Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Small ; 20(28): e2310540, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597766

RESUMEN

Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.


Asunto(s)
Nanoestructuras , Humanos , Nanoestructuras/química , Nanotecnología/métodos , Animales
2.
Environ Sci Technol ; 58(22): 9875-9886, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38722770

RESUMEN

Zinc oxide nanoparticles (ZnO NPs) cause biotoxicity and pose a potential ecological threat; however, their effects on plant metabolism and eco-corona evolution between NPs and organisms remain unclear. This study clarified the molecular mechanisms underlying physiological and metabolic responses induced by three different ZnO NPs with different sizes and hydrophobicity in sprouts (Vigna radiata) and explored the critical regulation of eco-corona formation in root-nano systems. Results indicated that smaller-sized ZnO inhibited root elongation by up to 37.14% and triggered oxidative burst and apoptosis. Metabolomics confirmed that physiological maintenance after n-ZnO exposure was mainly attributed to the effective stabilization of nitrogen fixation and defense systems by biotransformation of the flavonoid pathway. Larger-sized or hydrophobic group-modified ZnO exhibited low toxicity in sprouts, with 0.89-fold upregulation of citrate in central carbon metabolism. This contributed to providing energy for resistance to NP stress through amino acid and carbon/nitrogen metabolism, accompanied by changes in membrane properties. Notably, smaller-sized and hydrophobic NPs intensely stimulated the release of root metabolites, forming corona complexes with exudates. The hydrogen-bonded wrapping mechanism in protein secondary structure and hydrophobic interactions of heterogeneous functional groups drove eco-corona formation, along with the corona evolution intensity of n-ZnO > s-ZnO > b-ZnO based on higher (α-helix + 3-turn helix)/ß-sheet ratios. This study provides crucial insight into metabolic and eco-corona evolution in bionano fates.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Óxido de Zinc , Vigna/efectos de los fármacos , Nanopartículas/química , Nanopartículas/toxicidad
3.
Environ Sci Technol ; 58(28): 12390-12399, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38963915

RESUMEN

Investigating the ternary relationship among nanoparticles (NPs), their immediate molecular environment, and test organisms rather than the direct interaction between pristine NPs and test organisms has been thrust into the mainstream of nanotoxicological research. Diverging from previous work that predominantly centered on surrounding molecules affecting the toxicity of NPs by modulating their nanoproperties, this study has unveiled a novel dimension: surrounding molecules altering bacterial susceptibility to NPs, consequently impacting the outcomes of nanobio interaction. The study found that adding nitrate as the surrounding molecules could alter bacterial respiratory pathways, resulting in an enhanced reduction of ceria NPs (nanoceria) on the bacterial surfaces. This, in turn, increased the ion-specific toxicity originating from the release of Ce3+ ions at the nanobio interface. Further transcriptome analysis revealed more mechanistic details underlying the nitrate-induced changes in the bacterial energy metabolism and subsequent toxicity patterns. These findings offer a new perspective for the deconstruction of nanobio interactions and contribute to a more comprehensive understanding of NPs' environmental fate and ecotoxicity.


Asunto(s)
Cerio , Cerio/toxicidad , Cerio/química , Bacterias/metabolismo , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química
4.
Environ Sci Technol ; 57(21): 8139-8148, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37194262

RESUMEN

The eco-corona on microplastics refers to the initial layer of biomolecular compounds adsorbed onto the surface after environmental exposure. The formation and composition of the eco-corona in soils have attracted relatively little attention; however, the eco-corona has important implications for the fate and impacts of microplastics and co-occurring chemical contaminants. Here, it was demonstrated that the formation of the eco-corona on polyethylene microplastics exposed to water-extractable soil metabolites (WESMs) occurs quite rapidly via two pathways: direct adsorption of metabolites on microplastics and bridging interactions mediated by macromolecules. The main eco-corona components were common across all soils and microplastics tested and were identified as lipids and lipid-like molecules, phenylpropanoids and polyketides, nucleosides, nucleotides, and their analogues. WESMs were found to reduce the adsorption of co-occurring organic contaminants to microplastics by two pathways: reduced adsorption to the eco-corona surface and co-solubilization in the surrounding water. These impacts from the eco-corona and the soil metabolome should be considered within fate and risk assessments of microplastics and co-occurring contaminants.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Adsorción , Suelo , Contaminantes Químicos del Agua/análisis , Metaboloma
5.
Environ Sci Technol ; 57(1): 331-339, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36574476

RESUMEN

Nanoplastics are an increasing environmental concern. In aquatic environments, nanoplastics will acquire an eco-corona by interacting with macromolecules (e.g., humic substances and extracellular polymeric substances (EPS)). Here, we show that the properties of the eco-corona and, consequently, its ability to enhance the transport of nanoplastics vary significantly with the surface functionality of nanoplastics and sources of macromolecules. The eco-corona derived from the EPS of Gram-negative Escherichia coli MG1655 enhances the transport of polystyrene (PS) nanospheres in saturated porous media to a much greater extent than the eco-corona derived from soil humic acid and fulvic acid. In comparison, the eco-corona from all three sources significantly enhance the transport of carboxylated PS (HOOC-PS). We show that the eco-corona inhibits the deposition of the two types of nanoplastics to the porous media mainly via steric repulsion. Accordingly, an eco-corona consisting of a higher mass of larger-sized macromolecules is generally more effective in enhancing transport. Notably, HOOC-PS tends to acquire macromolecules of lower hydrophobicity than PS. The more disordered and flexible structures of such macromolecules may result in greater elastic repulsion between the nanoplastics and sand grains and, consequently, greater transport enhancement. The findings of this study highlight the critical role of eco-corona formation in regulating the mobility of nanoplastics, as well as the complexity of this process.


Asunto(s)
Microplásticos , Nanosferas , Porosidad , Suelo , Poliestirenos , Sustancias Húmicas/análisis
6.
Ecotoxicol Environ Saf ; 262: 115164, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37356401

RESUMEN

Widespread applications and release of photoactive nanoparticles (NPs) such as titanium dioxide (TiO2) into environmental matrices warrant mechanistic investigations addressing toxicity of NPs under environmentally relevant conditions. Accordingly, we investigated the effects of surface adsorbed natural organic matters (NOMs) such as humic acid, tannic acid and lignin on the band gap energy, abiotic reactive oxygen species (ROS) generation, surface chemistry and phototoxicity of TiO2 NPs. Initially, a liquid assisted grinding method was optimized to produce TiO2 NPs with a NOM layer of defined thickness for further analysis. Generally, adsorption of NOM reduced the band-gap energy of TiO2 NPs from 3.08 eV to 0.56 eV with humic acid, 1.92 eV with tannic acid and 2.48 eV with lignin. Light activated ROS generation by TiO2 NPs such as hydroxyl radicals, however, was reduced by 4, 2, 9 times in those coated with humic acid, tannic acid and lignin, respectively. This reduction in ROS despite decrease in band gap energy corroborated with the decreased surface oxygen vacancy (as revealed by X-ray Photoelectron Spectroscopy (XPS)) and quenching of ROS by surface adsorbed NOM. Despite the reduced ROS generation, the NOM-modified TiO2 NPs exhibited an increased phototoxicity to Chlorella vulgaris in comparison to pristine TiO2 NPs. Further analysis suggested that photoactivation of NOM modified TiO2 NPs releases toxic degradation products. Findings from our studies thus provide mechanistic insight into the ecotoxic potential of NOM-modified TiO2 NPs when exposed to light in the environment.

7.
Chimia (Aarau) ; 76(1-2): 34-44, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38069747

RESUMEN

Asymmetrical flow field-flow fractionation (AF4) is a powerful technique employed for the separation of macromolecules, nanoparticles, and their assemblages according to their hydrodynamic behavior. It is well known that at this size range, complex interactions can occur between components (e.g. surface adsorption, aggregation) controlling the fate of trace metals (TMs) bound to them. AF4 coupling to inductively coupled plasma mass spectrometry (ICP-MS) allows the quantification of metal-containing species at trace levels present in environmental and biological systems on a size-composition basis. The combination of AF4-ICP-MS with other online detectors provides additional information that allows the assessment of the origin of analytes present in mixtures and complex matrixes with minimal sample preparation, which is crucial for understanding the behavior of trace metal contaminants. Despite the increasing use of AF4-ICP-MS in environmental contexts, we acknowledge that the quantification of inorganic species using such combined techniques requires further development of standardized procedures and need certified reference materials. In this review, we also discuss critical endpoints within the ICP-MS instrument coupled to AF4 that need to be controlled before quantitative measurements can be validated. Then, we illustrate how the combination of different online detectors in addition to ICP-MS offers an integrated picture of natural components states, thus providing key information on the changes in behavior of trace metal species and metallic nanoparticles (MNPs) as observed in both environmental samples and biofluids.

8.
Environ Sci Technol ; 55(16): 11006-11018, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339175

RESUMEN

In the context of environmental plastic pollution, it is still under debate if and how the "plastisphere", a plastic-specific microbial community, emerges. In this study, we tested the hypothesis that the first conditioning film of dissolved organic matter (DOM) sorbs selectively to polymer substrates and that microbial attachment is governed in a substrate-dependent manner. We investigated the adsorption of stream water-derived DOM to polyethylene terephthalate (PET), polystyrene (PS), and glass (as control) including UV-weathered surfaces by Fourier-transform ion cyclotron mass spectrometry. Generally, the saturated, high-molecular mass and thus more hydrophobic fraction of the original stream water DOM preferentially adsorbed to the substrates. The UV-weathered polymers adsorbed more polar, hydrophilic OM as compared to the dark controls. The amplicon sequencing data of the initial microbial colonization process revealed a tendency of substrate specificity for biofilm attachment after 24 h and a clear convergence of the communities after 72 h of incubation. Conclusively, the adsorbed OM layer developed depending on the materials' surface properties and increased the water contact angles, indicating higher surface hydrophobicity as compared to pristine surfaces. This study improves our understanding of molecular and biological interactions at the polymer/water interface that are relevant to understand the ecological impact of plastic pollution on a community level.


Asunto(s)
Biopelículas , Plásticos , Adsorción , Polímeros , Ríos
9.
Environ Res ; 194: 110669, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359698

RESUMEN

Recent studies have shown that nanosized materials including plastics as a major cause of concern in the aquatic ecosystem. Fortunately, in the aquatic environment, the surface of the materials is often colonized by exudates of aquatic microorganisms (biofilm), where these materials are attached and surrounded by a secreted matrix with a sticky layer. The significance of these biofilms on the existence and beneficial implications of these pollutants has been studied in recent decades. Here we develop the concept of these pollutants as a complex matrix of polymers to which Extracellular Polymeric Substances (EPS) binds to form eco-corona modifying its density and surface charge of these particles. This review critically integrates the outstanding properties and functions of algal EPS in the aquatic environment and their dynamic interactions of early colonization on the surface of these pollutants, the impact of biofilm formation on stability, reactivity and, toxicity from the current literature. Due to the modifications of the environmental processes, EPS can have an impact on the toxicity thus special attention is focused on their behavior to decrease the toxicity of the pollutants in the aquatic environment. Although there has been an increasing number of researches in this area, further progress is needed to explore the extent to which ecological processes could be impacted, including the modifications in the behavior of aquatic pollutants. Thus, this review provides a recent perspective into the mechanisms of how eco-corona formation mitigates the toxicity of nanomaterials prevalent in aquatic ecosystems.


Asunto(s)
Ecosistema , Nanoestructuras , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Nanoestructuras/toxicidad , Plásticos
10.
Environ Res ; 188: 109842, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32846636

RESUMEN

Unabated use of nanoplastics (<1 µm) in the consumer products and their consequent release to the marine environment poses a substantial threat to the marine ecosystem. The toxic impact of the nanoplastics on marine microalgae is yet to be explored in detail, and the role of reactive oxygen species generation remains largely unclear. The algal exudates constitute a significant part of the natural organics present in the marine system that may readily adsorb over the nanoplastics to form eco-corona. In the current work a marine alga, Chlorella sp., was considered a bioindicator organism and the effects of eco-corona formation in lessening the toxic impact of the nanoplastics was analyzed. Three differently functionalized polystyrene nanoplastics (PS NPs): Aminated (NH2-PS NPs), Carboxylated (COOH-PS NPs) and Plain nanoplastics were aged (12, 24, and 48 h) in the EPS containing medium to facilitate eco-corona formation. Decline in cell viability, membrane integrity, and photosynthetic yield were considered to be principle toxicity indicators. The role of oxidative stress as key mode of action (MOA) was studied considering generation of overall reactive oxygen species, and specific radicals (hydroxyl and superoxide) as relevant markers. The changes in antioxidant enzyme activities (superoxide dismutase, and catalase) were also measured. The results clearly indicate a significant decline in the oxidative stress and corresponding lessening of the toxic effects due to eco-corona formation on the PS NPs. The response varied with surface charge on the NPs and ageing duration. Considering the increasing importance of the nanoplastics as one of the major emerging pollutants in marine ecosystem, this study strongly suggests that the EPS mediated eco-corona formation may substantially lessen their toxic burden.


Asunto(s)
Chlorella , Microalgas , Nanopartículas , Contaminantes Químicos del Agua , Ecosistema , Microplásticos , Nanopartículas/toxicidad , Poliestirenos/toxicidad
11.
J Hazard Mater ; 477: 135257, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047557

RESUMEN

Fate and transport of nanoplastics in aquatic environments are affected by their heteroaggregation with minerals in the presence of macromolecules. This study investigated the heteroaggregation of polystyrene nanoplastics (PSNPs) with goethite nanoparticles (GNPs) under the influence of macromolecules [humic acid (HA), bovine serum albumin (BSA), and DNA] and electrolytes. Under 1 mg C/L macromolecule, raising electrolyte concentration promoted heteroaggregation via charge screening, except that calcium bridging with HA also enhanced heteroaggregation at CaCl2 concentration above 5 mM. At all NaCl concentrations and CaCl2 concentration below 5 mM, 1 mg C/L macromolecules strongly retarded heteroaggregation, ranking BSA > DNA > HA. Raising macromolecule concentration strengthened such stabilization effect of all macromolecules in NaCl solution and that of DNA and BSA in CaCl2 solution by enhancing steric hindrance. However, 0.1 mg C/L BSA slightly promoted heteroaggregation in CaCl2 solution due to stronger electrostatic attraction than steric hindrance. In CaCl2 solution, raising HA concentration strengthened its destabilization effect via calcium bridging. Macromolecules having more compact globular structure and higher molecular weight may exert greater steric hindrance to inhibit heteroaggregation more effectively. This study provides new insights on the effects of macromolecules and electrolytes on heteroaggregation between nanoplastics and iron minerals in aquatic environments.


Asunto(s)
Electrólitos , Compuestos de Hierro , Minerales , Nanopartículas , Poliestirenos , Contaminantes Químicos del Agua , Poliestirenos/química , Minerales/química , Electrólitos/química , Compuestos de Hierro/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Cinética , ADN/química , ADN/efectos de los fármacos , Albúmina Sérica Bovina/química , Cloruro de Calcio/química
12.
Chemosphere ; 357: 142061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642775

RESUMEN

Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.


Asunto(s)
Atrazina , Chlorella vulgaris , Herbicidas , Sustancias Húmicas , Microplásticos , Poliestirenos , Contaminantes Químicos del Agua , Chlorella vulgaris/efectos de los fármacos , Atrazina/toxicidad , Herbicidas/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microalgas/efectos de los fármacos , Antioxidantes/metabolismo , Pruebas de Toxicidad Aguda , Fotosíntesis/efectos de los fármacos
13.
Chemosphere ; 358: 142111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663677

RESUMEN

In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 µg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.


Asunto(s)
Atrazina , Chlorella vulgaris , Herbicidas , Sustancias Húmicas , Microplásticos , Estrés Oxidativo , Poliestirenos , Superóxido Dismutasa , Contaminantes Químicos del Agua , Chlorella vulgaris/efectos de los fármacos , Atrazina/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Superóxido Dismutasa/metabolismo , Herbicidas/toxicidad , Herbicidas/química , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microalgas/efectos de los fármacos , Clorofila/metabolismo , Malondialdehído/metabolismo , Antioxidantes/metabolismo , Biomasa , Clorofila A/metabolismo
14.
NanoImpact ; 33: 100490, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38159885

RESUMEN

The use of metal and metal oxide nanomaterials (NMs) is experiencing a significant surge in popularity due to their distinctive structures and properties, making them highly attractive for a wide range of applications. This increases the risks of their potential negative impact on organisms if dispersed into the environment. Information about their behavior and transformation upon environmental interactions in aquatic settings is limited. In this study, the influence of naturally excreted biomolecules from the zooplankton Daphnia magna on nanosized Y2O3 of different concentrations was systematically examined in synthetic freshwater in terms of adsorption and eco-corona formation, colloidal stability, transformation, dissolution, and ecotoxicity towards D. magna. The formation of an eco-corona on the surface of the Y2O3 NMs leads to improved colloidal stability and a reduced extent of dissolution. Exposure to the Y2O3 NMs lowered the survival probability of D. magna considerably. The ecotoxic potency was slightly reduced by the formation of the eco-corona, though shown to be particle concentration-specific. Overall, the results highlight the importance of systematic mechanistic and fundamental studies of factors that can affect the environmental fate and ecotoxic potency of NMs.


Asunto(s)
Daphnia , Nanoestructuras , Animales , Nanoestructuras/toxicidad , Agua Dulce , Daphnia magna
15.
Sci Total Environ ; 919: 170824, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340861

RESUMEN

Growing concerns have raised about the microplastic eco-coronas in the ultraviolet (UV) disinfection wastewater, which accelerated the pollution of antibiotic resistance genes (ARGs) in the aquatic environment. As the hotspot of gene exchange, microplastics (MPs), especially for the UV-aged MPs, could alter the spread of ARGs in the eco-coronas and affect the resistance of the environment through adsorbing antibiotic resistant plasmids (ARPs). However, the relationship between the MP adsorption for ARPs and ARG spreading characteristics in MP eco-corona remain unclear. Herein, this study explored the distribution of ARGs in the MP eco-corona through in situ investigations of the discharged wastewater, and the adsorption behaviors of MPs for ARPs by in vitro adsorption experiments and in silico calculations. Results showed that the adsorption capacity of MPs for ARPs was enhanced by 42.7-48.0 % and the adsorption behavior changed from monolayer to multilayer adsorption after UV-aging. It was related to the increased surface roughness and oxygen-containing functional groups of MPs under UV treatment. Moreover, the abundance of ARGs in MP eco-corona of UV-treated wastewater was 1.33-1.55 folds higher than that without UV treatment, promoting the proliferation of drug resistance. DFT and DLVO theoretical calculations indicated that the MP-ARP interactions were dominated by electrostatic physical adsorption, endowing the aged MPs with low potential oxygen-containing groups to increase the electrostatic interaction with ARPs. Besides, due to the desorption of ARPs on MPs driven by the electrostatic repulsion, the bioavailability of ARGs in the MP eco-coronas was increased with pH and decreased with salinity after the wastewater discharge. Overall, this study advanced the understanding of the adsorption behavior of MPs for ARPs and provided inspirations for the evaluation of the resistance spread in the aquatic environment mediated by MP eco-coronas.


Asunto(s)
Microplásticos , Plásticos , Aguas Residuales , Adsorción , Farmacorresistencia Microbiana/genética , Antibacterianos , Oxígeno , Genes Bacterianos
16.
Environ Pollut ; 341: 123015, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008250

RESUMEN

GFNs have widespread applications but can harm marine systems due to excessive use and improper disposal. Algae-secreted EPS can mitigate nanomaterial harm, but their impact on GFN toxicity is understudied. Hence, in the present study, we investigated the toxicity of three GFNs, graphene oxide (GO), reduced graphene oxide (rGO), and graphene, in pristine and EPS-adsorbed forms in the marine alga Chlorella sp. At an environmentally relevant concentration of 1 mgL-1, all three GFNs induced considerable oxidative stress and impeded growth and photosynthetic activity of the algae. The order of the toxic potential followed GO > rGO > graphene. The various facets of adsorption of EPS (1:1 mixture of loosely bound, and tightly bound EPS) on GFNs were investigated through microscopy, surface chemical analyses, fluorescence quenching studies, and isotherm and kinetics studies. Amongst the pristine GFNs treated with algal cells, GO was found to exert the maximum negative effects on algal growth. Upon adsorption of EPS over the GFNs, a significant decline in growth inhibition was observed compared to the respective pristine forms which strongly correlated with reduced oxidative stress and enhanced photosynthetic parameters in the cells. The formation of a layer of eco-corona after interaction of GFNs with EPS possibly caused a barrier effect which in turn diminished their toxic potential. The findings from the present investigation offer valuable insights into the environmental toxicity of GFNs and show that the eco-corona formation may lessen the risk posed by these materials in the marine environment.


Asunto(s)
Chlorella , Grafito , Nanoestructuras , Grafito/toxicidad , Nanoestructuras/toxicidad , Estrés Oxidativo
17.
J Hazard Mater ; 445: 130586, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055991

RESUMEN

Expanding applications and production of engineered nanoparticles lead to an increased risk for their environmental dispersion. Systematic knowledge of surface transformation and dissolution of nanoparticles is essential for risk assessment and regulation establishment. Such aspects of Co- and Ni-based nanoparticles including metals, oxides, and solution combustion synthesized metal nanoparticles (metal cores with carbon shells) were investigated upon environmental interaction with organic matter, simulated by natural organic matter (NOM) and degradation products from zooplankton and algae (eco-corona biomolecules, EC) in freshwater (FW). The presence of NOM and EC in FW results in negative surface charges of the nanoparticles reduces the extent of nanoparticles agglomeration, and increases concentration, mainly due to the surface adsorption of carboxylate groups of the organic matter. The dissolution of the Co-based nanoparticles was for all conditions (FW, FW with NOM or EC) higher than the Ni-based, except for Co3O4 being nearly non-soluble. The surface transformation and dissolution of nanoparticles are highly exposure and time-dependent, and surface- and environment specific. Therefore, no general correlation was observed between dissolution and, particle types, surface conditions, or EC/NOM adsorption. This underlines the importance of thorough investigations of nanoparticles adsorption/desorption, degradation, and exposure scenarios for developing regulatory relevant protocols and guidelines.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Níquel , Cobalto , Solubilidad , Organismos Acuáticos , Agua Dulce
18.
Environ Pollut ; 317: 120784, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36462678

RESUMEN

The thriving nano-enabled agriculture facilitates the interaction of nanomaterials with plants. Recently, these interactions and their biological effects are receiving increasing attention. Upon entering plants via leaves, roots, stems, and other organs, nanoparticles adsorb numerous biomolecules inside plants and form bio-corona. In addition, nanoparticles that enter plants through roots may have formed eco-corona with root exudates in the rhizosphere environment before contacting with plant exogenous proteins. The most significant biological effects of plant protein corona include changes in protein structure and function, as well as changes in nanoparticle toxicity and targeting ability. However, the mechanisms, particularly how protein corona affects plant protein function, plant development and growth, and rhizosphere environment properties, require further investigation. Our review summarizes the current understanding of the formation and biological effects of nanoparticle-plant protein corona and provides an outlook on future research.


Asunto(s)
Nanopartículas , Nanoestructuras , Corona de Proteínas , Proteínas de Plantas , Nanopartículas/química , Nanoestructuras/química , Corona de Proteínas/química , Corona de Proteínas/metabolismo
19.
Nanotoxicology ; 17(2): 143-156, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36789517

RESUMEN

The continuous release of nanoparticles and nanoplastics into the marine environment necessitates the examination of their combined effects in marine organisms. Natural Organic Matter (NOM) can significantly influence the behavior of nanomaterials in the marine environment. The present study explores the effects of algal Extracellular Polymeric Substances (EPS) in reducing the combined toxic effects of three different polystyrene nanoplastics (PSNPs)- aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs - and P25 titanium dioxide nanoparticles (Nano-TiO2) towards the marine alga, Chlorella sp. Two doses (0.25 and 2.5 mg/L) of nano-TiO2 mixed with the PSNPs (1 mg/L) were employed. The COOH-PSNPs with 2.5 mg/L nano-TiO2 exhibited higher growth inhibition toward algal cells. Addition of algal EPS to the mixture of NMs decreased the negative effect significantly. The mean hydrodynamic diameter increased significantly from 666 to 797 nm and 1248 to 3589 nm at concentrations 0.25 and 2.5 mg/L, respectively when the mixtures of nano-TiO2 and COOH-PSNPs were incubated with the algal EPS. In comparison to the pristine NMs, the EPS-NMs were found to significantly reduce the superoxide and hydroxyl radical production. The results were further validated with the estimation of lipid peroxidation (LPO), esterase activity, photosynthetic efficiency, and membrane permeability in the cells. The major outcomes from this study highlight the role of algal EPS in significantly reducing the toxic impact of binary mixture of NMs in marine organisms.


Asunto(s)
Chlorella , Nanopartículas , Contaminantes Químicos del Agua , Poliestirenos/toxicidad , Microplásticos , Matriz Extracelular de Sustancias Poliméricas , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad
20.
J Hazard Mater ; 457: 131825, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37315410

RESUMEN

Extracellular polymeric substances (EPS) represent an interface between microbial cells and aquatic environment, where nanoplastics acquire coatings to alter their fate and toxicity. However, little is known about molecular interactions governing modification of nanoplastics at biological interfaces. Molecular dynamics simulations combining experiments were conducted to investigate assembly of EPS and its regulatory roles in the aggregation of differently charged nanoplastics and interactions with bacterial membrane. Driven by hydrophobic and electrostatic interactions, EPS formed micelle-like supramolecular structures with hydrophobic core and amphiphilic exterior. Different components, depending on their hydrophobicity and charge, were found to promote or suppress EPS assembly. Neutral and hydrophobic nanoplastics showed unbiased adsorption of EPS species, while cationic and anionic nanoplastics were distinct and attracted specific molecules of opposite charges. Compared with isolated EPS, assembled EPS concealed hydrophobic groups to be less adsorbed by nanoplastics. Aggregation of nanoplastics was alleviated by EPS due to electrostatic repulsion plus steric hindrance. ESP suppressed binding of cationic nanoplastics to the bacterial membrane through reducing the surface charge. Neutral and anionic nanoplastics showed weak membrane association, but their binding interactions were promoted by EPS. The structural details revealed here provided molecular level insights into modifications of nanoplastics at the eco-environment interface.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Microplásticos , Matriz Extracelular de Sustancias Poliméricas/química , Microplásticos/análisis , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA