Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.940
Filtrar
Más filtros

Intervalo de año de publicación
1.
Traffic ; 25(1): e12926, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084815

RESUMEN

In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.


Asunto(s)
Glucólisis , NAD , NAD/metabolismo , Glucólisis/fisiología , Axones/metabolismo , Adenosina Trifosfato/metabolismo , Piruvatos/metabolismo
2.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39171448

RESUMEN

Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Locomoción , Longevidad , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Locomoción/genética , Longevidad/genética , Neuronas/metabolismo , Mutación/genética , Vesículas Secretoras/metabolismo , Animales Modificados Genéticamente , Transporte Axonal , Unión Neuromuscular/metabolismo , Proteínas de Ciclo Celular
3.
J Cell Sci ; 137(6)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38348894

RESUMEN

Dense core vesicles (DCVs) and synaptic vesicles are specialised secretory vesicles in neurons and neuroendocrine cells, and abnormal release of their cargo is associated with various pathophysiologies. Endoplasmic reticulum (ER) stress and inter-organellar communication are also associated with disease biology. To investigate the functional status of regulated exocytosis arising from the crosstalk of a stressed ER and DCVs, ER stress was modelled in PC12 neuroendocrine cells using thapsigargin. DCV exocytosis was severely compromised in ER-stressed PC12 cells and was reversed to varying magnitudes by ER stress attenuators. Experiments with tunicamycin, an independent ER stressor, yielded similar results. Concurrently, ER stress also caused impaired DCV exocytosis in insulin-secreting INS-1 cells. Molecular analysis revealed blunted SNAP25 expression, potentially attributed to augmented levels of ATF4, an inhibitor of CREB that binds to the CREB-binding site. The effects of loss of function of ATF4 in ER-stressed cells substantiated this attribution. Our studies revealed severe defects in DCV exocytosis in ER-stressed cells for the first time, mediated by reduced levels of key exocytotic and granulogenic switches regulated via the eIF2α (EIF2A)-ATF4 axis.


Asunto(s)
Neuronas , Vesículas Sinápticas , Ratas , Animales , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/metabolismo , Estrés del Retículo Endoplásmico
4.
Proc Natl Acad Sci U S A ; 120(21): e2300066120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186821

RESUMEN

It is now well known that solids under ultra-high-pressure shock compression will enter the warm dense matter (WDM) regime which connects condensed matter and hot plasma. How condensed matter turns into the WDM, however, remains largely unexplored due to the lack of data in the transition pressure range. In this letter, by employing the unique high-Z three-stage gas gun launcher technique developed recently, we compress gold into TPa shock pressure to fill the gap inaccessible by the two-stage gas gun and laser shock experiments. With the aid of high-precision Hugoniot data obtained experimentally, we observe a clear softening behavior beyond ~560 GPa. The state-of-the-art ab-initio molecular dynamics calculations reveal that the softening is caused by the ionization of 5d electrons in gold. This work quantifies the partial ionization effect of electrons under extreme conditions, which is critical to model the transition region between condensed matter and WDM.

5.
Proc Natl Acad Sci U S A ; 120(1): e2214897120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574702

RESUMEN

During exocytosis, the fusion of secretory vesicle with plasma membrane forms a pore that regulates release of neurotransmitter and peptide. Heterogeneity of fusion pore behavior has been attributed to stochastic variation in a common exocytic mechanism, implying a lack of biological control. Using a fluorescent false neurotransmitter (FFN), we imaged dense core vesicle (DCV) exocytosis in primary mouse adrenal chromaffin cells by total internal reflection fluorescence microscopy at millisecond resolution and observed strikingly divergent modes of release, with fast events lasting <30 ms and slow events persisting for seconds. Dual imaging of slow events shows a delay in the entry of external dye relative to FFN release, suggesting exclusion by an extremely narrow pore <1 nm in diameter. Unbiased comprehensive analysis shows that the observed variation cannot be explained by stochasticity alone, but rather involves distinct mechanisms, revealing the bimodal nature of DCV exocytosis. Further, loss of calcium sensor synaptotagmin 7 increases the proportion of slow events without changing the intrinsic properties of either class, indicating the potential for independent regulation. The identification of two distinct mechanisms for release capable of independent regulation suggests a biological basis for the diversity of fusion pore behavior.


Asunto(s)
Células Cromafines , Vesículas de Núcleo Denso , Ratones , Animales , Sinaptotagminas/metabolismo , Exocitosis/fisiología , Membrana Celular/metabolismo , Células Cromafines/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Calcio/metabolismo
6.
Cereb Cortex ; 34(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39277800

RESUMEN

Structural connectivity (SC) between distant regions of the brain support synchronized function known as functional connectivity (FC) and give rise to the large-scale brain networks that enable cognition and behavior. Understanding how SC enables FC is important to understand how injuries to SC may alter brain function and cognition. Previous work evaluating whole-brain SC-FC relationships showed that SC explained FC well in unimodal visual and motor areas, but only weakly in association areas, suggesting a unimodal-heteromodal gradient organization of SC-FC coupling. However, this work was conducted in group-averaged SC/FC data. Thus, it could not account for inter-individual variability in the locations of cortical areas and white matter tracts. We evaluated the correspondence of SC and FC within three highly sampled healthy participants. For each participant, we collected 78 min of diffusion-weighted MRI for SC and 360 min of resting state fMRI for FC. We found that FC was best explained by SC in visual and motor systems, as well as in anterior and posterior cingulate regions. A unimodal-to-heteromodal gradient could not fully explain SC-FC coupling. We conclude that the SC-FC coupling of the anterior-posterior cingulate circuit is more similar to unimodal areas than to heteromodal areas.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Vías Nerviosas , Humanos , Masculino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Mapeo Encefálico/métodos , Adulto Joven , Imagen de Difusión por Resonancia Magnética , Descanso/fisiología , Sustancia Blanca/fisiología , Sustancia Blanca/diagnóstico por imagen
7.
Mol Cell Neurosci ; 130: 103952, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002827

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and characterized by extracellular amyloid-ß (Aß) plaques, intracellular neurofibrillary tau tangles and neurodegeneration. Over 80 % of AD patients also exhibit cerebral amyloid angiopathy (CAA). CAA is a cerebrovascular disease caused by deposition of Aß in the walls of cerebral blood vessels leading to vessel damage and impairment of normal blood flow. To date, different studies suggest that platelet function, including activation, adhesion and aggregation, is altered in AD due to vascular Aß deposition. For example, the transgenic AD model mice APP23 mice that exhibit CAA and parenchymal Aß plaques, show pre-activated platelets in the blood circulation and increased platelet integrin activation leading to a pro-thrombotic phenotype in these mice late stages of AD. However, it is still an open question whether or not platelets exhibit changes in their activation profile before they are exposed to vascular Aß deposits. Therefore, the present study examined platelets from middle-aged transgenic APP23 mice at the age of 8-10 months. At this age, APP23 mice show amyloid plaques in the brain parenchyma but not in the vasculature. Our analyses show that these APP23 mice have unaltered platelet numbers and size, and unaltered surface expression of glycoproteins. However, the number of dense granules in transgenic platelets was increased while the release was unaltered. Male, but not female APP23 mice, exhibited reduced platelet activation after stimulation of the thrombin receptor PAR4 and decreased thrombus stability on collagen under flow conditions ex vivo compared to control mice. In an arterial thrombosis model in vivo, male APP23 mice showed attenuated occlusion of the injured artery compared to controls. These findings provide clear evidence for early changes in platelet activation and thrombus formation in male mice before development of overt CAA. Furthermore, reduced platelet activation and thrombus formation suggest sex-specific differences in platelet physiology in AD that has to be considered in future studies of platelets and their role in AD.


Asunto(s)
Enfermedad de Alzheimer , Plaquetas , Ratones Transgénicos , Activación Plaquetaria , Trombosis , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Masculino , Femenino , Plaquetas/metabolismo , Ratones , Trombosis/metabolismo , Caracteres Sexuales , Modelos Animales de Enfermedad , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Humanos
8.
Trends Biochem Sci ; 45(4): 332-346, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32014389

RESUMEN

Miniproteins are a diverse group of protein scaffolds characterized by small (1-10 kDa) size, stability, and versatility in drug-like roles. Coming largely from native sources, they have been widely adopted into drug development pipelines. While their structures and capabilities are diverse, the approaches to their utilization share more similarities with each other than with more widely used modalities (e.g., antibodies or small molecules). In this review, we highlight recent advances in miniprotein-based approaches to otherwise poorly addressed clinical needs, including structure-based and functional characterization. We also summarize their unique screening strategies and pharmacology considerations. Through a greater understanding of the unique properties that make them attractive for drug design, miniproteins can be effectively utilized against targets that are intractable by other approaches.


Asunto(s)
Desarrollo de Medicamentos , Proteínas , Animales , Humanos , Proteínas/química , Proteínas/metabolismo
9.
Traffic ; 23(9): 430-441, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908282

RESUMEN

A GGGGCC (G4 C2 ) repeat expansion in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Although disruptions in axonal transport are implicated in the pathogenesis of multiple neurodegenerative diseases, the underlying mechanisms causing these defects remain unclear. Here, we performed live imaging of Drosophila motor neurons expressing expanded G4 C2 repeats in third-instar larvae and investigated the axonal transport of multiple organelles in vivo. Expression of expanded G4 C2 repeats causes an increase in static axonal lysosomes, while it impairs trafficking of late endosomes (LEs) and dense core vesicles (DCVs). Surprisingly, however, axonal transport of mitochondria is unaffected in motor axons expressing expanded G4 C2 repeats. Thus, our data indicate that expanded G4 C2 repeat expression differentially impacts axonal transport of vesicular organelles and mitochondria in Drosophila models of C9orf72-associated ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Animales , Transporte Axonal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Vesículas de Núcleo Denso , Drosophila/metabolismo , Demencia Frontotemporal/metabolismo , Lisosomas/metabolismo
10.
J Neurosci ; 43(45): 7616-7625, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37852790

RESUMEN

Neuropeptides and neurotrophins, stored in dense core vesicles (DCVs), are together the largest currently known group of chemical signals in the brain. Exocytosis of DCVs requires high-frequency or patterned stimulation, but the determinants to reach maximal fusion capacity and for efficient replenishment of released DCVs are unknown. Here, we systematically studied fusion of DCV with single vesicle resolution on different stimulation patterns in mammalian CNS neurons. We show that tetanic stimulation trains of 50-Hz action potential (AP) bursts maximized DCV fusion, with significantly fewer fusion event during later bursts of the train. This difference was omitted by introduction of interburst intervals but did not increase total DCV fusion. Interburst intervals as short as 5 s were sufficient to restore the fusion capacity. Theta burst stimulation (TBS) triggered less DCV fusion than tetanic stimulation, but a similar fusion efficiency per AP. Prepulse stimulation did not alter this. However, low-frequency stimulation (4 Hz) intermitted with fast ripple stimulation (200 APs at 200 Hz) produced substantial DCV fusion, albeit not as much as tetanic stimulation. Finally, individual fusion events had longer durations with more intense stimulation. These data indicate that trains of 50-Hz AP stimulation patterns triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.SIGNIFICANCE STATEMENT Neuropeptides and neurotrophins modulate multiple regulatory functions of human body like reproduction, food intake or mood. They are packed into dense core vesicles (DCVs) that undergo calcium and action potential (AP) fusion with the plasma membrane. In order to study the fusion of DCVs in vitro, techniques like perfusion with buffer containing high concentration of potassium or electric field stimulation are needed to trigger the exocytosis of DCVs. Here, we studied the relationship between DCVs fusion properties and different electric field stimulation patterns. We used six different stimulation patterns and showed that trains of 50-Hz action potential bursts triggered DCV exocytosis most efficiently and more intense stimulation promotes longer DCV fusion pore openings.


Asunto(s)
Vesículas de Núcleo Denso , Neuropéptidos , Animales , Humanos , Vesículas Secretoras/metabolismo , Neuronas/fisiología , Hipocampo/fisiología , Neuropéptidos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Mamíferos
11.
Curr Issues Mol Biol ; 46(3): 2251-2262, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38534760

RESUMEN

Prostate cancer accounts for 14% of male cancer-related fatalities in the UK. Given the challenges associated with hormone-based therapies in the context of androgen-independent prostate cancer, there is an imperative need for research into anticancer drugs. N0821, a peptide belonging to the Trp-Arg dense region and derived from the homologous region of various bee species, shows substantial potential for an anticancer effect. Both MTT assays and 3D spheroid assays were conducted to substantiate its antiproliferation potential and strongly indicated the antiproliferation effect of N0820 (WWWWRWWRKI) and N0821 (YWWWWRWWRKI). Notably, the mechanism underlying this effect is related to the downregulation of CCNA2 and the upregulation of CCNE1. Cell cycle arrest results from the reduction of CCNA2 in the S/G2 phase, leading to the accumulation of CCNE1. Our peptides were predicted to make an α-helix structure. This can act as an ion channel in the cell membrane. Therefore, we analyzed genes implicated in the influx of calcium ions into the mitochondria. Trp-Arg dense-region peptides are known for their antibacterial properties in targeting cell membranes, making the development of resistance less likely. Hence, further research in this area is essential and promising.

12.
Kidney Int ; 105(5): 1077-1087, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447879

RESUMEN

C3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative pathway of complement. C3G includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD), both of which are characterized by bright glomerular C3 staining on immunofluorescence studies. However, on electron microscopy (EM), DDD is characterized by dense osmiophilic mesangial and intramembranous deposits along the glomerular basement membranes (GBM), while the deposits of C3GN are not dense. Why the deposits appear dense in DDD and not in C3GN is not known. We performed laser microdissection (LCM) of glomeruli followed by mass spectrometry (MS) in 12 cases each of DDD, C3GN, and pretransplant kidney control biopsies. LCM/MS showed marked accumulation of complement proteins C3, C5, C6, C7, C8, C9 and complement regulating proteins CFHR5, CFHR1, and CFH in C3GN and DDD compared to controls. C3, CFH and CFHR proteins were comparable in C3GN and DDD. Yet, there were significant differences. First, there was a six-to-nine-fold increase of C5-9 in DDD compared to C3GN. Secondly, an unexpected finding was a nine-fold increase in apolipoprotein E (ApoE) in DDD compared to C3GN. Most importantly, immunohistochemical and confocal staining for ApoE mirrored the dense deposit staining in the GBM in DDD but not in C3GN or control cases. Validation studies using 31 C3G cases confirmed the diagnosis of C3GN and DDD in 80.6 % based on ApoE staining. Overall, there is a higher burden of terminal complement pathway proteins in DDD compared to C3GN. Thus, our study shows that dense deposits in DDD are enriched with ApoE compared to C3GN and control cases. Hence, ApoE staining may be used as an adjunct to EM for the diagnosis of DDD and might be valuable when EM is not available.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Humanos , Glomerulonefritis Membranoproliferativa/patología , Glomerulonefritis/patología , Glomérulos Renales/patología , Apolipoproteínas E/genética , Apolipoproteínas
13.
J Biomol NMR ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904893

RESUMEN

Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric ß-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.

14.
Am J Physiol Heart Circ Physiol ; 327(3): H690-H700, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39028281

RESUMEN

Understanding the characteristics and behavior of low-density lipoprotein (LDL) particles provides insights into the atherogenic risk of elevated LDL cholesterol in hypercholesterolemia, cardiovascular disease risks. Studying LDL particles helps identify specific LDL subtypes [e.g., small dense LDL particles (sdLDL)] that may be atherogenic and, consequently, potential targets for therapeutics. This study cohort consists of African Americans (AAs), a population disproportionately affected by cardiovascular diseases, thereby accentuating the importance of the investigation. Differential expression (DE) analysis was undertaken using a dataset comprising 17,947 protein-coding mRNAs from the whole blood transcriptomes of 416 samples to identify mRNAs associated with low-density lipoprotein cholesterol (LDL-C) and sdLDL plasma levels. Subsequently, mediation analyses were used to investigate the mediating role of sdLDL particles on the relationship between LDL-C levels and mRNA expression. Finally, pathway enrichment analysis was conducted to identify pathways involving mRNAs whose relationship with LDL-C is mediated by sdLDL. DE analysis revealed 1,048 and 284 mRNA transcripts differentially expressed by LDL-C and sdLDL levels, respectively. Mediation analysis revealed that the associations between LDL-C and 33 mRNAs were mediated by sdLDL. Of the 33 mRNAs mediated by sdLDL, 18 were mediated in both males and females. Nine mRNAs were mediated only in females, and six were mediated only in males. Pathway analysis showed that 33 mRNAs are involved in pathways associated with the immune system, inflammatory response, metabolism, and cardiovascular disease (CVD) risk. In conclusion, our study provides valuable insights into the complex interplay between LDL-C, sdLDL, and mRNA expression in a large sample of AAs. The results underscore the importance of incorporating sdLDL measurement alongside LDL-C levels to improve the accuracy of managing hypercholesterolemia and effectively stratify the risk of CVD. This is essential as differences in sdLDL modulate atherogenic properties at the transcriptome level.NEW & NOTEWORTHY The study investigated the interplay between LDL-C and mRNA expression, focusing on the role of small dense LDL (sdLDL) particles and sex differences. Differential expression analysis identified 1,048 and 284 mRNAs associated with LDL-C and sdLDL levels, respectively. Mediation analysis revealed that sdLDL mediates the relationship between LDL-C and 33 mRNAs involved in immune, inflammatory, and metabolic pathways. These findings highlight the significance of sdLDL in cardiovascular disease risk assessment and underscore sex-specific differences in lipid metabolism.


Asunto(s)
Negro o Afroamericano , LDL-Colesterol , ARN Mensajero , Humanos , Masculino , Femenino , LDL-Colesterol/sangre , Negro o Afroamericano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Persona de Mediana Edad , Adulto , Tamaño de la Partícula , Anciano , Biomarcadores/sangre , Factores Sexuales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/etnología , Enfermedades Cardiovasculares/sangre , Transcriptoma
15.
Breast Cancer Res Treat ; 207(1): 179-185, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38771399

RESUMEN

PURPOSE: This study aimed to assess safety and efficacy of a modified KEYNOTE 522 protocol, which incorporated pembrolizumab every 6 weeks, allowing for concomitant dose-dense (14 day) doxorubicin and cyclophosphamide (ddAC). By optimizing this dosing, the intention of this modified protocol was to improve pathologic complete response (pCR) rates in a population associated with a poorer prognosis. METHODS: This was a retrospective, single-center, cohort study. Patients were included if they had early stage, triple-negative breast cancer, and received at least one dose of AC. The entire cohort received neoadjuvant chemotherapy including weekly carboplatin and paclitaxel with pembrolizumab every 3 weeks for 12 weeks (4 cycles). The group then received either ddAC with pembrolizumab 400 mg every 6 weeks, or AC with pembrolizumab 200 mg every 3 weeks. The primary objective was pCR rate at time of surgery. RESULTS: This study assessed outcomes in 25 patients over 34 months. The pCR rate in the pembrolizumab, AC 3-week cohort was 64.3% versus 81.8% in the ddAC and 6-week pembrolizumab group. No pembrolizumab-associated grade 3-4 adverse events occurred in the either cohort. Despite seeing an increased incidence of grade 3-4 toxicities in the ddAC arm, this did not result in additional chemotherapy delays or dose reductions. CONCLUSION: This study demonstrated tolerability and a potential for favorable outcomes with this patient population, making this modified KEYNOTE 522 protocol a reasonable treatment approach. Larger, prospective studies are warranted to assess the feasibility of this dosing and true optimization of patient outcomes given the small sample size of this study.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Doxorrubicina , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Ciclofosfamida/uso terapéutico , Doxorrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Doxorrubicina/uso terapéutico , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Estudios Retrospectivos , Adulto , Anciano , Terapia Neoadyuvante/métodos , Estadificación de Neoplasias , Resultado del Tratamiento , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inmunoterapia/métodos , Inmunoterapia/efectos adversos
16.
Small ; 20(27): e2310736, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38282175

RESUMEN

2D alloy-based anodes show promise in potassium-ion batteries (PIBs). Nevertheless, their low tap density and huge volume expansion cause insufficient volumetric capacity and cycling stability. Herein, a 3D highly dense encapsulated architecture of 2D-Bi nanosheets (HD-Bi@G) with conducive elastic networks and 3D compact encapsulation structure of 2D nano-sheets are developed. As expected, HD-Bi@G anode exhibits a considerable volumetric capacity of 1032.2 mAh cm-3, stable long-life span with 75% retention after 2000 cycles, superior rate capability of 271.0 mAh g-1 at 104 C, and high areal capacity of 7.94 mAh cm-2 (loading: 24.2 mg cm-2) in PIBs. The superior volumetric and areal performance mechanisms are revealed through systematic kinetic investigations, ex situ characterization techniques, and theorical calculation. The 3D high-conductivity elastic network with dense encapsulated 2D-Bi architecture effectively relieves the volume expansion and pulverization of Bi nanosheets, maintains internal 2D structure with fast kinetics, and overcome sluggish ionic/electronic diffusion obstacle of ultra-thick, dense electrodes. The uniquely encapsulated 2D-nanosheet structure greatly reduces K+ diffusion energy barrier and accelerates K+ diffusion kinetics. These findings validate a feasible approach to fabricate 3D dense encapsulated architectures of 2D-alloy nanosheets with conductive elastic networks, enabling the design of ultra-thick, dense electrodes for high-volumetric-energy-density energy storage.

17.
Small ; : e2404192, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004849

RESUMEN

The tunable pore walls and skeletons render covalent organic frameworks (COFs) as promising absorbents for gold (Au) ion. However, most of these COFs suffered from low surface areas hindering binding sites exposed and weak binding interaction resulting in sluggish kinetic performance. In this study, COFs have been constructed with synergistic linker and linkage for high-efficiency Au capture. The designed COFs (PYTA-PZDH-COF and PYTA-BPDH-COF) with pyrazine or bipyridine as linkers showed high surface areas of 1692 and 2076 m2 g‒1, providing high exposed surface areas for Au capture. In addition, the Lewis basic nitrogen atoms from the linkers and linkages are easily hydronium, which enabled to fast trap Au via coulomb force. The PYTA-PZDH-COF and PYTA-BPDH-COF showed maximum Au capture capacities of 2314 and 1810 mg g-1, higher than other reported COFs. More importantly, PYTA-PZDH-COF are capable of rapid adsorption kinetics with achieving 95% of maximum binding capacity in 10 min. The theoretical calculation revealed that the nitrogen atoms in linkers and linkages from both COFs are simultaneously hydronium, and then the protonated PYTA-PZDH-COF are more easily binding the AuCl4 ‒, further accelerating the binding process. This study gives the a new insight to design COFs for ion capture.

18.
J Synchrotron Radiat ; 31(Pt 5): 1340-1345, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39102364

RESUMEN

The inherent ambiguity in reconstructed images from coherent diffraction imaging (CDI) poses an intrinsic challenge, as images derived from the same dataset under varying initial conditions often display inconsistencies. This study introduces a method that employs the Noise2Noise approach combined with neural networks to effectively mitigate these ambiguities. We applied this methodology to hundreds of ambiguous reconstructed images retrieved from a single diffraction pattern using a conventional retrieval algorithm. Our results demonstrate that ambiguous features in these reconstructions are effectively treated as inter-reconstruction noise and are significantly reduced. The post-Noise2Noise treated images closely approximate the average and singular value decomposition analysis of various reconstructions, providing consistent and reliable reconstructions.

19.
Plant Biotechnol J ; 22(6): 1724-1739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38261466

RESUMEN

Increased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)-mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N-acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild-type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.


Asunto(s)
Cucumis sativus , Hojas de la Planta , Proteínas de Plantas , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/anatomía & histología , Cucumis sativus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Fotosíntesis/genética , Mutación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo
20.
Cancer Causes Control ; 35(2): 323-334, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737303

RESUMEN

PURPOSE OF THE STUDY: Breast density is an established risk factor for breast cancer. However, little is known about metabolic influences on breast density phenotypes. We conducted untargeted serum metabolomics analyses to identify metabolic signatures associated with breast density phenotypes among young women. METHODS: In a cross-sectional study of 173 young women aged 25-29 who participated in the Dietary Intervention Study in Children 2006 Follow-up Study, 449 metabolites were measured in fasting serum samples using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariable-adjusted mixed-effects linear regression identified metabolites associated with magnetic resonance imaging measured breast density phenotypes: percent dense breast volume (%DBV), absolute dense breast volume (ADBV), and absolute non-dense breast volume (ANDBV). Metabolite results were corrected for multiple comparisons using a false discovery rate adjusted p-value (q). RESULTS: The amino acids valine and leucine were significantly inversely associated with %DBV. For each 1 SD increase in valine and leucine, %DBV decreased by 20.9% (q = 0.02) and 18.4% (q = 0.04), respectively. ANDBV was significantly positively associated with 16 lipid and one amino acid metabolites, whereas no metabolites were associated with ADBV. Metabolite set enrichment analysis also revealed associations of distinct metabolic signatures with %DBV, ADBV, and ANDBV; branched chain amino acids had the strongest inverse association with %DBV (p = 0.002); whereas, diacylglycerols and phospholipids were positively associated with ANDBV (p ≤ 0.002), no significant associations were observed for ADBV. CONCLUSION: Our results suggest an inverse association of branched chain amino acids with %DBV. Larger studies in diverse populations are needed.


Asunto(s)
Densidad de la Mama , Neoplasias de la Mama , Niño , Femenino , Humanos , Leucina , Estudios Transversales , Estudios de Seguimiento , Mamografía , Aminoácidos de Cadena Ramificada , Valina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA