Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39216089

RESUMEN

Duchenne muscular dystrophy (DMD) results in a progressive loss of functional skeletal muscle mass (MM) and replacement with fibrofatty tissue. Accurate evaluation of MM in DMD patients has not previously been available. Our objective was to measure MM using the D3creatine (D3Cr) dilution method and determine its relationship with strength and functional capacity in patients with DMD over a wide range of ages. Subjects were recruited for participation in a 12 month, longitudinal, observational study. Here, we report the baseline data. A 20 mg dose of D3Cr dissolved in water was ingested by 92 patients with DMD (ages 4-25 years) followed later with a fasting urine sample. Enrichment of D3creatinine was determined by liquid chromatography-mass spectrometry analysis. The North Star Ambulatory Assessment (NSAA) total score was determined for ambulatory participants, and the Performance of Upper Limb (PUL 2.0) total score and grip strength for all participants. We observed a significant age-associated increase in body weight along with a substantial decrease in MM/body weight (%MM). MM and %MM were associated with PUL score (r = 0.517, P < 0.0001 and r = 0.764, P < 0.0001 respectively). The age-associated decrease in MM and %MM was strongly associated with ambulatory status. We observed very little overlap in %MM between ambulant and non-ambulant subjects, suggesting a threshold of 18-22% associated with loss of ambulation. MM is substantially diminished with advancing age and is highly related to clinically meaningful functional status. The D3Cr dilution method may provide a biomarker of disease progression and therapeutic efficacy in patients with DMD or other neuromuscular disorders. KEY POINTS: The non-invasive D3creatine dilution method provides novel data on whole body functional muscle mass (MM) in a wide range of ages in patients with DMD and reveals profoundly low functional MM in older non-ambulant patients. The difference in %MM between ambulant and non-ambulant subjects suggests a threshold for loss of ambulatory ability between 18 and 22% MM. The data suggest that as functional MM declines with age, maintaining a lower body weight may help to conserve ambulatory ability.

2.
Calcif Tissue Int ; 114(1): 3-8, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37594505

RESUMEN

Initial definitions of sarcopenia included the age-associated loss of skeletal muscle mass that was presumed to be associated with late-life reduced functional capacity, disability and loss of independence. Because no method for determination of muscle mass was available for large cohort studies of aging men and women, lean body mass determined by dual X-ray absorptiometry or bioelectrical impedance was used as a surrogate measure of muscle mass. The data from these studies showed either no or a poor relationship between LBM and functional capacity and health related outcomes, leading to the conclusion of many that the amount of muscle may not be associated with these age-associated outcomes. It was assumed that some undefined index of muscle quality is the critical contributor. These studies also consistently showed that muscle strength is lost more quickly than lean mass. Total body muscle mass can now be measured directly, accurately and non-invasively using the D3creatine (D3Cr) dilution method. D3Cr muscle mass, but not DXA derived LBM, is strongly associated with functional capacity, falls and insulin resistance in older men and women. In addition, D3Cr muscle mass is associated with risk of disability, hip fracture and mortality. New and emerging data demonstrate that low muscle mass may serve as a diagnostic criterion for sarcopenia.


Asunto(s)
Fracturas de Cadera , Sarcopenia , Masculino , Humanos , Femenino , Anciano , Músculo Esquelético , Creatina , Gerociencia , Envejecimiento/fisiología , Absorciometría de Fotón , Composición Corporal , Fracturas de Cadera/complicaciones
3.
Biomed Chromatogr ; 37(11): e5724, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589257

RESUMEN

This study developed a simple method for muscle mass determination based on D3 -creatine dilution by removing the matrix effects of ultra-performance liquid chromatography-tandem mass spectrometry analysis through mutual correction of creatinine and D3 -creatinine. Rats were administered an oral tracer dose of D3 -creatine at age 6 weeks. Creatinine and D3 -creatinine in urine were detected using ultra-performance liquid chromatography-tandem mass spectrometry after diluting 20 times to obtain D3 -creatinine enrichment factor (mole percent excess). The mole percent excess obtained from peak area could be used to calculate muscle mass using the improved formula. The limit of detection was 0.500 ng/mL for D3 -creatinine. Creatinine and D3 -creatinine could be mutually corrected because of the same matrix effect, and D3 -creatine spillage was negligible within 0.22%. Isotopic steady time was consistent with that obtained using conventional methods. Bland-Altman plots demonstrated the satisfying consistency between the proposed method and magnetic resonance imaging. This is a simple and rapid measuring method of muscle mass based on D3 -creatine dilution that requires no accurate quantification of creatinine and D3 -creatinine concentrations and no urine sample collection to obtain D3 -creatine spillage.

4.
J Cachexia Sarcopenia Muscle ; 10(1): 14-21, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30900400

RESUMEN

Sarcopenia has been described as the age-associated decrease in skeletal muscle mass. However, virtually every study of sarcopenia has measured lean body mass (LBM) or fat free mass (FFM) rather than muscle mass, specifically. In a number of published sarcopenia studies, LBM or FFM is referred to as muscle mass, leading to an incorrect assumption that measuring LBM or FFM is an accurate measure of muscle mass. As a result, the data on the effects of changes in LBM or FFM in older populations on outcomes such as functional capacity, disability, and risk of injurious falls have been inconsistent resulting in the conclusion that muscle mass is only weakly related to these outcomes. We review and describe the assumptions for the most commonly used measurements of body composition. Dual-energy X-ray absorptiometry (DXA) has become an increasingly common tool for the assessment of LBM or FFM and appendicular lean mass as a surrogate, but inaccurate, measurement of muscle mass. Other previously used methods (total body water, bioelectric impedance, and imaging) also have significant limitations. D3 -Creatine (D3 -Cr) dilution provides a direct and accurate measurement of creatine pool size and skeletal muscle mass. In a recent study in older men (MrOS cohort), D3 -Cr muscle mass was associated with functional capacity and risk of injurious falls and disability, while assessments of LBM or appendicular lean mass by DXA were only weakly or not associated with these outcomes. Inaccurate measurements of muscle mass by DXA and other methods have led to inconsistent results and potentially erroneous conclusions about the importance of skeletal muscle mass in health and disease. The assessment of skeletal muscle mass using the D3 -Cr dilution method in prospective cohort studies may reveal sarcopenia as a powerful risk factor for late life disability and chronic disease.


Asunto(s)
Creatina/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/diagnóstico , Composición Corporal , Humanos , Músculo Esquelético/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA