Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 359
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Biol Chem ; 300(7): 107358, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782206

RESUMEN

Aristolochic acids I and II (AA-I/II) are carcinogenic principles of Aristolochia plants, which have been employed in traditional medicinal practices and discovered as food contaminants. While the deleterious effects of AAs are broadly acknowledged, there is a dearth of information to define the mechanisms underlying their carcinogenicity. Following bioactivation in the liver, N-hydroxyaristolactam and N-sulfonyloxyaristolactam metabolites are transported via circulation and elicit carcinogenic effects by reacting with cellular DNA. In this study, we apply DNA adduct analysis, X-ray crystallography, isothermal titration calorimetry, and fluorescence quenching to investigate the role of human serum albumin (HSA) in modulating AA carcinogenicity. We find that HSA extends the half-life and reactivity of N-sulfonyloxyaristolactam-I with DNA, thereby protecting activated AAs from heterolysis. Applying novel pooled plasma HSA crystallization methods, we report high-resolution structures of myristic acid-enriched HSA (HSAMYR) and its AA complexes (HSAMYR/AA-I and HSAMYR/AA-II) at 1.9 Å resolution. While AA-I is located within HSA subdomain IB, AA-II occupies subdomains IIA and IB. ITC binding profiles reveal two distinct AA sites in both complexes with association constants of 1.5 and 0.5 · 106 M-1 for HSA/AA-I versus 8.4 and 9.0 · 105 M-1 for HSA/AA-II. Fluorescence quenching of the HSA Trp214 suggests variable impacts of fatty acids on ligand binding affinities. Collectively, our structural and thermodynamic characterizations yield significant insights into AA binding, transport, toxicity, and potential allostery, critical determinants for elucidating the mechanistic roles of HSA in modulating AA carcinogenicity.


Asunto(s)
Ácidos Aristolóquicos , Albúmina Sérica Humana , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Humanos , Cristalografía por Rayos X , Albúmina Sérica Humana/metabolismo , Albúmina Sérica Humana/química , Aductos de ADN/metabolismo , Aductos de ADN/química , Unión Proteica , Ácido Mirístico/metabolismo , Ácido Mirístico/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-38969945

RESUMEN

PURPOSE: In East Asia, the incidence of breast cancer has been increasing rapidly, particularly among premenopausal women. An elevated ratio of estrogen-DNA adducts was linked to a higher risk of breast cancer. The present study explored the influence of the interaction between base excision repair (BER) gene polymorphisms and estrogen-DNA adducts on breast cancer risk. METHODS: We conducted a case-control study comprising healthy volunteers and individuals with benign breast disease (control arm, n = 176) and patients with invasive carcinoma or carcinoma in situ (case arm, n = 177). Genotyping for BER-related genes, including SMUG1, OGG1, ERCC5, and APEX1, was performed. A logistic regression model, incorporating interactions between gene polymorphisms, estrogen-DNA adduct ratio, and clinical variables, was used to identify the risk factors for breast cancer. RESULTS: Univariate analysis indicated marginal associations between breast cancer risk and APEX1 rs1130409 T > G (P = 0.057) and APEX1 rs1760944 T > G (P = 0.065). Multivariate regression analysis revealed significant associations with increased breast cancer risk for APEX1_rs1130409 (GT/GG versus TT) combined with a natural logarithmic value of the estrogen-DNA adduct ratio (estimated OR 1.164, P = 0.023) and premenopausal status with an estrogen-DNA adduct ratio > 2.93 (estimated OR 2.433, P = 0.001). CONCLUSION: APEX1_rs1130409 (GT/GG versus TT) polymorphisms, which are related to decreased BER activity, combined with an increased ratio of estrogen-DNA adducts, increase the risk of breast cancer in East Asian women.

3.
Biomarkers ; 29(3): 154-160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506499

RESUMEN

CONTEXT: Exocyclic DNA adducts have been shown to be potential biomarkers of cancer risk related to oxidative stress and exposure to aldehydes in smokers. In fact, aldehydes potentially arise from tobacco combustion directly and endogenously through lipid peroxidation. OBJECTIVE: This study aims to investigate the relationship between a profile of nine aldehydes-induced DNA adducts and antioxidant activities, in order to evaluate new biomarkers of systemic exposure to aldehydes. METHODS: Using our previously published UPLC-MS/MS method, adducts levels were quantified in the blood DNA of 34 active smokers. The levels of antioxidant vitamins (A, C and E), coenzyme Q10, ß-carotene, superoxide dismutase (SOD) and autoantibodies against oxidized low-density lipoprotein were measured. RESULTS: Adducts induced by tobacco smoking-related aldehydes were quantified at levels reflecting an oxidative production from lipid peroxidation. A significant correlation between SOD and crotonaldehyde-induced adducts (p = 0.0251) was also observed. ß-Carotene was negatively correlated with the adducts of formaldehyde (p = 0.0351) and acetaldehyde (p = 0.0413). Vitamin C tended to inversely correlate with acetaldehyde-induced adducts (p = 0.0584). CONCLUSION: These results are promising, and the study is now being conducted on a larger cohort with the aim of evaluating the impact of smoking cessation programs on the evolution of adducts profile and antioxidants activities.


Asunto(s)
Aductos de ADN , Fumadores , Humanos , Monitoreo Biológico , Antioxidantes , beta Caroteno , Cromatografía Liquida , Espectrometría de Masas en Tándem , Aldehídos , Estrés Oxidativo , Biomarcadores , Acetaldehído , Superóxido Dismutasa
4.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436695

RESUMEN

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Asunto(s)
Aflatoxinas , Ratas , Ratones , Animales , Aflatoxinas/metabolismo , Aflatoxinas/toxicidad , Lisina/metabolismo , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Hígado/metabolismo , Aflatoxina B1/toxicidad , Guanina/metabolismo , Microscopía Intravital
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000496

RESUMEN

It is generally accepted that adjacent guanine residues in DNA are the primary target for platinum antitumor drugs and that differences in the conformations of the Pt-DNA adducts can play a role in their antitumor activity. In this study, we investigated the effect of the carrier ligand cis-1,3-diaminocyclohexane (cis-1,3-DACH) upon formation, stability, and stereochemistry of the (cis-1,3-DACH)PtG2 and (cis-1,3-DACH)Pt(d(GpG)) adducts (G = 9-EthlyGuanine, guanosine, 5'- and 3'-guanosine monophosphate; d(GpG) = deoxyguanosil(3'-5')deoxyguanosine). A peculiar feature of the cis-1,3-DACH carrier ligand is the steric bulk of the diamine, which is asymmetric with respect to the Pt-coordination plane. The (cis-1,3-DACH)Pt(5'GMP)2 and (cis-1,3-DACH)Pt(3'GMP)2 adducts show preference for the ΛHT and ∆HT conformations, respectively (HT stands for Head-to-Tail). Moreover, the increased intensity of the circular dichroism signals in the cis-1,3-DACH derivatives with respect to the analogous cis-(NH3)2 species could be a consequence of the greater bite angle of the cis-1,3-DACH carrier ligand with respect to cis-(NH3)2. Finally, the (cis-1,3-DACH)Pt(d(GpG)) adduct is present in two isomeric forms, each one giving a pair of H8 resonances linked by a NOE cross peak. The two isomers were formed in comparable amounts and had a dominance of the HH conformer but with some contribution of the ΔHT conformer which is related to the HH conformer by having the 3'-G base flipped with respect to the 5'-G residue.


Asunto(s)
Aductos de ADN , ADN , Oxaliplatino , ADN/química , ADN/metabolismo , Aductos de ADN/química , Oxaliplatino/química , Oxaliplatino/farmacología , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico
6.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612635

RESUMEN

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Asunto(s)
Aductos de ADN , Glucosinolatos , Ratones , Humanos , Animales , Ratas , Ratones Noqueados , Cromatografía Liquida , Espectrometría de Masas en Tándem , Arilsulfotransferasa/genética
7.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063172

RESUMEN

The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[a]pyrene (B[a]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion. The experimentally observed unwinding rate constants (kobs) and processivities (P) were examined. Relative to undamaged DNA, the kobs values were diminished by factors of up to ~15 for B[a]P adducts but only by factors of ~2-5 for photolesions. A minor-groove-oriented B[a]P adduct showed the smallest impact on P, which decreased by ~11% compared to unmodified DNA, while an intercalated one reduced P by ~67%. However, the photolesions showed a greater impact on the processivities; notably, the CPD, with the highest kobs value, exhibited the lowest P, which was reduced by ~90%. Our findings thus show that DNA unwinding efficiencies are lesion-dependent and most strongly inhibited by the CPD, leading to the conclusion that processivity is a better measure of DNA lesions' inhibitory effects than unwinding rate constants.


Asunto(s)
ADN Helicasas , SARS-CoV-2 , Proteínas no Estructurales Virales , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/química , ADN Helicasas/metabolismo , ADN Helicasas/química , ADN/metabolismo , ADN/química , Humanos , Daño del ADN , COVID-19/virología , Cinética , Metiltransferasas , ARN Helicasas
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612589

RESUMEN

Lung cancer is the leading cause of cancer death worldwide. Polycyclic aromatic hydrocarbons (PAHs) are metabolized by the cytochrome P450 (CYP)1A and 1B1 to DNA-reactive metabolites, which could lead to mutations in critical genes, eventually resulting in cancer. Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial against cancers. In this investigation, we elucidated the mechanisms by which omega-3 fatty acids EPA and DHA will attenuate PAH-DNA adducts and lung carcinogenesis and tumorigenesis mediated by the PAHs BP and MC. Adult wild-type (WT) (A/J) mice, Cyp1a1-null, Cyp1a2-null, or Cyp1b1-null mice were exposed to PAHs benzo[a]pyrene (BP) or 3-methylcholanthrene (MC), and the effects of omega-3 fatty acid on PAH-mediated lung carcinogenesis and tumorigenesis were studied. The major findings were as follows: (i) omega-3 fatty acids significantly decreased PAH-DNA adducts in the lungs of each of the genotypes studied; (ii) decreases in PAH-DNA adduct levels by EPA/DHA was in part due to inhibition of CYP1B1; (iii) inhibition of soluble epoxide hydrolase (sEH) enhanced the EPA/DHA-mediated prevention of pulmonary carcinogenesis; and (iv) EPA/DHA attenuated PAH-mediated carcinogenesis in part by epigenetic mechanisms. Taken together, our results suggest that omega-3 fatty acids have the potential to be developed as cancer chemo-preventive agents in people.


Asunto(s)
Ácidos Grasos Omega-3 , Hidrocarburos Policíclicos Aromáticos , Humanos , Adulto , Ratones , Animales , Ácidos Grasos Omega-3/farmacología , Aductos de ADN , Carcinogénesis , Transformación Celular Neoplásica , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología
9.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668960

RESUMEN

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Asunto(s)
Benzo(a)pireno , Aductos de ADN , Contaminantes Ambientales , Saccharomyces cerevisiae , Aductos de ADN/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Mutágenos/toxicidad , Mutágenos/metabolismo , ADN de Hongos/genética , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo
10.
Biochem Biophys Res Commun ; 687: 149167, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37939506

RESUMEN

Under the exposure of lipids to reactive oxygen species (ROS), lipid peroxidation proceeds non-enzymatically and generates an extremely heterogeneous mixture of reactive carbonyl species (RCS). Among them, HNE, HHE, MDA, methylglyoxal, glyoxal, and acrolein are the most studied and/or abundant ones. Over the last decades, significant progress has been achieved in understanding mechanisms of RCS generation, protein/DNA adduct formation, and their identification and quantification in biological samples. In our review, we critically discuss the advancements in understanding the roles of RCS-induced protein/DNA modifications in signaling switches to provide adaptive cell response under physiological and oxidative stress conditions. At non-toxic concentrations, RCS modify susceptible Cys residue in c-Src to activate MAPK signaling and Cys, Lys, and His residues in PTEN to cause its reversible inactivation, thereby stimulating PI3K/PKB(Akt) pathway. RCS toxic concentrations cause irreversible Cys modifications in Keap1 and IKKß followed by stabilization of Nrf2 and activation of NF-κB, respectively, for their nuclear translocation and antioxidant gene expression. Dysregulation of these mechanisms causes diseases including cancer. Alterations in RCS, RCS detoxifying enzymes, RCS-modified protein/DNA adducts, and signaling pathways have been implicated in various cancer types.


Asunto(s)
Aductos de ADN , Neoplasias , Humanos , Peroxidación de Lípido , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
11.
Anal Biochem ; 671: 115135, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37019253

RESUMEN

Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 µmol L-1 (r = 0.999), detection limit of 0.27 µmol L-1 for 7-mGua; from 3.00 to 25.00 µmol L-1 (r = 0.998), with a detection limit of 1.69 µmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.


Asunto(s)
5-Metilcitosina , Boro , Humanos , Oxidación-Reducción , Electrodos , Guanina
12.
Crit Rev Toxicol ; 53(2): 69-116, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37278976

RESUMEN

Acrylonitrile (ACN) is a known rodent and possible human carcinogen. There have also been concerns as to it causing adverse reproductive health effects. Numerous genotoxicity studies at the somatic level in a variety of test systems have demonstrated ACN's mutagenicity; its potential to induce mutations in germ cells has also been evaluated. ACN is metabolized to reactive intermediates capable of forming adducts with macromolecules including DNA, a necessary first step in establishing a direct mutagenic mode of action (MOA) for its carcinogenicity. The mutagenicity of ACN has been well demonstrated, however, numerous studies have found no evidence for the capacity of ACN to induce direct DNA lesions that initiate the mutagenic process. Although ACN and its oxidative metabolite (2-cyanoethylene oxide or CNEO) have been shown to bind in vitro with isolated DNA and associated proteins, usually under non-physiological conditions, studies in mammalian cells or in vivo have provided little specification as to an ACN-DNA reaction. Only one early study in rats has shown an ACN/CNEO DNA adduct in liver, a non-target tissue for its carcinogenicity in the rat. By contrast, numerous studies have shown that ACN can act indirectly to induce at least one DNA adduct by forming reactive oxygen species (ROS) in vivo, but it has not been definitively shown that the resulting DNA damage is causative for the induction of mutations. Genotoxicity studies for ACN in somatic and germinal cells are summarized and critically reviewed. Significant data gaps have been identified for bringing together the massive data base that provides the basis of ACN's current genotoxicity profile.


Asunto(s)
Acrilonitrilo , Mutágenos , Ratas , Humanos , Animales , Mutágenos/toxicidad , Aductos de ADN , Acrilonitrilo/toxicidad , Pruebas de Mutagenicidad , Daño del ADN , ADN , Mamíferos
13.
Chem Rec ; 23(1): e202200193, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251922

RESUMEN

Mitomycin C, (MC), an antitumor drug used in the clinics, is a DNA alkylating agent. Inert in its native form, MC is reduced to reactive mitosenes in cellulo which undergo nucleophilic attack by DNA bases to form monoadducts as well as interstrand crosslinks (ICLs). These properties constitute the molecular basis for the cytotoxic effects of the drug. The mechanism of DNA alkylation by mitomycins has been studied for the past 30 years and, until recently, the consensus was that drugs of the mitomycins family mainly target CpG sequences in DNA. However, that paradigm was recently challenged. Here, we relate the latest research on both MC and dicarbamoylmitomycin C (DMC), a synthetic derivative of MC which has been used to investigate the regioselectivity of mitomycins DNA alkylation as well as the relationship between mitomycins reductive activation pathways and DNA adducts stereochemical configuration. We also review the different synthetic routes to access mitomycins nucleoside adducts and oligonucleotides containing MC/DMC DNA adducts located at a single position. Finally, we briefly describe the DNA structural modifications induced by MC and DMC adducts and how site specifically modified oligonucleotides have been used to elucidate the role each adduct plays in the drugs cytotoxicity.


Asunto(s)
Aductos de ADN , Mitomicina , Mitomicina/farmacología , Mitomicina/química , Mitomicina/metabolismo , ADN/química , Oligonucleótidos
14.
Environ Sci Technol ; 57(29): 10591-10603, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37341092

RESUMEN

Exposure to chemical pollution can induce genetic and epigenetic alterations, developmental changes, and reproductive disorders, leading to population declines in polluted environments. These effects are triggered by chemical modifications of DNA nucleobases (DNA adducts) and epigenetic dysregulation. However, linking DNA adducts to the pollution load in situ remains challenging, and the lack of evidence-based DNA adductome response to pollution hampers the development and application of DNA adducts as biomarkers for environmental health assessment. Here, we provide the first evidence for pollution effects on the DNA modifications in wild populations of Baltic sentinel species, the amphipod Monoporeia affinis. A workflow based on high-resolution mass spectrometry to screen and characterize genomic DNA modifications was developed, and its applicability was demonstrated by profiling DNA modifications in the amphipods collected in areas with varying pollution loads. Then, the correlations between adducts and the contaminants level (polycyclic aromatic hydrocarbons (PAHs), trace metals, and pollution indices) in the sediments at the collection sites were evaluated. A total of 119 putative adducts were detected, and some (5-me-dC, N6-me-dA, 8-oxo-dG, and dI) were structurally characterized. The DNA adductome profiles, including epigenetic modifications, differed between the animals collected in areas with high and low contaminant levels. Furthermore, the correlations between the adducts and PAHs were similar across the congeners, indicating possible additive effects. Also, high-mass adducts had significantly more positive correlations with PAHs than low-mass adducts. By contrast, correlations between the DNA adducts and trace metals were stronger and more variable than for PAHs, indicating metal-specific effects. These associations between DNA adducts and environmental contaminants provide a new venue for characterizing genome-wide exposure effects in wild populations and apply DNA modifications in the effect-based assessment of chemical pollution.


Asunto(s)
Aductos de ADN , Hidrocarburos Policíclicos Aromáticos , Animales , ADN , Contaminación Ambiental/análisis , Sedimentos Geológicos/química
15.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37794256

RESUMEN

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Asunto(s)
Aflatoxina B1 , Aflatoxinas , Humanos , Ratas , Ratones , Animales , Aflatoxina B1/toxicidad , Cromatografía Líquida de Alta Presión , Aductos de ADN/metabolismo , Espectrometría de Masas en Tándem , ADN , Aflatoxinas/farmacología , Aflatoxinas/toxicidad , Hígado , Hepatocitos/metabolismo , Glutatión/metabolismo
16.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768368

RESUMEN

Studies have indicated that air pollution, including surface-level ozone (O3), can significantly influence the risk of chronic diseases. To better understand the carcinogenic mechanisms of air pollutants and identify predictive disease biomarkers, we examined the association between traffic-related pollutants with DNA methylation alterations and bulky DNA adducts, two biomarkers of carcinogen exposure and cancer risk, in the peripheral blood of 140 volunteers-95 traffic police officers, and 45 unexposed subjects. The DNA methylation and adduct measurements were performed by bisulfite-PCR and pyrosequencing and 32P-postlabeling assay. Airborne levels of benzo(a)pyrene [B(a)P], carbon monoxide, and tropospheric O3 were determined by personal exposure biomonitoring or by fixed monitoring stations. Overall, air pollution exposure was associated with a significant reduction (1.41 units) in global DNA methylation (95% C.I. -2.65-0.04, p = 0.026). The decrement in ALU repetitive elements was greatest in the policemen working downtown (95% C.I. -3.23--0.49, p = 0.008). The DNA adducts were found to be significantly increased (0.45 units) in the municipal officers with respect to unexposed subjects (95% C.I. 0.02-0.88, p = 0.039), mainly in those who were controlling traffic in downtown areas (95% C.I. 0.39-1.29, p < 0.001). Regression models indicated an increment of ALU methylation at higher B(a)P concentrations (95% C.I. 0.03-0.60, p = 0.032). Moreover, statistical models showed a decrement in ALU methylation and an increment of DNA damage only above the cut-off value of 30 µg/m3 O3. A significant increment of 0.73 units of IL-6 gene methylation was also found in smokers with respect to non-smokers. Our results highlighted the role of air pollution on epigenetic alterations and genotoxic effects, especially above the target value of 30 µg/m3 surface-level O3, supporting the necessity for developing public health strategies aimed to reduce traffic-related air pollution molecular alterations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Humanos , Aductos de ADN/genética , Ozono/toxicidad , Daño del ADN , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Biomarcadores
17.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047550

RESUMEN

Acrolein, a highly reactive α,ß-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.


Asunto(s)
Diabetes Mellitus , Enfermedades del Sistema Digestivo , Animales , Humanos , Aldehídos/metabolismo , Acroleína/química , Dieta , Diabetes Mellitus/etiología
18.
Rev Invest Clin ; 75(3): 129-142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441764

RESUMEN

Alcohol consumption has been linked to numerous pathologic conditions, including infectious diseases and several types of cancer. Alcohol exerts its modulatory effects on the immune system (IS) in a dose- and time-dependent manner. Numerous studies indicate that these alterations affect responses such as peripheral inflammation or decreased antibody production and promote chronic inflammation, leading to cell death. The molecular mechanisms underlying these effects involve generating an oxidative tissue environment, producing cell damage-associated molecular patterns (DAMPs), and activating pattern recognition receptors. In particular, toll-like receptors and their signaling system emerge as central elements whose activity is altered by alcohol intake. There is also some epidemiological evidence demonstrating the causal role of alcohol in the development of various types of cancer, such as head-and-neck cancer, esophageal cancer, colorectal cancer, liver cancer, and breast cancer. Most recent evidence suggests that factors related to alcohol consumption and cancer include increased levels of acetaldehyde, production of reactive oxygen species, alteration in DNA methylation, and modifications in retinoid metabolism. In addition, changes associated with alcohol use on the IS and intestinal microbiota may favor the growth of some types of tumors.


Asunto(s)
Neoplasias de la Mama , Etanol , Humanos , Femenino , Etanol/metabolismo , Acetaldehído/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Inflamación
19.
J Biol Chem ; 296: 100642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839151

RESUMEN

Etheno (ε)-adducts, e.g., 1,N2-ε-guanine (1,N2-ε-G) and 1,N6-ε-adenine (1,N6-ε-A), are formed through the reaction of DNA with metabolites of vinyl compounds or with lipid peroxidation products. These lesions are known to be mutagenic, but it is unknown how they lead to errors in DNA replication that are bypassed by DNA polymerases. Here we report the structural basis of misincorporation frequencies across from 1,N2-ε-G by human DNA polymerase (hpol) η. In single-nucleotide insertions opposite the adduct 1,N2-ε-G, hpol η preferentially inserted dGTP, followed by dATP, dTTP, and dCTP. This preference for purines was also seen in the first extension step. Analysis of full-length extension products by LC-MS/MS revealed that G accounted for 85% of nucleotides inserted opposite 1,N2-ε-G in single base insertion, and 63% of bases inserted in the first extension step. Extension from the correct nucleotide pair (C) was not observed, but the primer with A paired opposite 1,N2-ε-G was readily extended. Crystal structures of ternary hpol η insertion-stage complexes with nonhydrolyzable nucleotides dAMPnPP or dCMPnPP showed a syn orientation of the adduct, with the incoming A staggered between adducted base and the 5'-adjacent T, while the incoming C and adducted base were roughly coplanar. The formation of a bifurcated H-bond between incoming dAMPnPP and 1,N2-ε-G and T, compared with the single H-bond formed between incoming dCMPnPP and 1,N2-ε-G, may account for the observed facilitated insertion of dGTP and dATP. Thus, preferential insertion of purines by hpol η across from etheno adducts contributes to distinct outcomes in error-prone DNA replication.


Asunto(s)
Aductos de ADN/química , Aductos de ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Cromatografía Liquida , Cristalografía por Rayos X , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Espectrometría de Masas en Tándem
20.
Environ Health ; 21(1): 48, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35513839

RESUMEN

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) and its DNA adducts has been suggested to increase the risk of preterm birth (PB). Yet, few studies have been conducted to investigate this association, and the role of dietary nutrients intakes including vitamins, folate, and carotene during pre- and post-conception on this association has not been studied. METHODS: Building upon a birth cohort in Taiyuan China, we conducted a nested case control study including 83 PB and 82 term births. Benzo[a]pyrene (BaP)-DNA adducts were measured by an improved LC-MC/MC analytic method. Dietary nutrient intakes were estimated from food frequency questionnaire using the Chinese Standard Tables of Food Consumption. Multivariable logistic regression model was used to examine the associations. RESULTS: Increased risk of PB was observed as per interquartile increase in maternal BaP-DNA adduct level (OR = 1.27, 95%CI 0.95-1.67). Compared to low level (below mean) of maternal adducts, high level (above mean) of adducts was associated with the risk of PB (OR = 2.05, 95%CI 1.05-4.01). After stratified by dietary nutrients intakes, high adducts levels were associated with approximately 2-fourfold times increases in risk of PB among women with low vitamin A, C, E, folate, and carotene intakes during pre- and/or post-conception. Stronger stratified associations were consistently seen during preconception. Similar patterns were observed after additional adjustment for supplementation. CONCLUSIONS: Our study supports the hypothesis that high level of maternal PAHs exposure was significantly associated with increased risk of PB, and provides the first evidence that dietary vitamins, carotene, and folate intake levels may modify this association during different pregnancy windows. Our findings are relevant to identify recommendation for environment management and prenatal nutrition regarding pregnant women and newborns. Further investigation in other populations is warranted.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Nacimiento Prematuro , Benzo(a)pireno/análisis , Cohorte de Nacimiento , Carotenoides , Estudios de Casos y Controles , China/epidemiología , Aductos de ADN , Femenino , Ácido Fólico , Humanos , Recién Nacido , Masculino , Embarazo , Nacimiento Prematuro/inducido químicamente , Nacimiento Prematuro/epidemiología , Vitamina A , Vitaminas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA