Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Intervalo de año de publicación
1.
Brain ; 147(7): 2384-2399, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38462574

RESUMEN

Neurons from layer II of the entorhinal cortex (ECII) are the first to accumulate tau protein aggregates and degenerate during prodromal Alzheimer's disease. Gaining insight into the molecular mechanisms underlying this vulnerability will help reveal genes and pathways at play during incipient stages of the disease. Here, we use a data-driven functional genomics approach to model ECII neurons in silico and identify the proto-oncogene DEK as a regulator of tau pathology. We show that epigenetic changes caused by Dek silencing alter activity-induced transcription, with major effects on neuronal excitability. This is accompanied by the gradual accumulation of tau in the somatodendritic compartment of mouse ECII neurons in vivo, reactivity of surrounding microglia, and microglia-mediated neuron loss. These features are all characteristic of early Alzheimer's disease. The existence of a cell-autonomous mechanism linking Alzheimer's disease pathogenic mechanisms in the precise neuron type where the disease starts provides unique evidence that synaptic homeostasis dysregulation is of central importance in the onset of tau pathology in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Neuronas , Proto-Oncogenes Mas , Proteínas tau , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Neuronas/metabolismo , Proteínas tau/metabolismo , Ratones , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Humanos , Ratones Transgénicos
2.
J Biol Chem ; 299(12): 105489, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000658

RESUMEN

EKLF/KLF1 is an essential transcription factor that plays a global role in erythroid transcriptional activation. Regulation of KLF1 is of interest, as it displays a highly restricted expression pattern, limited to erythroid cells and its progenitors. Here we use biochemical affinity purification to identify the DDX5/p68 protein as an activator of KLF1 by virtue of its interaction with the erythroid-specific DNAse hypersensitive site upstream enhancer element (EHS1). We further show that this protein associates with DEK and CTCF. We postulate that the range of interactions of DDX5/p68 with these and other proteins known to interact with this element render it part of the enhanseosome complex critical for optimal expression of KLF1 and enables the formation of a proper chromatin configuration at the Klf1 locus. These individual interactions provide quantitative contributions that, in sum, establish the high-level activity of the Klf1 promoter and suggest they can be selectively manipulated for clinical benefit.


Asunto(s)
ARN Helicasas DEAD-box , Elementos de Facilitación Genéticos , Factores de Transcripción de Tipo Kruppel , Eritropoyesis , Regulación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
3.
New Phytol ; 241(4): 1662-1675, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38058237

RESUMEN

Ribosome biogenesis is a highly dynamic and orchestrated process facilitated by hundreds of ribosomal biogenesis factors and small nucleolar RNAs. While many of the advances are derived from studies in yeast, ribosome biogenesis remains largely unknown in plants despite its importance to plant growth and development. Through characterizing the maize (Zea mays) defective kernel and embryo-lethal mutant dek58, we show that DEK58 encodes an Rrp15p domain-containing protein with 15.3% identity to yeast Rrp15. Over-expression of DEK58 rescues the mutant phenotype. DEK58 is localized in the nucleolus. Ribosome profiling and RNA gel blot analyses show that the absence of DEK58 reduces ribosome assembly and impedes pre-rRNA processing, accompanied by the accumulation of nearly all the pre-rRNA processing intermediates and the production of an aberrant processing product P-25S*. DEK58 interacts with ZmSSF1, a maize homolog of the yeast Ssf1 in the 60S processome. DEK58 and ZmSSF1 interact with ZmCK2α, a putative component of the yeast UTP-C complex involved in the small ribosomal subunit processome. These results demonstrate that DEK58 is essential to seed development in maize. It functions in the early stage of pre-rRNA processing in ribosome biogenesis, possibly through interacting with ZmSSF1 and ZmCK2α in maize.


Asunto(s)
ARN Ribosómico , Zea mays , Zea mays/genética , Zea mays/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribosomas/metabolismo , Semillas/genética , Semillas/metabolismo , Procesamiento Postranscripcional del ARN/genética
4.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768989

RESUMEN

Complex immune contexture leads to resistance to immunotherapy in hepatocellular carcinoma (HCC), and the need for new potential biomarkers of immunotherapy in HCC is urgent. Histone chaperones are vital determinants of gene expression and genome stability that regulate tumor development. This study aimed to investigate the effect of histone chaperones on tumor immunity in HCC. Bioinformatics analyses were initially performed using The Cancer Genome Atlas (TCGA) database, and were validated using the Gene Expression Omnibus (GEO) database and the International Cancer Genome Consortium (ICGC) database. Immune-related histone chaperones were screened with the Spearman rank coefficient. Consensus clustering was utilized to divide the HCC samples into two clusters. ESTIMATE, CIBERSORT and ssGSEA analyses were performed to assess immune infiltration. The expression of immunomodulatory genes, chemokines and chemokine receptors was analyzed to evaluate sensitivity to immunotherapy. The differentially expressed genes (DEGs) were included in weighted gene coexpression network analysis (WGCNA) to identify the hub genes. Enrichment analyses were used to investigate the functions of the hub genes. The Kaplan-Meier method and log-rank test were conducted to draw survival curves. A Cox regression analysis was utilized to identify independent risk factors affecting prognosis. HSPA8 and DEK were screened out from 36 known histone chaperones based on their strongest correlation with the ESTIMATE score. Cluster 2, with high HSPA8 expression and low DEK expression, tended to have stronger immune infiltration and better sensitivity to immunotherapy than Cluster 1, with low HSPA8 expression and high DEK expression. Furthermore, WGCNA identified 12 hub genes closely correlated with immune infiltration from the DEGs of the two clusters, of which FBLN2 was proven to be an independent protective factor of HCC patients. HSPA8 and DEK are expected to be biomarkers for precisely predicting the effect of immunotherapy, and FBLN2 is expected to be a therapeutic target of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Inmunoterapia , Complejo Antígeno-Anticuerpo , Análisis por Conglomerados , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Cromosómicas no Histona/genética , Proteínas Oncogénicas/genética , Proteínas del Choque Térmico HSC70
5.
Ann Hematol ; 101(10): 2179-2193, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35941390

RESUMEN

Patients within the WHO-subgroup of t(6;9)-positive acute myeloid leukemia (AML) differ from other AML subgroups as they are characterised by younger age and a grim prognosis. Leukemic transformation can often be attributed to single chromosomal aberrations encoding oncogenes, in the case of t(6;9)-AML to the fusion protein DEK-CAN (also called DEK-NUP214). As being a rare disease there is the urgent need for models of t(6;9)-AML. The only cell line derived from a t(6;9)-AML patient currently available is FKH1. By using phospho-proteomics on FKH1 cells, we found a strongly activated ABL1 kinase. Further investigation revealed the presence of ETV6-ABL1. This finding renders necessary to determine DEK-CAN- and ETV6-ABL1-related features when using FKH1. This can be done as ETV6-ABL1 activity in FKH1 is responsive to imatinib. Nevertheless, we provided evidence that both SFK and mTOR activation in FKH1 are DEK-CAN-related features as they were activated also in other t(6;9) and DEK-CAN-positive models. The activation of STAT5 previously shown to be strong in t(6;9)-AML and activated by DEK-CAN is regulated in FKH1 by both DEK-CAN and ETV6-ABL1. In conclusion, FKH1 cells still represent a model for t(6;9)-AML and could serve as model for ETV6-ABL1-positive AML if the presence of these leukemia-inducing oncogenes is adequately considered.Taken together, all our results provide clear evidence of novel and specific interdependencies between leukemia-inducing oncogenes and cancer signaling pathways which will influence the design of therapeutic strategies to better address the complexity of cancer signaling.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Proteínas Cromosómicas no Histona/genética , Humanos , Mesilato de Imatinib , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Oncogénicas/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Transducción de Señal , Translocación Genética
6.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35563178

RESUMEN

DEK and miR-5100 play critical roles in many steps of cancer initiation and progression and are directly or indirectly regulated by most promoters and repressors. LEF1-AS1 as a long non-coding RNA can regulate tumor development through sponge miRNA. The effect and regulatory mechanism of DEK on autophagy and apoptosis in gastric cancer (GC), and the role between miR-5100 and DEK or miR-5100 and LEF1-AS1 are still unclear. Our study found that DEK was highly expressed in gastric cancer tissues and cell lines, and knockdown of DEK inhibited the autophagy of cells, promoted apoptosis, and suppressed the malignant phenotype of gastric cancer. DEK regulates autophagy and apoptosis through the AMPK/mTOR signaling pathway. In addition, miR-5100 inhibits autophagy and promotes apoptosis in GC cells while LEF1-AS1 had the opposite effect. Studies have shown that miR-5100 acts by targeting the 3'UTR of DEK, and LEF1-AS1 regulates the expression of miR-5100 by sponging with mIR-5100. In conclusion, our results found that LEF1-AS1 and miR-5100 sponge function, and the miR-5100/DEK/AMPK/mTOR axis regulates autophagy and apoptosis in gastric cancer cells.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/genética , Autofagia/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742899

RESUMEN

Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3'UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.


Asunto(s)
Neoplasias Gástricas , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Transformación Celular Neoplásica , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias Gástricas/patología
8.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682627

RESUMEN

The European LeukemiaNet (ELN) criteria define the adverse genetic factors of acute myeloid leukemia (AML). AML with adverse genetic factors uniformly shows resistance to standard chemotherapy and is associated with poor prognosis. Here, we focus on the biological background and real-world etiology of these adverse genetic factors and then describe a strategy to overcome the clinical disadvantages in terms of targeting pivotal molecular mechanisms. Different adverse genetic factors often rely on common pathways. KMT2A rearrangement, DEK-NUP214 fusion, and NPM1 mutation are associated with the upregulation of HOX genes. The dominant tyrosine kinase activity of the mutant FLT3 or BCR-ABL1 fusion proteins is transduced by the AKT-mTOR, MAPK-ERK, and STAT5 pathways. Concurrent mutations of ASXL1 and RUNX1 are associated with activated AKT. Both TP53 mutation and mis-expressed MECOM are related to impaired apoptosis. Clinical data suggest that adverse genetic factors can be found in at least one in eight AML patients and appear to accumulate in relapsed/refractory cases. TP53 mutation is associated with particularly poor prognosis. Molecular-targeted therapies focusing on specific genomic abnormalities, such as FLT3, KMT2A, and TP53, have been developed and have demonstrated promising results.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Nucleofosmina , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tirosina Quinasa 3 Similar a fms/genética
9.
Plant J ; 103(5): 1767-1782, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559332

RESUMEN

The self-splicing of group II introns during RNA processing depends on their catalytic structure and is influenced by numerous factors that promote the formation of that structure through direct binding. Here we report that C-to-U editing at a specific position in two nad7 introns is essential to splicing, which also implies that the catalytic activity of non-functional group II introns could be restored by editing. We characterized a maize (Zea mays) mutant, dek46, with a defective kernel phenotype; Dek46 encodes a pentatricopeptide repeat DYW protein exclusively localized in mitochondria. Analyses of the coding regions of mitochondrial transcripts did not uncover differences in RNA editing between dek46 mutant and wild-type maize, but showed that splicing of nad7 introns 3 and 4 is severely reduced in the mutant. Furthermore, editing at nucleotide 22 of domain 5 (D5-C22) of both introns is abolished in dek46. We constructed chimeric introns by swapping D5 of P.li.LSUI2 with D5 of nad7 intron 3. In vitro splicing assays indicated that the chimeric intron containing D5-U22 can be self-spliced, but the one containing D5-C22 cannot. These results indicate that DEK46 functions in the C-to-U editing of D5-C22 of both introns, and the U base at this position is critical to intron splicing.


Asunto(s)
Intrones , Mitocondrias/metabolismo , Semillas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Empalme del ARN , ARN de Planta/genética , ARN de Planta/metabolismo , Semillas/metabolismo , Zea mays/metabolismo
10.
Biochem Biophys Res Commun ; 570: 117-124, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280614

RESUMEN

Kinesin Family Member 15 (KIF15) is a plus end-directed microtubule motor, which exerts complex regulations in cancer biology. This study aimed to explore the functional role of KIF15 in leiomyosarcoma (LMS). Bioinformatic analysis was carried out using data from The Cancer Genome Atlas (TCGA)-Sarcoma (SARC). LMS cell lines SK-UT-1 and SK-LMS-1 were used as in vitro cell models. Results showed that LMS patients with high KIF15 expression had significantly worse survival than the low KIF15 expression counterparts. KIF15 knockdown slowed, while KIF15 overexpression increased the proliferation of SK-UT-1 and SK-LMS-1 cells. Co-IP assay confirmed mutual interaction between endogenous KIF15 and DEK (encoded by DEK proto-oncogene). KIF15 knockdown facilitated DEK degradation, while KIF15 overexpression slowed DEK degradation. In ubiquitination assay, a significant increase in DEK polyubiquitylation was observed when KIF15 expression was suppressed. USP15 physically interacted with both DEK and KIF15 in the cells. USP15 knockdown decreased DEK protein stability and canceled KIF15-mediated DEK stabilization. USP15 overexpression enhanced DEK stability, the effect of which was impaired by KIF15 knockdown. USP15 overexpression reduced DEK polyubiquitination. USP15 knockdown increased DEK polyubiquitination and canceled the effect of KIF15 overexpression on reducing DEK polyubiquitination. DEK overexpression enhanced the proliferation of SK-UT-1 and SK-LMS-1 cells. DEK knockdown decreased cell proliferation and canceled the effect of KIF15 overexpression on cell proliferation. In conclusion, this study revealed a novel mechanism that KIF15 enhances LMS cell proliferation via preventing DEK protein from degradation by increasing USP15 mediated deubiquitylation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Leiomiosarcoma/genética , Leiomiosarcoma/patología , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación , Regulación hacia Arriba/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Cinesinas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Estabilidad Proteica , Proteolisis , Proto-Oncogenes Mas
11.
New Phytol ; 231(1): 182-192, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33774831

RESUMEN

Evolutionarily conserved DEK domain-containing proteins have been implicated in multiple chromatin-related processes, mRNA splicing and transcriptional regulation in eukaryotes. Here, we show that two DEK proteins, DEK3 and DEK4, control the floral transition in Arabidopsis. DEK3 and DEK4 directly associate with chromatin of related flowering repressors, FLOWERING LOCUS C (FLC), and its two homologs, MADS AFFECTING FLOWERING4 (MAF4) and MAF5, to promote their expression. The binding of DEK3 and DEK4 to a histone octamer in vivo affects histone modifications at FLC, MAF4 and MAF5 loci. In addition, DEK3 and DEK4 interact with RNA polymerase II and promote the association of RNA polymerase II with FLC, MAF4 and MAF5 chromatin to promote their expression. Our results show that DEK3 and DEK4 directly interact with chromatin to facilitate the transcription of key flowering repressors and thus prevent precocious flowering in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo
12.
Mol Pharm ; 18(1): 305-316, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33253580

RESUMEN

DEK protein is critical to the formation of neutrophil extracellular traps (NETs) in rheumatoid arthritis (RA). Blocking DEK using the aptamer DTA via articular injection has been shown to have robust anti-inflammatory efficacy in a previous study. However, DTA is prone to nuclease degradation and renal clearance in vivo. RA is a systemic disease that involves multiple joints, and local injection is impractical in clinical settings. In this study, DTA was modified with methoxy groups on all deoxyribose sugar units and inverted deoxythymidine on the 3' end (DTA4) to enhance its stability against nuclease. DTA4 is stable for 72 h in 90% mouse serum and maintains a high binding affinity to DEK. DTA4 effectively inhibits the formation of NETs and the migration of HUVECs in vitro. DTA4 was then modified with cholesterol on its 5' end to form DTA6. DTA6 dramatically reduces DEK expression in inflammatory RAW264.7 cells. A hydrogel microneedle (hMN) was then fabricated for the transdermal delivery of DTA6. The hMN maintains morphological integrity after absorbing the aptamer solution, effectively pierces the skin, and rapidly releases DTA6 into the dermis. The DTA6-loaded hMN significantly attenuates inflammation and protects joints from cartilage/bone erosion in collagen-induced arthritis (CIA) mice.


Asunto(s)
Aptámeros de Nucleótidos/administración & dosificación , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Colágeno/farmacología , Proteínas de Unión al ADN/metabolismo , Hidrogeles/administración & dosificación , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Artritis Experimental/metabolismo , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Línea Celular , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones , Sustancias Protectoras/administración & dosificación , Células RAW 264.7
13.
J Cell Mol Med ; 24(23): 13739-13750, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33124760

RESUMEN

This study is to investigate the inhibitory effects and mechanisms of DEK-targeting aptamer (DTA-64) on epithelial mesenchymaltransition (EMT)-mediated airway remodelling in mice and human bronchial epithelial cell line BEAS-2B. In the ovalbumin (OVA)-induced asthmatic mice, DTA-64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA-64 reduced collagen deposition, transforming growth factor 1 (TGF-ß1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α-SMA), as well as weekend matrix metalloproteinases (MMP-2 and MMP-9) and NF-κB p65 activity. In the in vitro experiments, we used TGF-ß1 to induce EMT in the human epithelial cell line BEAS-2B. DEK overexpression (ovDEK) or silencing (shDEK) up-regulated or down-regulated TGF-ß1 expression, respectively, on the contrary, TGF-ß1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF-ß1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF-ß1-mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA-64 against EMT of asthmatic mice and BEAS-2B might partially be achieved through suppressing TGF-ß1/Smad, MAPK and PI3K signalling pathways. DTA-64 may be a new therapeutic option for the management of airway remodelling in asthma patients.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Asma/etiología , Asma/metabolismo , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteínas Oncogénicas/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Animales , Asma/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades , Transición Epitelial-Mesenquimal/genética , Femenino , Silenciador del Gen , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Inmunomodulación/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Ovalbúmina/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas Smad/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
14.
Plant J ; 97(4): 673-682, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30417446

RESUMEN

Bulked segregant analysis (BSA) is used to identify existing or induced variants that are linked to phenotypes. Although it is widely used in Arabidopsis and rice, it remains challenging for crops with large genomes, such as maize. Moreover, analysis of huge data sets can present a bottleneck linking phenotypes to their molecular basis, especially for geneticists without programming experience. Here, we identified two genes of maize defective kernel mutants with newly developed analysis pipelines that require no programing skills and should be applicable to any large genome. In the 1970s, Neuffer and Sheridan generated a chemically induced defective kernel (dek) mutant collection with the potential to uncover critical genes for seed development. To locate such mutations, the dek phenotypes were introgressed into two inbred lines to take advantage of maize haplotype variations and their sequenced genomes. We generated two pipelines that take fastq files derived from next-generation (nextGen) paired-end DNA and cDNA sequencing as input, call on several well established and freely available genomic analysis tools to call SNPs and INDELs, and generate lists of the most likely causal mutations together with variant index plots to locate the mutation to a specific sequence position on a chromosome. The pipelines were validated with a known strawberry mutation before cloning the dek mutants, thereby enabling phenotypic analysis of large genomes by next-generation sequencing.


Asunto(s)
Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fenotipo , Análisis de Secuencia de ADN/métodos , Zea mays/genética
15.
Plant Cell Physiol ; 61(11): 1954-1966, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-32818255

RESUMEN

Pentatricopeptide repeat (PPR) proteins involved in mitochondrial RNA cytidine (C)-to-uridine (U) editing mostly result in stagnant embryo and endosperm development upon loss of function. However, less is known about PPRs that are involved in farinaceous endosperm formation and maize quality. Here, we cloned a maize DYW-type PPR Defective Kernel605 (Dek605). Mutation of Dek605 delayed seed and seedling development. Mitochondrial transcript analysis of dek605 revealed that loss of DEK605 impaired C-to-U editing at the nad1-608 site and fails to alter Ser203 to Phe203 in NAD1 (dehydrogenase complex I), disrupting complex I assembly and reducing NADH dehydrogenase activity. Meanwhile, complexes III and IV in the cytochrome pathway, as well as AOX2 in the alternative respiratory pathway, are dramatically increased. Interestingly, the dek605 mutation resulted in opaque endosperm and increased levels of the free amino acids alanine, aspartic acid and phenylalanine. The down- and upregulated genes mainly involved in stress response-related and seed dormancy-related pathways, respectively, were observed after transcriptome analysis of dek605 at 12 d after pollination. Collectively, these results indicate that Dek605 specifically affects the single nad1-608 site and is required for normal seed development and resulted in nutritional quality relevant amino acid accumulation.


Asunto(s)
Grano Comestible/metabolismo , Genes de Plantas/genética , Proteínas Mitocondriales/genética , Valor Nutritivo/genética , Proteínas de Unión al ARN/genética , Zea mays/genética , Clonación Molecular , Secuencia Conservada/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/fisiología , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Zea mays/metabolismo
16.
Br J Haematol ; 189(5): 920-925, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32020596

RESUMEN

Acute myeloid leukaemia (AML) with t(6;9)(p23;q34) is a poor-risk entity, commonly associated with FLT3-ITD (internal tandem duplication). Allogeneic stem-cell tranplantation (allo-SCT) is recommended, although studies analysing the outcome of allo-SCT in this setting are lacking. We selected 195 patients with t(6;9) AML, who received a first allo-SCT between 2000 and 2016 from the EBMT (European Society for Blood and Marrow Transplantation) registry. Disease status at time of allo-SCT was the strongest independent prognostic factor, with a two-year leukaemia-free survival and relapse incidence of 57% and 19% in patients in CR1 (first complete remission), 34% and 33% in CR2 (second complete remission), and 24% and 49% in patients not in remission, respectively (P < 0·001). This study, which represents the largest one available in t(6;9) AML, supports the recommendation to submit these patients to allo-SCT in CR1.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Cromosomas Humanos Par 6/genética , Cromosomas Humanos Par 9/genética , Trasplante de Células Madre de Sangre del Cordón Umbilical , Leucemia Mieloide Aguda/terapia , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Oncogénicas/genética , Trasplante de Células Madre de Sangre Periférica , Proteínas de Unión a Poli-ADP-Ribosa/genética , Translocación Genética , Adulto , Aloinjertos , Cromosomas Humanos Par 6/ultraestructura , Cromosomas Humanos Par 9/ultraestructura , Supervivencia sin Enfermedad , Femenino , Duplicación de Gen , Enfermedad Injerto contra Huésped/etiología , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Inducción de Remisión , Resultado del Tratamiento , Tirosina Quinasa 3 Similar a fms/genética
17.
BMC Neurosci ; 21(1): 33, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32736520

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia. MicroRNAs were reported to regulate the transcript expression in patients with Alzheimer's disease (AD). In this study, we investigated the roles of miR-138, a brain-enriched miRNA, in the AD cell model. METHODS: The targets of miRNA-138 was predicted by bioinformatic analysis. The expression levels of DEK at both mRNA and protein levels were determined by qRT-PCR and Western blot, respectively. Luciferase assays were carried out to examine cell viabilities. Hoechst 33258 staining was used to detect cell apoptosis. RESULTS: Our results demonstrated that the expression levels of miR-138 were increased in AD model, and DEK was a target of miR-138. Overexpression of miR-138 in SH-SY5Y cells obviously down-regulated the expression of DEK in SH-SY5Y cells, resulting in the inactivation of AKT and increased expression levels of proapoptotic caspase-3. MiR-138 mediated-suppression of DEK increased the susceptibility of cell apoptosis. CONCLUSIONS: MicroRNA-138 promotes cell apoptosis of SH-SY5Y by targeting DEK in SH-SY5Y AD cell model. The regulation of miR-138 may contribute to AD via down-regulation of the DEK/AKT pathway.


Asunto(s)
Enfermedad de Alzheimer/genética , Proteínas Cromosómicas no Histona/genética , MicroARNs/genética , Neuroblastoma/genética , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Enfermedad de Alzheimer/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Humanos , Neuroblastoma/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Transducción de Señal/genética
18.
New Phytol ; 226(4): 1029-1041, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31913503

RESUMEN

Defective Kernel 1 (DEK1) is genetically at the nexus of the 3D morphogenesis of land plants. We aimed to localize DEK1 in the moss Physcomitrella patens to decipher its function during this process. To detect DEK1 in vivo, we inserted the tdTomato fluorophore into PpDEK1 gene locus. Confocal microscopy coupled with the use of time-gating allowed the precise DEK1 subcellular localization during 3D morphogenesis. DEK1 localization displays a strong polarized signal, as it is restricted to the plasma membrane domain between recently divided cells during the early steps of 3D growth development as well as during the subsequent vegetative growth. The signal furthermore displays a clear developmental pattern because it is only detectable in recently divided and elongating cells. Additionally, DEK1 localization appears to be independent of its calpain domain proteolytic activity. The DEK1 polar subcellular distribution in 3D tissue developing cells defines a functional cellular framework to explain its role in this developmental phase. Also, the observation of DEK1 during spermatogenesis suggests another biological function for this protein in plants. Finally the DEK1-tagged strain generated here provides a biological platform upon which further investigations into 3D developmental processes can be performed.


Asunto(s)
Bryopsida , Bryopsida/genética , Calpaína/genética , Membrana Celular , Proteínas de Plantas/genética
19.
J Exp Bot ; 71(20): 6246-6261, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32710615

RESUMEN

Pentatricopeptide repeat (PPR) proteins were identified as site-specific recognition factors for RNA editing in plant mitochondria and plastids. In this study, we characterized maize (Zea mays) kernel mutant defective kernel 53 (dek53), which has an embryo lethal and collapsed endosperm phenotype. Dek53 encodes an E-subgroup PPR protein, which possesses a short PLS repeat region of only seven repeats. Subcellular localization analysis indicated that DEK53 is localized in the mitochondrion. Strand- and transcript-specific RNA-seq analysis showed that the dek53 mutation affected C-to-U RNA editing at more than 60 mitochondrial C targets. Biochemical analysis of mitochondrial protein complexes revealed a significant reduction in the assembly of mitochondrial complex III in dek53. Transmission electron microscopic examination showed severe morphological defects of mitochondria in dek53 endosperm cells. In addition, yeast two-hybrid and luciferase complementation imaging assays indicated that DEK53 can interact with the mitochondrion-targeted non-PPR RNA editing factor ZmMORF1, suggesting that DEK53 might be a functional component of the organellar RNA editosome.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Zea mays , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mitocondrial , Semillas/genética , Semillas/metabolismo , Zea mays/genética , Zea mays/metabolismo
20.
Int J Clin Oncol ; 25(9): 1563-1569, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32656741

RESUMEN

DEK is a highly conserved nuclear factor that plays an important role in the regulation of multiple cellular processes. DEK was discovered to be an oncogene as a fusion with NUP214 gene, which results in producing DEK-NUP214 proteins, in a subset of patients with acute myeloid leukemia. Subsequently, DEK overexpression was reported in many cancers, thus DEK itself is considered to be an oncoprotein. DEK has been reported to play important roles in the progression of early and late stage squamous cell carcinoma (SCC) and is useful for early diagnosis of the disease. These findings have made DEK an attractive therapeutic target, especially for human papillomavirus (HPV)-associated SCC. However, the mechanism of DEK in SCC remains unclear. In this review, we discuss human DEK oncogene-related SCC.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Proteínas Cromosómicas no Histona/genética , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Carcinoma de Células Escamosas/diagnóstico , Regulación Neoplásica de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA