Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33031742

RESUMEN

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Asunto(s)
Endocannabinoides/metabolismo , Enterobacteriaceae/patogenicidad , Animales , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Citrobacter rodentium/patogenicidad , Colon/microbiología , Colon/patología , Endocannabinoides/química , Infecciones por Enterobacteriaceae/microbiología , Femenino , Microbioma Gastrointestinal , Glicéridos/química , Glicéridos/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monoacilglicerol Lipasas/metabolismo , Salmonella/patogenicidad , Virulencia
2.
Int J Med Microbiol ; 314: 151610, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310676

RESUMEN

Shiga toxin-producing E. coli (STEC), including the subgroup of enterohemorrhagic E. coli (EHEC), are important bacterial pathogens which cause diarrhea and the severe clinical manifestation hemolytic uremic syndrome (HUS). Genomic surveillance of STEC/EHEC is a state-of-the-art tool to identify infection clusters and to extract markers of circulating clinical strains, such as their virulence and resistance profile for risk assessment and implementation of infection prevention measures. The aim of the study was characterization of the clinical STEC population in Germany for establishment of a reference data set. To that end, from 2020 to 2022 1257 STEC isolates, including 39 of known HUS association, were analyzed and lead to a classification of 30.4 % into 129 infection clusters. Major serogroups in all clinical STEC analyzed were O26, O146, O91, O157, O103, and O145; and in HUS-associated strains were O26, O145, O157, O111, and O80. stx1 was less frequently and stx2 or a combination of stx, eaeA and ehxA were more frequently found in HUS-associated strains. Predominant stx gene subtypes in all STEC strains were stx1a (24 %) and stx2a (21 %) and in HUS-associated strains were mainly stx2a (69 %) and the combination of stx1a and stx2a (12.8 %). Furthermore, two novel O-antigen gene clusters (RKI6 and RKI7) and strains of serovars O45:H2 and O80:H2 showing multidrug resistance were detected. In conclusion, the implemented surveillance tools now allow to comprehensively define the population of clinical STEC strains including those associated with the severe disease manifestation HUS reaching a new surveillance level in Germany.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Síndrome Hemolítico-Urémico , Escherichia coli Shiga-Toxigénica , Humanos , Virulencia/genética , Antígenos O/genética , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Genómica , Alemania/epidemiología , Síndrome Hemolítico-Urémico/epidemiología , Síndrome Hemolítico-Urémico/microbiología , Familia de Multigenes
3.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38337177

RESUMEN

AIMS: To address the increasingly serious challenge of the transmission of foodbrone pathogens in the food chain. METHODS AND RESULTS: In this study, we employed rational design strategies, including truncation, amino acid substitution, and heterozygosity, to generate seven engineered peptides with α-helical structure, cationic property, and amphipathic characteristics based on the original Abhisin template. Among them, as the hybird antimicrobial peptide (AMP), AM exhibits exceptional stability, minimal toxicity, as well as broad-spectrum and potent antimicrobial activity against foodborne pathogens. Besides, it was observed that the electrostatic incorporation demonstrates by AM results in its primary targeting and disruption of the cell wall and membrane of Escherichia coli O157: H7 (EHEC) and methicillin-resistant Staphylococcus aureus (MRSA), resulting in membrane perforation and enhanced permeability. Additionally, AM effectively counteracts the deleterious effects of lipopolysaccharide, eradicating biofilms and ultimately inducing the demise of both food spoilage and pathogenic microorganisms. CONCLUSIONS: The findings highlight the significant potential of AM as a highly promising candidate for a novel food preservative and its great importance in the design and optimization of AMP-related agents.


Asunto(s)
Antiinfecciosos , Escherichia coli O157 , Staphylococcus aureus Resistente a Meticilina , Péptidos Catiónicos Antimicrobianos/química , Péptidos Antimicrobianos , Antibacterianos/química , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología
4.
Pediatr Nephrol ; 39(6): 1901-1907, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38240870

RESUMEN

BACKGROUND: Shiga toxin-producing E. coli-hemolytic uremic syndrome (STEC-HUS) is associated with high morbidity and relevant mortality. Previous small studies showed that volume expansion could improve the course and outcome of STEC-HUS. The aim of this single-center study was to evaluate the effect of volume expansion on the clinical course and outcome in STEC-HUS. METHODS: Data of pediatric patients with STEC-HUS were analyzed retrospectively. Course and outcome of patients treated with volume expansion (VE) from 2019 to 2022 (n = 38) were compared to historical controls (HC) from 2009 to 2018 (n = 111). RESULTS: Patients in the VE group had a significant relative median weight gain compared to HC (7.8% (3.4-11.3) vs. 1.2% (- 0.7-3.9), p < 0.0001) 48 h after admission. The need for dialysis was not reduced by VE (VE 21/38 (55.3%) vs. HC 64/111 (57.7%), p = 0.8). However, central nervous system involvement (impairment of consciousness, seizures, focal neurological deficits, and/or visual disturbances) was significantly reduced (VE 6/38 (15.8%) vs. HC 38/111 (34.2%), p = 0.039). None of the patients in the VE group died or developed chronic kidney disease (CKD) stage 5, whereas in the HC group, three patients died and three patients had CKD stage 5 at discharge. CONCLUSIONS: This study suggests that volume expansion may be associated with the mitigation of the acute course of STEC-HUS, especially severe neurological involvement and the development of CKD. Prospective trials should lead to standardized protocols for volume expansion in children with STEC-HUS.


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Fallo Renal Crónico , Escherichia coli Shiga-Toxigénica , Niño , Humanos , Toxina Shiga , Infecciones por Escherichia coli/complicaciones , Estudios Retrospectivos , Estudios Prospectivos , Diálisis Renal , Síndrome Hemolítico-Urémico/complicaciones , Fallo Renal Crónico/complicaciones
5.
Lett Appl Microbiol ; 77(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38569656

RESUMEN

Diagnostic laboratories in Aotearoa, New Zealand (NZ) refer cultures from faecal samples positive for Shiga toxin genes to the national Enteric Reference Laboratory for isolation of Shiga toxin-producing Escherichia coli (STEC) for epidemiological typing. As there was variation in the culture media being referred, a panel of 75 clinical isolates of STEC, representing 28 different serotypes, was used to assess six commercially available media and provide guidance to clinical laboratories. Recommendations were subsequently tested for a 3-month period, where STEC isolations and confirmations were assessed by whole genome sequencing analysis against the culture media referred. CHROMagar™ STEC (CH-STEC; CHROMagar Microbiology, Paris, France) or CH-STEC plus cefixime-tellurite sorbitol MacConkey agar was confirmed inferior to CH-STEC plus blood agar with vancomycin, cefsulodin, and cefixime (BVCC). The former resulted in fewer STEC types (n = 18) being confirmed compared to those from a combination of CH-STEC and BVCC (n = 42). A significant (P < .05) association with an STEC's ability to grow on CH-STEC and the presence of the ter gene cluster, and eae was observed. Culturing screen positive STEC samples onto both CH-STEC and BVCC ensures a consistently higher recovery of STEC from all clinical samples in NZ than CH-STEC alone.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Humanos , Escherichia coli Shiga-Toxigénica/genética , Cefixima , Agar , Nueva Zelanda , Medios de Cultivo , Vancomicina , Cefsulodina , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética
6.
Food Microbiol ; 122: 104544, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839230

RESUMEN

The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.


Asunto(s)
Escherichia coli Enterohemorrágica , Fragaria , Frutas , Calor , Frutas/microbiología , Fragaria/microbiología , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Microbiología de Alimentos , Recuento de Colonia Microbiana , Viabilidad Microbiana , Néctar de las Plantas/química , Escherichia coli O157/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Cinética
7.
Foodborne Pathog Dis ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093865

RESUMEN

The study was conducted to determine the proportion and concentration of enterohemorrhagic Escherichia coli (EHEC) O157 and six non-O157 (O26, O45, O103, O111, O121, and O145) serogroups and identify seasonal and processing plant differences in feces and on hides of cull dairy cattle processed in commercial slaughterhouses in the United States. Approximately 60 rectal and 60 hide-on samples from matched carcasses were collected in each of three processing plants, in two periods; summer of 2017 and spring of 2018. Samples before enrichment were spiral plated to quantify EHEC, and postenriched samples underwent culture methods that included immuno-magnetic separation, plating on selective media, and PCR assays for identification and serogroup confirmation of putative isolates. An isolate was considered EHEC O157 positive if it harbored serogroup-specific (rfbE), Shiga toxin (stx1 and/or stx2), and intimin (eae) genes and EHEC non-O157 positive if at least one of the non-O157 serogroup-specific, stx1 and/or stx2, and eae genes was identified. Generalized linear mixed models were fitted to estimate overall proportion of positives for EHEC O157 and non-O157 EHEC serogroups, as well as seasonal and processing plant differences in fecal and hide-on proportion of positives. The fecal EHEC proportion at the sample level was 1.8% (95% CI = 0.0-92.2%) and 4.2% (95% CI = 0.0-100.0%) for EHEC O157 and EHEC non-O157, respectively. Hide sample level proportion of positives was 3.0% (95% CI = 0.0-99.9%) for EHEC O157 and 1.6% (95% CI = 0.0-100.0%) for EHEC non-O157. The proportion of EHEC O157 and non-O157 significantly differed by processing plant and sample type (hide vs. feces), but not by season. The association between proportion of EHEC serogroups in feces with the proportion on hides collected from matched cattle was 7.8% (95% CI = 0.6-53.3%) and 3.8% (95% CI = 0.3-30.8%) for EHEC O157 and non-O157, respectively. Taken together, our findings provide evidence of a low proportion of EHEC serogroups in the feces and on hides of cull dairy cattle and that their proportion varies across processing plants.

8.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474124

RESUMEN

Enteropathogenic Escherichia coli (EPEC) produce a capsule of polysaccharides identical to those composing the O-antigen polysaccharide of its LPS (lipopolysaccharide) molecules. In light of this, the impact of O26 polysaccharides on the immune evasion mechanisms of capsulated O26 EPEC compared to non-capsulated enterohemorrhagic Escherichia coli (EHEC) was investigated. Our findings reveal that there was no significant difference between the levels in EPEC and EHEC of rhamnose (2.8:2.5), a molecule considered to be a PAMP (Pathogen Associated Molecular Patterns). However, the levels of glucose (10:1.69), heptose (3.6:0.89) and N-acetylglucosamine (4.5:2.10), were significantly higher in EPEC than EHEC, respectively. It was also observed that the presence of a capsule in EPEC inhibited the deposition of C3b on the bacterial surface and protected the pathogen against lysis by the complement system. In addition, the presence of a capsule also protected EPEC against phagocytosis by macrophages. However, the immune evasion provided by the capsule was overcome in the presence of anti-O26 polysaccharide antibodies, and additionally, these antibodies were able to inhibit O26 EPEC adhesion to human epithelial cells. Finally, the results indicate that O26 polysaccharides can generate an effective humoral immune response, making them promising antigens for the development of a vaccine against capsulated O26 E. coli.


Asunto(s)
Escherichia coli Enterohemorrágica , Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Evasión Inmune , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/farmacología , Lipopolisacáridos/farmacología , Desarrollo de Vacunas
9.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732126

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a critical public health concern due to its role in severe gastrointestinal illnesses in humans, including hemorrhagic colitis and the life-threatening hemolytic uremic syndrome. While highly pathogenic to humans, cattle, the main reservoir for EHEC, often remain asymptomatic carriers, complicating efforts to control its spread. Our study introduces a novel method to investigate EHEC using organoid-derived monolayers from adult bovine ileum and rectum. These polarized epithelial monolayers were exposed to EHEC for four hours, allowing us to perform comparative analyses between the ileal and rectal tissues. Our findings mirrored in vivo observations, showing a higher colonization rate in the rectum compared with the ileum (44.0% vs. 16.5%, p < 0.05). Both tissues exhibited an inflammatory response with increased expression levels of TNF-a (p < 0.05) and a more pronounced increase of IL-8 in the rectum (p < 0.01). Additionally, the impact of EHEC on the mucus barrier varied across these gastrointestinal regions. Innovative visualization techniques helped us study the ultrastructure of mucus, revealing a net-like mucin glycoprotein organization. While further cellular differentiation could enhance model accuracy, our research significantly deepens understanding of EHEC pathogenesis in cattle and informs strategies for the preventative measures and therapeutic interventions.


Asunto(s)
Escherichia coli Enterohemorrágica , Íleon , Organoides , Recto , Animales , Bovinos , Íleon/microbiología , Íleon/metabolismo , Íleon/ultraestructura , Recto/microbiología , Escherichia coli Enterohemorrágica/patogenicidad , Organoides/metabolismo , Organoides/microbiología , Moco/metabolismo , Infecciones por Escherichia coli/microbiología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/ultraestructura
10.
Rev Argent Microbiol ; 56(1): 25-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37704516

RESUMEN

In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Niño , Adulto , Humanos , Preescolar , Lipopolisacáridos , Infecciones por Escherichia coli/epidemiología , Diarrea/epidemiología , Síndrome Hemolítico-Urémico/epidemiología , Inmunoglobulina G , Inmunoglobulina M
11.
Mol Microbiol ; 117(1): 86-101, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411346

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) causes severe human diseases worldwide. The type 3 secretion system and effector proteins are essential for EHEC infection, and are encoded by the locus of enterocyte effacement (LEE). RNA-binding protein Hfq is essential for small regulatory RNA (sRNA)-mediated regulation at a posttranscriptional level and full virulence of many pathogenic bacteria. Although two early studies indicated that Hfq represses LEE expression by posttranscriptionally controlling the expression of genes grlRA and/or ler, both of which encode LEE regulators mediating a positive regulatory loop, the detailed molecular mechanism and biological significance remain unclear. Herein, we show that LEE overexpression was caused by defective RNA-binding activity of the Hfq distal face, which posttranscriptionally represses grlA and ler expression. In vitro analyses revealed that the Hfq distal face directly binds near the translational initiation site of grlA and ler mRNAs, and inhibits their translation. Taken together, we conclude that Hfq inhibits grlA and ler translation by binding their mRNAs through the distal face in an sRNA-independent manner. Additionally, we show that Hfq-mediated repression of LEE is critical for normal EHEC growth because all suppressor mutations that restored the growth defect in the hfq mutant abolished hfq deletion-induced overexpression of LEE.


Asunto(s)
Escherichia coli Enterohemorrágica/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Proteína de Factor 1 del Huésped/metabolismo , ARN Pequeño no Traducido/genética , Transactivadores/metabolismo , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , Humanos , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Sistemas de Secreción Tipo III , Virulencia
12.
BMC Microbiol ; 23(1): 243, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653502

RESUMEN

Analysis of genome wide transcription start sites (TSSs) revealed an unexpected complexity since not only canonical TSS of annotated genes are recognized by RNA polymerase. Non-canonical TSS were detected antisense to, or within, annotated genes as well new intergenic (orphan) TSS, not associated with known genes. Previously, it was hypothesized that many such signals represent noise or pervasive transcription, not associated with a biological function. Here, a modified Cappable-seq protocol allows determining the primary transcriptome of the enterohemorrhagic E. coli O157:H7 EDL933 (EHEC). We used four different growth media, both in exponential and stationary growth phase, replicated each thrice. This yielded 19,975 EHEC canonical and non-canonical TSS, which reproducibly occurring in three biological replicates. This questions the hypothesis of experimental noise or pervasive transcription. Accordingly, conserved promoter motifs were found upstream indicating proper TSSs. More than 50% of 5,567 canonical and between 32% and 47% of 10,355 non-canonical TSS were differentially expressed in different media and growth phases, providing evidence for a potential biological function also of non-canonical TSS. Thus, reproducible and environmentally regulated expression suggests that a substantial number of the non-canonical TSSs may be of unknown function rather than being the result of noise or pervasive transcription.


Asunto(s)
Escherichia coli Enterohemorrágica , Escherichia coli O157 , Escherichia coli O157/genética , Sitio de Iniciación de la Transcripción , Ciclo Celular , Medios de Cultivo
13.
Microbiol Immunol ; 67(4): 171-184, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36636756

RESUMEN

Toxin-antitoxin (TA) systems are found widely among many bacteria, including enterohemorrhagic Escherichia coli (EHEC), but their functions are still poorly understood. In this study, we identified and characterized a novel TA system belonging to the relBE family, classified as a type II TA system, found in EHEC. The protein encoded by the toxin gene is homologous to RelE ribonuclease. Using various conditions for increasing the toxin activity, high-level induction of a toxin gene, and repression of an antitoxin gene in wild-type EHEC, we showed that the TA system, named swpAB (switching of gene expression profile), is involved in selective repression of a set of genes, including some virulence genes, and in the reduction of adherence capacity, rather than in suppression of bacterial growth. A detailed analysis of the profiles of RNA levels along sequences at 15 min after high expression of swpA revealed that two virulence genes, espA and tir, were direct targets of the SwpA toxin. These results suggested that the swpAB system can alter gene expression patterns and change bacterial physiological activity without affecting bacterial growth.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Escherichia coli Enterohemorrágica , Sistemas Toxina-Antitoxina , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Virulencia , Toxinas Bacterianas/genética , Expresión Génica , Antitoxinas/genética , Antitoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética
14.
Proc Natl Acad Sci U S A ; 117(22): 12387-12393, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409599

RESUMEN

Microbiota, host and dietary metabolites/signals compose the rich gut chemical environment, which profoundly impacts virulence of enteric pathogens. Enterohemorrhagic Escherichia coli (EHEC) engages a syringe-like machinery named type-III secretion system (T3SS) to inject effectors within host cells that lead to intestinal colonization and disease. We previously conducted a high-throughput screen to identify metabolic pathways that affect T3SS expression. Here we show that in the presence of arginine, the arginine sensor ArgR, identified through this screen, directly activates expression of the genes encoding the T3SS. Exogenously added arginine induces EHEC virulence gene expression in vitro. Congruently, a mutant deficient in arginine transport (ΔartP) had decreased virulence gene expression. ArgR also augments murine disease caused by Citrobacter rodentium, which is a murine pathogen extensively employed as a surrogate animal model for EHEC. The source of arginine sensed by C. rodentium is not dietary. At the peak of C. rodentium infection, increased arginine concentration in the colon correlated with down-regulation of the host SLC7A2 transporter. This increase in the concentration of colonic arginine promotes virulence gene expression in C. rodentium Arginine is an important modulator of the host immune response to pathogens. Here we add that arginine also directly impacts bacterial virulence. These findings suggest that a delicate balance between host and pathogen responses to arginine occur during disease progression.


Asunto(s)
Citrobacter rodentium/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli Enterohemorrágica/metabolismo , Infecciones por Escherichia coli/microbiología , Regulación Bacteriana de la Expresión Génica , Animales , Arginina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidad , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Humanos , Ratones , Ratones Endogámicos C3H , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(36): 22484-22493, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848072

RESUMEN

The molecular environment of the host can have profound effects on the behavior of resident bacterial species. We recently established how the sensing and response of enterohemorrhagic Escherichia coli (EHEC) to d-serine (d-Ser) resulted in down-regulation of type 3 secretion system-dependent colonization, thereby avoiding unfavorable environments abundant in this toxic metabolite. However, this model ignores a key determinant of the success of bacterial pathogens, adaptive evolution. In this study, we have explored the adaptation of EHEC to d-Ser and its consequences for pathogenesis. We rapidly isolated multiple, independent, EHEC mutants whose growth was no longer compromised in the presence of d-Ser. Through a combination of whole-genome sequencing and transcriptomics, we showed that tolerance could be attributed to disruption of one of two d-Ser transporters and/or activation of a previously nonfunctional d-Ser deaminase. While the implication of cytoplasmic transport in d-Ser toxicity was unsurprising, disruption of a single transporter, CycA, was sufficient to completely overcome the repression of type 3 secretion system activity normally associated with exposure to d-Ser. Despite the fact that this reveals a mechanism by which evolution could drive a pathogen to colonize new niches, interrogation of sequenced E. coli O157:H7 genomes showed a high level of CycA conservation, highlighting a strong selective pressure for functionality. Collectively, these data show that CycA is a critically important conduit for d-Ser uptake that is central to the niche restriction of EHEC.


Asunto(s)
Escherichia coli Enterohemorrágica , Genoma Bacteriano , Serina/farmacología , Adaptación Biológica/genética , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Técnicas de Silenciamiento del Gen , Genoma Bacteriano/efectos de los fármacos , Genoma Bacteriano/genética , Células HeLa , Humanos , Mutación/genética , Sistemas de Secreción Tipo III/genética
16.
J Korean Med Sci ; 38(15): e117, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069811

RESUMEN

BACKGROUND: The largest outbreak of enterohemorrhagic Escherichia coli (EHEC) O157:H7 occurred at a preschool in South Korea from June 12 to 29, 2020. This study aimed to analyze the epidemiological and clinical characteristics of EHEC infection in this outbreak. METHODS: Epidemiological investigation was performed on all 184 children and 19 workers at the preschool using a standard questionnaire to assess symptoms, food intake, attendance, and special activity history. Pulsed-field gel electrophoresis analysis of confirmed cases was performed to determine genetic relevance. RESULTS: During this outbreak, 103 children were affected, whereas only one infection was identified in adults. Of the 103 pediatric patients, 85 had symptoms (82.5%), including diarrhea, abdominal pain, bloody stool, fever, and vomiting. Thirty-two patients (31.1%) were hospitalized, 15 (14.6%) were diagnosed with hemolytic uremic syndrome, and 4 (3.9%) received dialysis treatment. Pulsed-field gel electrophoresis analysis identified 4 genotypes with high genetic relevance (92.3%). Epidemiological investigation revealed that this outbreak might have occurred from ingesting foods stored in a refrigerator with a constant temperature above 10°C, which was conducive to bacterial growth. Despite several measures after outbreak recognition, new infections continued to appear. Therefore, the preschool was forced to close on June 19 to prevent further person-to-person transmission. CONCLUSION: Our findings from the response to the largest outbreak will help prepare countermeasures against future EHEC outbreak.


Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Escherichia coli O157 , Adulto , Niño , Humanos , Preescolar , Escherichia coli Enterohemorrágica/genética , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Diarrea/epidemiología , Escherichia coli O157/genética , Brotes de Enfermedades , República de Corea/epidemiología
17.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768620

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen causing severe diseases, such as hemorrhagic colitis and lethal hemolytic uremic syndrome. The signal-sensing capability of EHEC O157:H7 at specific host colonization sites via different two-component systems (TCSs) is closely related to its pathogenicity during infection. However, the types of systems involved and the regulatory mechanisms are not fully understood. Here, we investigated the function of the TCS BarA/UvrY regulator UvrY in the pathogenicity regulation of EHEC O157:H7. Our results showed that UvrY acts as a positive regulator of EHEC O157:H7 for cellular adherence and mouse colonization through the transcriptional activation of the locus for enterocyte effacement (LEE) pathogenic genes. Furthermore, this regulation is mediated by the LEE island master regulator, Ler. Our results highlight the significance of UvrY in EHEC O157:H7 pathogenicity and underline the unknown importance of BarA/UvrY in colonization establishment and intestinal adaptability during infection.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Proteínas de Escherichia coli , Animales , Humanos , Ratones , Enterocitos , Infecciones por Escherichia coli/genética , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana , Fosfotransferasas , Virulencia/genética
18.
BMC Genomics ; 23(1): 230, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331132

RESUMEN

BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) is an emerging health challenge worldwide and outbreaks caused by this pathogen poses a serious public health concern. Shiga toxin (Stx) is the major virulence factor of EHEC, and the stx genes are carried by temperate bacteriophages (Stx phages). The switch between lysogenic and lytic life cycle of the phage, which is crucial for Stx production and for severity of the disease, is regulated by the CI repressor which maintain latency by preventing transcription of the replication proteins. Three EHEC phage replication units (Eru1-3) in addition to the classical lambdoid replication region have been described previously, and Stx phages carrying the Eru1 replication region were associated with highly virulent EHEC strains. RESULTS: In this study, we have classified the Eru replication region of 419 Stx phages. In addition to the lambdoid replication region and three already described Erus, ten novel Erus (Eru4 to Eru13) were detected. The lambdoid type, Eru1, Eru4 and Eru7 are widely distributed in Western Europe. Notably, EHEC strains involved in severe outbreaks in England and Norway carry Stx phages with Eru1, Eru2, Eru5 and Eru7 replication regions. Phylogenetic analysis of CI repressors from Stx phages revealed eight major clades that largely separate according to Eru type. CONCLUSION: The classification of replication regions and CI proteins of Stx phages provides an important platform for further studies aimed to assess how characteristics of the replication region influence the regulation of phage life cycle and, consequently, the virulence potential of the host EHEC strain.


Asunto(s)
Bacteriófagos , Toxina Shiga , Bacteriófagos/genética , Lisogenia , Filogenia , Secuencias Reguladoras de Ácidos Nucleicos , Toxina Shiga/genética
19.
Antimicrob Agents Chemother ; 66(2): e0194921, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34871091

RESUMEN

We described and characterized Shiga-toxin-producing Escherichia coli (STEC) strains with high levels of resistance to azithromycin isolated in France between 2004 and 2020. Nine of 1,715 (0.52%) STEC strains were resistant to azithromycin, with an increase since 2017. One isolate carried a plasmid-borne mef(C)-mph(G) gene combination, described here for the first time for E. coli. Azithromycin resistance, although rare, needs consideration, as this treatment may be useful in cases of STEC infection.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Azitromicina/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/genética , Humanos , Plásmidos/genética , Escherichia coli Shiga-Toxigénica/genética
20.
Appl Environ Microbiol ; 88(15): e0069222, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35867559

RESUMEN

The global increase in antimicrobial-resistant infections means that there is a need to develop new antimicrobial molecules and strategies to combat the issue. Aurodox is a linear polyketide natural product that is produced by Streptomyces goldiniensis, yet little is known about aurodox biosynthesis or the nature of the biosynthetic gene cluster (BGC) that encodes its production. To gain a deeper understanding of aurodox biosynthesis by S. goldiniensis, the whole genome of the organism was sequenced, revealing the presence of an 87 kb hybrid polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) BGC. The aurodox BGC shares significant homology with the kirromycin BGC from S. collinus Tϋ 365. However, the genetic organization of the BGC differs significantly. The candidate aurodox gene cluster was cloned and expressed in a heterologous host to demonstrate that it was responsible for aurodox biosynthesis and disruption of the primary PKS gene (aurAI) abolished aurodox production. These data supported a model whereby the initial core biosynthetic reactions involved in aurodox biosynthesis followed that of kirromycin. Cloning aurM* from S. goldiniensis and expressing this in the kirromycin producer S. collinus Tϋ 365 enabled methylation of the pyridone group, suggesting this is the last step in biosynthesis. This methylation step is also sufficient to confer the unique type III secretion system inhibitory properties to aurodox. IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) is a significant global pathogen for which traditional antibiotic treatment is not recommended. Aurodox inhibits the ability of EHEC to establish infection in the host gut through the specific targeting of the type III secretion system while circumventing the induction of toxin production associated with traditional antibiotics. These properties suggest aurodox could be a promising anti-virulence compound for EHEC, which merits further investigation. Here, we characterized the aurodox biosynthetic gene cluster from Streptomyces goldiniensis and established the key enzymatic steps of aurodox biosynthesis that give rise to the unique anti-virulence activity. These data provide the basis for future chemical and genetic approaches to produce aurodox derivatives with increased efficacy and the potential to engineer novel elfamycins.


Asunto(s)
Aurodox , Streptomyces , Antibacterianos/farmacología , Aurodox/farmacología , Familia de Multigenes , Sintasas Poliquetidas/genética , Streptomyces/genética , Sistemas de Secreción Tipo III
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA