustment is to reduce noise and enhance the impact component, which can make up for the limitations of SSD. However, the ability of MEDA to reduce noise and enhance the impact signal is greatly affected by its parameter, the filter length. Therefore, to improve the shortcomings of MEDA, a parameter adaptive method based on Cuckoo Search (CS) is proposed. First, construct the objective function as the adaptive function of CS to optimize the MEDA algorithm. Then, the pre-processed signal is decomposed into singular spectral components (SSC) by SSD, and the meaningful components are selected by Correlation coefficient. For the existing modal mixing phenomenon, the SSC component is reconstructed to eliminate the misjudgment of the result. Then, the frequency spectrum analysis is performed to obtain the frequency information for fault diagnosis. Finally, the effectiveness and superiority of ISSD are validated by simulation signals and applying to compound faults of a Gear box test rig.

16.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30326669

RESUMEN

Protein⁻ligand docking is a molecular modeling technique that is used to predict the conformation of a small molecular ligand at the binding pocket of a protein receptor. There are many protein⁻ligand docking tools, among which AutoDock Vina is the most popular open-source docking software. In recent years, there have been numerous attempts to optimize the search process in AutoDock Vina by means of heuristic optimization methods, such as genetic and particle swarm optimization algorithms. This study, for the first time, explores the use of cuckoo search (CS) to solve the protein⁻ligand docking problem. The result of this study is CuckooVina, an enhanced conformational search algorithm that hybridizes cuckoo search with differential evolution (DE). Extensive tests using two benchmark datasets, PDBbind 2012 and Astex Diverse set, show that CuckooVina improves the docking performances in terms of RMSD, binding affinity, and success rate compared to Vina though it requires about 9⁻15% more time to complete a run than Vina. CuckooVina predicts more accurate docking poses with higher binding affinities than PSOVina with similar success rates. CuckooVina's slower convergence but higher accuracy suggest that it is better able to escape from local energy minima and improves the problem of premature convergence. As a summary, our results assure that the hybrid CS⁻DE process to continuously generate diverse solutions is a good strategy to maintain the proper balance between global and local exploitation required for the ligand conformational search.


Asunto(s)
Ligandos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas/química , Algoritmos , Animales , Aves/metabolismo , Proteínas/metabolismo
17.
J Med Syst ; 42(11): 224, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30288616

RESUMEN

This manuscript proposed a hybrid method of Deep Neural Network (DNN) and Cuckoo Search Optimization (CSO) with No-Reference Image Quality Assessment (NR-IQA) for achieving high accuracy, low computational complexity, flexibility and etc. of a medical image. NR-IQA is proposed due to till now there is no perfect reference image for finding the quality of real time medical imaging. It is an effective method for assessing the real-world medical images. The proposed method takes the distorted image as an input and estimate the quality of the image without the assistance of reference image. The techniques CSO and DNN with NR-IQA produces the quality of the image with high quality score and low Mean Square Error (MSE). Also, the proposed method is used to improve the quality score thereby improving the quality of the image. So that the resultant image has good visual properties which is useful for the analysis of further medical proceedings. The simulation result shows that the proposed system improves the quality score by 8% when compared to the other existing systems. The SROCC value can be increased as 6%, 14%, 6 and 2% for the different existing methods such as NR-BIQA, SBVQP-ML, PTQL/PTVC and NR-SIQA (3D) respectively.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación , Algoritmos , Factores de Tiempo
18.
Environ Res ; 158: 105-117, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28623745

RESUMEN

Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM10 and PM2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , China , Ciudades , Lógica Difusa
19.
Br Poult Sci ; 58(3): 256-261, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28100066

RESUMEN

1. To identify the origin of table eggs more accurately, a method based on hyperspectral imaging technology was studied. 2. The hyperspectral data of 200 samples of intensive and extensive eggs were collected. Standard normalised variables combined with a Savitzky-Golay were used to eliminate noise, then stepwise regression (SWR) was used for feature selection. Grid search algorithm (GS), genetic search algorithm (GA), particle swarm optimisation algorithm (PSO) and cuckoo search algorithm (CS) were applied by support vector machine (SVM) methods to establish an SVM identification model with the optimal parameters. The full spectrum data and the data after feature selection were the input of the model, while egg category was the output. 3. The SWR-CS-SVM model performed better than the other models, including SWR-GS-SVM, SWR-GA-SVM, SWR-PSO-SVM and others based on full spectral data. The training and test classification accuracy of the SWR-CS-SVM model were respectively 99.3% and 96%. 4. SWR-CS-SVM proved effective for identifying egg varieties and could also be useful for the non-destructive identification of other types of egg.


Asunto(s)
Algoritmos , Pollos , Huevos/análisis , Animales , China , Máquina de Vectores de Soporte
20.
Sensors (Basel) ; 16(9)2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27589756

RESUMEN

Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA