Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(7): e17373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967106

RESUMEN

Climate change is an environmental emergency threatening species and ecosystems globally. Oceans have absorbed about 90% of anthropogenic heat and 20%-30% of the carbon emissions, resulting in ocean warming, acidification, deoxygenation, changes in ocean stratification and nutrient availability, and more severe extreme events. Given predictions of further changes, there is a critical need to understand how marine species will be affected. Here, we used an integrated risk assessment framework to evaluate the vulnerability of 132 chondrichthyans in the Eastern Tropical Pacific (ETP) to the impacts of climate change. Taking a precautionary view, we found that almost a quarter (23%) of the ETP chondrichthyan species evaluated were highly vulnerable to climate change, and much of the rest (76%) were moderately vulnerable. Most of the highly vulnerable species are batoids (77%), and a large proportion (90%) are coastal or pelagic species that use coastal habitats as nurseries. Six species of batoids were highly vulnerable in all three components of the assessment (exposure, sensitivity and adaptive capacity). This assessment indicates that coastal species, particularly those relying on inshore nursery areas are the most vulnerable to climate change. Ocean warming, in combination with acidification and potential deoxygenation, will likely have widespread effects on ETP chondrichthyan species, but coastal species may also contend with changes in freshwater inputs, salinity, and sea level rise. This climate-related vulnerability is compounded by other anthropogenic factors, such as overfishing and habitat degradation already occurring in the region. Mitigating the impacts of climate change on ETP chondrichthyans involves a range of approaches that include addressing habitat degradation, sustainability of exploitation, and species-specific actions may be required for species at higher risk. The assessment also highlighted the need to further understand climate change's impacts on key ETP habitats and processes and identified knowledge gaps on ETP chondrichthyan species.


El cambio climático es una emergencia medioambiental que amenaza a especies y ecosistemas en todo el mundo. Los océanos han absorbido alrededor del 90% del calor antropogénico y entre el 20% y el 30% de las emisiones de carbono, lo que ha provocado su calentamiento, acidificación, desoxigenación, cambios en la estratificación de los océanos y en la disponibilidad de nutrientes, así como fenómenos extremos más pronunciados. Dadas las predicciones de cambios, hay una importante necesidad de entender cómo las especies marinas se verán afectadas. En este estudio utilizamos una Evaluación Integrada de Riesgos para evaluar la vulnerabilidad de 132 condrictios del Pacífico Tropical Oriental (PTO) a los impactos del cambio climático. Adoptando un enfoque preventivo, estimamos que la vulnerabilidad general al cambio climático es Alta para casi una cuarta parte (23%) de las especies de condrictios del PTO evaluadas y Moderada para gran parte del resto (76%). La mayoría de las especies altamente vulnerables son batoideos (77%), y una gran proporción de éstas (90%) son especies costeras o especies pelágicas que utilizan los hábitats costeros como áreas de crianza. Seis especies de batoideos tuvieron una vulnerabilidad Alta en los tres componentes de la evaluación. Esta evaluación indica que las especies costeras, en particular las que dependen de áreas de crianza costeras, son las más vulnerables al cambio climático. Es probable que el calentamiento de los océanos, junto con la acidificación y la posible desoxigenación, tenga efectos generalizados sobre las especies de condrictios del PTO, pero las especies costeras se verán también afectadas por los cambios en los aportes de agua dulce, la salinidad y el aumento del nivel del mar. Esta vulnerabilidad relacionada con el clima se ve agravada por otros factores antropogénicos que ya se están produciendo en la región, como la sobrepesca y la degradación del hábitat. La mitigación de los impactos del cambio climático sobre los condrictios del PTO implica medidas que incluyan abordar la degradación del hábitat y la sostenibilidad de la explotación pesquera, y acciones para las especies de mayor riesgo son necesarias. Esta evaluación también destaca la necesidad de comprender mejor los impactos del cambio climático en los hábitats y procesos clave del PTO y las lagunas de conocimiento identificadas en relación con las especies de condrictios del PTO.


Asunto(s)
Cambio Climático , Animales , Océano Pacífico , Medición de Riesgo , Ecosistema , Peces/fisiología
2.
Environ Sci Technol ; 58(31): 13613-13623, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39051121

RESUMEN

China is a significant producer and consumer of various brominated flame retardants (BFRs), raising environmental concerns due to their widespread presence and potential threats to ecosystems and organisms. This study adopts a life cycle perspective, combining material flow analysis, multimedia environmental modeling, and ecological risk assessment to systematically analyze the substance metabolism and ecological risks of six BFR types in China from 1970 to 2021. The findings reveal that China's cumulative BFR consumption reached 3.3 Mt, with the electronics sector being the predominant contributor at 52.1%. Consequently, 1.5 kt of BFRs were released into the environment, with 24.9%, 31.5%, and 43.6% being discharged into the air, water, and soil, respectively. Notably, the proportion of novel BFRs in emissions has steadily increased over the years, exemplified by the increase in decabromodiphenyl ethane (DBDPE) from 21.3% in 2010 to 30.1% in 2021. Geographically, BFR concentrations are higher in the eastern and southwestern regions compared to those in the northwest. Presently, certain BFRs like tetrabromobisphenol A (TBBPA) and DBDPE exhibit moderate to high ecological risks, primarily concentrated in the Shandong and Sichuan provinces. A combination of efficient recycling, emission control, and substitution with novel flame-retardant can minimize the exposure of BFRs to the environment and organisms.


Asunto(s)
Retardadores de Llama , Retardadores de Llama/análisis , China , Medición de Riesgo , Monitoreo del Ambiente
3.
Environ Res ; 245: 117901, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092235

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are significant petroleum pollutants that have long-term impacts on human health and ecosystems. However, assessing their toxicity presents challenges due to factors such as cost, time, and the need for comprehensive multi-component analysis methods. In this study, we utilized network toxicity models, enrichment analysis, and molecular docking to analyze the toxicity mechanisms of PAHs at different levels: compounds, target genes, pathways, and species. Additionally, we used the maximum acceptable concentration (MAC) value and risk quotient (RQ) as an indicator for the potential ecological risk assessment of PAHs. The results showed that higher molecular weight PAHs had increased lipophilicity and higher toxicity. Benzo[a]pyrene and Fluoranthene were identified as core compounds, which increased the risk of cancer by affecting core target genes such as CCND1 in the human body, thereby influencing signal transduction and the immune system. In terms of biological species, PAHs had a greater toxic impact on aquatic organisms compared to terrestrial organisms. High molecular weight PAHs had lower effective concentrations on biological species, and the ecological risk was higher in the Yellow River Delta region. This research highlights the potential application of network toxicity models in understanding the toxicity mechanisms and species toxicity of PAHs and provides valuable insights for monitoring, prevention, and ecological risk assessment of these pollutants.


Asunto(s)
Contaminantes Ambientales , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Ecosistema , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Petróleo/toxicidad , Petróleo/análisis , Simulación del Acoplamiento Molecular , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Medición de Riesgo , China , Sedimentos Geológicos/análisis
4.
Environ Res ; 251(Pt 1): 118614, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462084

RESUMEN

Organophosphate esters (OPEs) have been widely used as flame retardants and plasticizers in consumer and industrial products. They have been found to have numerous exposure hazards. Recently, several OPEs have been detected in surface waters around the world, which may pose potential ecological risks to freshwater organisms. In this study, the concentration, spatial variation, and ecological risk of 15 OPEs in the Beiyun and Yongding rivers were unprecedentedly investigated by the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and risk quotient (RQ) method. The result showed that triethyl phosphate (TEP), tri (2-chloroisopropyl) phosphate (TCPP) were the most abundant OPEs with average concentrations of 55.53 ng/L and 42.29 ng/L, respectively. The concentrations of OPEs in the Beiyun River are higher than in the Yongding River, and their levels were higher in densely populated and industrial areas. The risk assessment showed that there was insignificant from OPEs to freshwater organisms in these rivers (RQs <0.1). The risk was higher downstream than upstream, which was related to human-intensive industrial activities downstream in the Yongding River. The ecological risk of OPEs in surface waters worldwide was estimated by joint probability curves (JPCs), and the result showed that there was a moderate risk for tri (2-chloroethyl) phosphate (TCEP), a low risk for trimethyl phosphate (TMP), and insignificant for other OPEs. In addition, the QSAR-ICE-SSD model was used to calculate the hazardous concentration for 5% (HC5). This result validated the feasibility and accuracy of this model in predicting acute data of OPEs and reducing biological experiments on the toxicity of OPEs. These results revealed the ecological risk of OPEs and provided the scientific basis for environmental managers.


Asunto(s)
Monitoreo del Ambiente , Organofosfatos , Ríos , Contaminantes Químicos del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Organofosfatos/análisis , Ríos/química , Ésteres/análisis , China , Espectrometría de Masas en Tándem , Retardadores de Llama/análisis , Ciudades
5.
Environ Res ; 252(Pt 2): 118946, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631470

RESUMEN

Heavy metals pollution is a notable threat to environment and human health. This study evaluated the potential ecological and health risks of heavy metals (Cu, Cr, Cd, Pb, Zn, Ni, and As) and their accumulation in a peanut-soil system based on 34 soil and peanut kernel paired samples across China. Soil As and Cd posed the greatest pollution risk with 47.1% and 17.6% of soil samples exceeding the risk screen levels, respectively, with 26.5% and 20.6% of the soil sites at relatively strong potential ecological risk level, respectively, and with the geo-accumulation levels at several soil sites in the uncontaminated to moderately contaminated categories. About 35.29% and 2.94% of soil sites were moderately and severely polluted based on Nemerow comprehensive pollution index, respectively, and a total of 32.4% of samples were at moderate ecological hazard level based on comprehensive potential ecological risk index values. The Cd, Cr, Ni, and Cu contents exceeded the standard in 11.76, 8.82, 11.76 and 5.88% of the peanut kernel samples, respectively. Soil metals posed more health risks to children than adults in the order As > Ni > Cr > Cu > Pb > Zn > Cd for non-carcinogenic health risks and Ni > Cr â‰« Cd > As > Pb for carcinogenic health risks. The soil As non-cancer risk index for children was greater than the permitted limits at 14 sites, and soil Ni and Cr posed the greatest carcinogenic risk to adults and children at many soil sites. The metals in peanut did not pose a non-carcinogenic risk according to standard. Peanut kernels had strong enrichment ability for Cd with an average bio-concentration factor (BCF) of 1.62. Soil metals contents and significant soil properties accounted for 35-74% of the variation in the BCF values of metals based on empirical prediction models.


Asunto(s)
Arachis , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Arachis/química , Medición de Riesgo , Contaminantes del Suelo/análisis , Humanos , China , Monitoreo del Ambiente , Suelo/química , Niño
6.
Environ Res ; 262(Pt 1): 119842, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187148

RESUMEN

Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.

7.
Environ Res ; 246: 118023, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145733

RESUMEN

Pesticides represent one of the largest intentional inputs of potentially hazardous compounds into agricultural soils. However, as an important vegetable producing country, surveys on pesticide residues in soils of vegetable production areas are scarce in China. This study presented the occurrence, spatial distribution, correlation between vegetable types and pesticides, and ecological risk evaluation of 94 current-use pesticides in 184 soil samples from vegetable production areas of Zhejiang province (China). The ecological risks of pesticides to soil biota were evaluated with toxicity exposure ratios (TERs) and risk quotient (RQ). The pesticide concentrations varied largely from below the limit of quantification to 20703.06 µg/kg (chlorpyrifos). The situation of pesticide residues in Jiaxing is more serious than in other cities. Soils in the vegetable areas are highly diverse in pesticide combinations. Eisenia fetida suffered exposure risk from multiple pesticides. The risk posed by chlorpyrifos, which exhibited the highest RQs at all scenarios, was worrisome. Only a few pesticides accounted for the overall risk of a city, while the other pesticides make little or zero contribution. This work will guide the appropriate use of pesticides and manage soil ecological risks, achieving green agricultural production.


Asunto(s)
Cloropirifos , Residuos de Plaguicidas , Plaguicidas , Contaminantes del Suelo , Plaguicidas/toxicidad , Plaguicidas/análisis , Residuos de Plaguicidas/toxicidad , Residuos de Plaguicidas/análisis , Suelo/química , Verduras , Monitoreo del Ambiente , Medición de Riesgo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
8.
Environ Res ; 250: 118551, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408626

RESUMEN

Bangladesh is currently experiencing significant infrastructural development in road networking system through the construction or reconstruction of multiple roads and highways. Consequently, there is a rise in traffic intensity on roads and highways, along with a significant contamination of adjacent agricultural soils with heavy metals. The purpose of this study was to evaluate the ecological risk, health risk and the abundance of seven heavy metals (Cu, Mn, Pb, Cd, Cr, As, and Ni) in three distance gradients (0, 300, and 500 m) of agricultural soil along the Dhaka-Chattogram highway. The concentration of heavy metals was measured with an Atomic Absorption Spectrophotometer (AAS) on a total of 36 soil samples that were taken from 12 different sampling sites. Based on the findings, Cd had a high contamination factor for all distance gradients, whereas Cr had a moderate contamination factor in 67% of the study areas. According to the Pollution Load Index (PLI), Cd, Cr, and Pb were the predominant pollutants. Principal component analysis (PCA) result shows these metals mainly came from anthropogenic sources. The considerable positive correlations between Cu-Pb, Cu-Cd, Pb-Cd, and Cr-Ni all pointed to shared anthropogenic origins. As per Potential Ecological Risk Assessment (PERI) analysis, Pb, Cd, Cr, and Ni each contribute significantly and pose a moderate threat. The Target Hazard Quotient (THQ) values for all pathways of exposure to Pb and Cr in soils were more than 1, which would pose a significant risk to human health in the following order: THQadult female > THQadult male > THQchildren. This study will help to evaluate the human health risk and develop a better understanding of the heavy metal abundance scenario in the agricultural fields adjacent to this highway.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Bangladesh , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Humanos , Medición de Riesgo , Agricultura , Suelo/química , Adulto , Niño
9.
Regul Toxicol Pharmacol ; 151: 105674, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968966

RESUMEN

We examined the need for new in vivo avian toxicity testing for three common industrial chemicals (1,2 dichloropropane, 1,1,2-trichloroethane and triphenyl phosphate) based on estimated avian exposures using fugacity and multimedia fate models for current conditions of use compared to hazard information including existing in vivo test data for the chemicals and analogs, interspecies correlation estimates and results from hundreds of acute avian dietary toxicity studies. The data indicated that acute avian toxicity is not likely to be observed below 10 ppm in the diet for any chemical with the exception of those with a specific mode of toxic action. Modeling indicated low exposure potential for terrestrial birds to any of the three chemicals, with estimated dietary concentration of less than 0.001 ppm. Despite uncertainty associated with the underlying data sources, the four order of magnitude gap between potential exposure and a minimum hazard threshold suggests that additional avian in vivo testing would not generate valuable data. However, a weight of evidence approach for integrating data is necessary to engender greater confidence among government decision-makers in cases where data from a particular in vivo study is not expected to improve risk decision-making and an existing data gap can remain unfilled.


Asunto(s)
Aves , Medición de Riesgo , Animales , Estados Unidos , Toma de Decisiones , Pruebas de Toxicidad/métodos , Humanos
10.
Ecotoxicol Environ Saf ; 272: 116014, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295737

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are known to be representative carcinogenic environmental pollutants with high toxicity. However, information on the potential ecological and environmental risks of PAH contamination in soil remains scarce. Thus, this study was evaluated the potential ecological risks of PAHs in soils of five Korean areas (Gunsan (GS), Gwangju, Yeongnam, Busan, and Gangwon) using organic carbon (OC)-normalized analysis, mean effect range-median quotient (M-ERM-Q), toxic equivalent quantity (TEQ) analysis, and risk quotient (RQ) derived by the species sensitivity distribution model. In this study, atmospheric particulate matter has a significant effect on soil pollution in GS through the presence of hopanes and the similar pattern of PAHs in soil and atmospheric PAHs. From analysis of source identification, combustion sources in soils of GS were important PAH sources. For PAHs in soils of GS, the OC-normalized analysis, M-ERM-Q, and TEQ analysis have 26.78 × 105 ng/g-OC, 0.218, and 49.72, respectively. Therefore, the potential ecological risk assessment results showed that GS had moderate-high ecological risk and moderate-high carcinogenic risk, whereas the other regions had low ecological risk and low-moderate carcinogenic risk. The risk level (M-ERM-Q) of PAH contamination in GS was similar to that in Changchun and Xiangxi Bay in China. The Port Harcourt City in Nigeria for PAH has the highest risk (M-ERM-Q = 4.02 and TEQ = 7923). Especially, compared to China (RQPhe =0.025 and 0.05), and Nigeria (0.059), phenanthrene showed the highest ecological risk in Korea (0.001-0.18). Korea should focus on controlling the release of PAHs originating from the PM in GS.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Material Particulado/análisis , Monitoreo del Ambiente/métodos , Medición de Riesgo , Contaminantes del Suelo/análisis , Nigeria , Carcinógenos/análisis , China
11.
Ecotoxicol Environ Saf ; 278: 116379, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38714082

RESUMEN

Species sensitivity distributions (SSDs) estimated by fitting a statistical distribution to ecotoxicity data are indispensable tools used to derive the hazardous concentration for 5 % of species (HC5) and thereby a predicted no-effect concentration in environmental risk assessment. Whereas various statistical distributions are available for SSD estimation, the fundamental question of which statistical distribution should be used has received limited systematic analysis. We aimed to address this knowledge gap by applying four frequently used statistical distributions (log-normal, log-logistic, Burr type III, and Weibull distributions) to acute and chronic SSD estimation using aquatic toxicity data for 191 and 31 chemicals, respectively. Based on the differences in the corrected Akaike's information criterion (AICc) as well as visual inspection of the fitting of the lower tails of SSD curves, the log-normal SSD was generally better or equally good for the majority of chemicals examined. Together with the fact that the ratios of HC5 values of other alternative SSDs to those of log-normal SSDs generally fell within the range 0.1-10, our findings indicate that the log-normal distribution can be a reasonable first candidate for SSD derivation, which does not contest the existing widespread use of log-normal SSDs.


Asunto(s)
Contaminantes Químicos del Agua , Medición de Riesgo , Animales , Contaminantes Químicos del Agua/toxicidad , Ecotoxicología , Especificidad de la Especie , Pruebas de Toxicidad Aguda , Organismos Acuáticos/efectos de los fármacos , Pruebas de Toxicidad Crónica , Modelos Estadísticos
12.
Ecotoxicol Environ Saf ; 283: 116788, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39067073

RESUMEN

Mangrove forests are sources and sinks for various pollutants. This study analyzed the current status of heavy metal and arsenic (As) pollution in mangrove surface sediments in rapidly industrializing and urbanizing port cities. Surface sediments of mangroves at Wulishan Port on the Leizhou Peninsula, China, were analyzed using inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for the presence of Cr, Pb, Ni, Zn, Cd, Cu, As, and Hg. The Pollution load index, Nemerow pollution index, and Potential ecological risk index were employed to evaluate the pollutant. Multivariate statistical methods were applied for the qualitative analysis of pollutant sources, and the APCS-MLR receptor model was used for quantification. This study indicated the following results: (1) The average content of eight pollutants surpassed the local background level but did not exceed the Marine Sediment Quality standard. The pollution levels across the four sampling areas were ranked as Ⅲ > Ⅳ > Ⅰ > Ⅱ. The area Ⅱ exhibited relatively lower pollution levels with the grain size of the sediments dominated by sand, which was not conducive to pollutant adsorption and enrichment. (2) The factor analysis and cluster analyses identified three primary sources of contamination. As, Cr, Ni, and Pb originated from nearby industrial activities and their associated wastewater, suggesting that the primary source was the industrial source. Cd, Cu, and Zn stem from the cement columns utilized in oyster farming, alongside discharges from mariculture and pig farming, establishing a secondary agricultural source. Hg originated from ship exhaust burning oil and vehicle emissions in the vicinity, representing the third traffic source. (3) The APCS-MLR receptor model results demonstrated industrial, agricultural, and traffic sources contributing 47.19 %, 33.13 %, and 13.03 %, respectively, with 6.65 % attributed to unidentified sources.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Contaminantes Químicos del Agua , Arsénico/análisis , Metales Pesados/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , China , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Humedales
13.
Ecotoxicol Environ Saf ; 279: 116517, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805830

RESUMEN

With increasing urbanization and rapid industrialization, more and more environmental problems have arisen. Phthalates (PAEs) are the foremost and most widespread plasticizers and are readily emitted from these manufactured products into the environment. PAEs act as endocrine-disrupting chemicals (EDCs) and can have serious impacts on aquatic organisms as well as human health. In this study, the water quality criteria (WQC) of five PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP)) for freshwater aquatic organisms were developed using a species sensitivity distribution (SSD) and a toxicity percentage ranking (TPR) approach. The results showed that long-term water quality criteria (LWQC) of PAEs using the SSD method could be 13.7, 11.1, 2.8, 7.8, and 0.53 µg/L, respectively. Criteria continuous concentrations (CCC) of PAEs were derived using the TPR method and determined to be 28.4, 13.1, 1.3, 2.5, and 1.6 µg/L, respectively. The five PAEs are commonly measured in China surface waters at concentrations between ng/L and µg/L. DBP, DEHP, and di-n-octyl phthalate (DnOP) were the most frequently detected PAEs, with occurrence rates ranging from 67% to 100%. The ecological risk assessment results of PAEs showed a decreasing order of risk at the national level, DEHP, DBP, DMP, DEP, DnOP. The results of this study will be of great benefit to China and other countries in revising water quality standards for the conservation of aquatic species.


Asunto(s)
Monitoreo del Ambiente , Agua Dulce , Ácidos Ftálicos , Plastificantes , Contaminantes Químicos del Agua , Calidad del Agua , Ácidos Ftálicos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua/normas , Agua Dulce/química , Monitoreo del Ambiente/métodos , Plastificantes/análisis , Plastificantes/toxicidad , Disruptores Endocrinos/análisis , Disruptores Endocrinos/toxicidad , Organismos Acuáticos/efectos de los fármacos , Ésteres , China , Animales , Dibutil Ftalato/toxicidad
14.
Ecotoxicology ; 33(6): 642-652, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38776006

RESUMEN

The excessive use of pesticides in agriculture and the widespread use of metals in industrial activities and or technological applications has significantly increased the concentrations of these pollutants in both aquatic and terrestrial ecosystems worldwide, making aquatic biota increasingly vulnerable and putting many species at risk of extinction. Most aquatic habitats receive pollutants from various anthropogenic actions, leading to interactions between compounds that make them even more toxic. The aim of this study was to assess the effects of the compounds Chlorpyrifos (insecticide) and Cadmium (metal), both individually and in mixtures, on the cladocerans Ceriodaphnia rigaudi and Ceriodaphnia silvestrii. Acute toxicity tests were conducted for the compounds individually and in mixture, and an ecological risk assessment (ERA) was performed for both compounds. Acute toxicity tests with Cadmium resulted in EC50-48 h of 0.020 mg L-1 for C. rigaudi and 0.026 mg L-1 for C. silvestrii, while tests with Chlorpyrifos resulted in EC50-48 h of 0.047 µg L-1 and 0.062 µg L-1, respectively. The mixture test for C. rigaudi showed the occurrence of additive effects, while for C. silvestrii, antagonistic effects occurred depending on the dose level. The species sensitivity distribution curve for crustaceans, rotifers, amphibians, and fishes resulted in an HC5 of 3.13 and an HC50 of 124.7 mg L-1 for Cadmium; an HC5 of 9.96 and an HC50 of 5.71 µg L-1 for Chlorpyrifos. Regarding the ERA values, Cadmium represented a high risk, while Chlorpyrifos represented an insignificant to a high risk.


Asunto(s)
Cadmio , Cloropirifos , Cladóceros , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua , Animales , Cloropirifos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Cladóceros/efectos de los fármacos , Cadmio/toxicidad , Insecticidas/toxicidad , Medición de Riesgo
15.
Ecotoxicology ; 33(3): 239-252, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573560

RESUMEN

Despite the prevalence of discharge of large volumes of heavy-metal-bearing seawater from coal-fired power plants into adjacent seas, studies on the associated ecological risks remain limited. This study continuously monitored concentrations of seven heavy metals (i.e. As, Cd, Cr, Cu, Hg, Pb, and Zn) in surface seawater near the outfall of a coal-fired power plant in Qingdao, China over three years. The results showed average concentrations of As, Cd, Cr, Cu, Hg, Pb, and Zn of 2.63, 0.33, 2.97, 4.63, 0.008, 0.85, and 25.00 µg/L, respectively. Given the lack of data on metal toxicity to local species, this study investigated species composition and biomass near discharge outfalls and constructed species sensitivity distribution (SSD) curves with biological flora characteristics. Hazardous concentrations for 5% of species (HC5) for As, Cd, Cr, Cu, Hg, Pb, and Zn derived from SSDs constructed from chronic toxicity data for native species were 3.23, 2.22, 0.06, 2.83, 0.66, 4.70, and 11.07 µg/L, respectively. This study further assessed ecological risk of heavy metals by applying the Hazard Quotient (HQ) and Joint Probability Curve (JPC) based on long-term heavy metal exposure data and chronic toxicity data for local species. The results revealed acceptable levels of ecological risk for As, Cd, Hg, and Pb, but unacceptable levels for Cr, Cu, and Zn. The order of studied heavy metals in terms of ecological risk was Cr > Cu ≈ Zn > As > Cd ≈ Pb > Hg. The results of this study can guide the assessment of ecological risk at heavy metal contaminated sites characterized by relatively low heavy metal concentrations and high discharge volumes, such as receiving waters of coal-fired power plant effluents.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente/métodos , Cadmio , Plomo , Metales Pesados/toxicidad , Agua de Mar , Medición de Riesgo , Centrales Eléctricas , China , Carbón Mineral , Suelo , Contaminantes del Suelo/análisis
16.
J Environ Manage ; 356: 120361, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493646

RESUMEN

The increased load of plastic in waste streams after the COVID-19 pandemic outbreak has increased the possibility of microplastics (MPs) contamination channelling through the rivers and infiltrating the aquatic ecosystems. MPs in packaged water, community-stored water, groundwater, and surface water of Kaveri River (KR), Thamirabarani River (TR), Adyar River (AR), and Cooum River (CR) in Tamil Nadu were therefore investigated about 2 years after the COVID-19 pandemic outbreak. Using µFTIR and µRaman spectroscopy, polyamide, polypropylene, polyethylene, ethylene vinyl alcohol copolymer resin, and polyvinyl chloride were identified as the primary polymer types. The average number of MPs was 2.15 ± 1.9 MP/L, 1.1 ± 0.99 MP/L, 5.25 ± 1.15 MP/L, and 4 ± 2.65 MP/L in KR, TR, AR, and CR, respectively, and 1.75 ± 1.26 MP/L in groundwater, and 2.33 ± 1.52 MP/L in community stored water. Only LDPE was detected in recycled plastic-made drinking water bottles. More than 50% of MPs were found to be of size less than 1 mm, with fibrous MPs being the prevalent type, and a notable prevalence of blue-coloured microplastics in all the sample types. The Pollution Load Index (PLI) was >1 in all the rivers. Toxicity rating based on the polymer risk index (PORI) categorized AR and TR at medium risk (category II), compared to KR and CR at considerable risk (category III). Overall pollution risk index (PRI) followed a decreasing trend with CR > AR > KR > TR of considerable to low-risk category. Ecological risk assessment indicates a negligible risk to freshwater biota, except for four sites in the middle and lower stretches of Adyar River (AR - 2, AR - 4) and upper and lower stretches of Cooum River (CR - 1, CR - 3), located adjacent to direct sewer outlets, and one location in the lower stretch of Kaveri River (KR - 9), known for fishing and tourist activities.


Asunto(s)
COVID-19 , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , COVID-19/epidemiología , Ecosistema , India , Microplásticos , Pandemias , Plásticos , Brotes de Enfermedades , Polietileno , Polímeros , Monitoreo del Ambiente
17.
Int J Environ Health Res ; 34(3): 1255-1269, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731517

RESUMEN

The concentration of potentially toxic elements (PTEs; Lead (Pb), Nickel (Ni), and Cadmium (Cd) Pb, Ni, and Cd), using flame atomic absorption spectrometry (FAAS) was measured in fifty surface coastal sediment samples collected from 5 points coastal sediment of Bandar Abbas city, Iran besides the potential ecological risk index (RI) estimated the environmental health risk. The rank order of PTEs was Pb (52.090 ± 4.113 mg/kg dry weight) > Ni (34.940 ± 8.344 mg/kg dry weight) > Cd (2.944 ± 0.013 mg/kg dry weight). RI due to PTEs in sediments for A, B, C, D, and E points were 187.655, 190.542, 191.079, 189.496, and 192.053, respectively. RI for sampling points A to E was at moderate risk (150 ≤ RI < 300). Therefore, it is recommended to carry out control programs to reduce the amount of PTEs in the coastal sediment of the Persian Gulf.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Cadmio/análisis , Océano Índico , Plomo/análisis , Monitoreo del Ambiente/métodos , Níquel/análisis , Medición de Riesgo , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis
18.
Water Sci Technol ; 89(8): 2035-2043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678407

RESUMEN

Antibiotics have been recognized as emerging pollutants due to their ecological and human health risks. This paper aims to enhance the ecological risk assessment (ERA) framework for antibiotics, to illustrate the distribution of these risks across different locations and seasons, and to identify the antibiotics that pose high ecological risk. This paper focuses on 52 antibiotics in seven major basins of China. Relying on the optimized approach of ERA and antibiotic monitoring data published from 2017 to 2021, the results of ERA are presented in multilevel. Across the study area, there are marked variations in the spatial distribution of antibiotics' ecological risks. The Huaihe River Basin, the Haihe River Basin, and the Liaohe River Basin are the top three in the ranking of present ecological risks. The research results also reveal significant differences in temporal variation, underscoring the need for increased attention during certain seasons. Ten antibiotics with high contribution rates to ecological risk are identified, which is an important reference to formulate an antibiotic control list. The multilevel results provided both risk values and their ubiquities across a broad study region, which is a powerful support for developing ecological risk management of antibiotics.


Asunto(s)
Antibacterianos , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Ríos/química , China , Antibacterianos/análisis , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Análisis Espacio-Temporal , Estaciones del Año
19.
Environ Geochem Health ; 46(5): 176, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649546

RESUMEN

In the aquatic environment around the world, microplastic contamination has been a common and ongoing issue. Particularly, the ability of microplastics to absorb persistent organic pollutants (POPs) and then transmit these POPs to aquatic creatures has attracted a lot of interest. A stereomicroscope was used to detect the size, shape, and color of the microplastics (MPs), and Fourier Transform Infrared (FTIR) spectroscopy was used to identify the polymer composition of the MPs. To address MP transit, destiny, and mitigation, a study of MP pollution coastal areas is required. In the current study, MP pollution in the collected sample from upper layer of water and sediment of the Digha and Puri beaches along the coast of BOB was evaluated. The average concentration with SD of MPs observed in water was 5.3 ± 1.8 items/L whereas, in sediments, it was 173.4 ± 40.1 items/kg at Digha beach. The mean MPs abundance in the Puri beach was 6.4 ± 1.7 items/L in the water and 190.4 ± 28.0 items/kg in the sediments. The investigated total 16-PAHs concentrations were 164.7 ng/g, 121.9 ng/g, 73.6 ng/g, and 101.3 ng/g on the MPs surface of foam, fragment, fibers, and film respectively in the studied MPs sample. Smaller than 1000 µm size of MPs are distributed in the largest concentration. Fibers, films, fragments, and foam were the most common shapes of MPs. The molecular structure of MPs in water and sediment samples was analysed i.e., polyesters (PEs), polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polystyrene (PS), polyamide (PA), polycarbonates (PC), and polyurethane (PU). The obtained result offers an accurate assessment of the PLI, and the investigated polymer facilitates determining the polymer hazard levels, which emphasizes the risk associated with it.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Microplásticos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , India , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Medición de Riesgo , Bahías/química , Agua de Mar/química
20.
Environ Geochem Health ; 46(9): 351, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080079

RESUMEN

To understand the soil toxic and hazardous elements content, pollution level, and ecological risk status in the northern margin of the Tibetan Plateau, we collected and analyzed 8273 sets of surface soil samples. Evaluations were conducted using the single-factor pollution index, geo-accumulation, pollution load, and potential ecological risk indices, and source identification correlation and principal component analysis. The results revealed that, compared with the background levels in China, the accumulation of soil arsenic, cadmium, nickel, and chromium was greater in the surface soil of the study area. Additionally, in comparison with Qinghai Province, more mercury accumulated in the surface soil of the study area and owing to the influence of anthropogenic activities. Benchmarking against soil environmental quality standards, the study area exhibited pollution control zones primarily dominated by arsenic and cadmium (3.9%). The spatial distribution revealed distinct zones: a ridge mountain type characterized by arsenic-cadmium-chromium-nickel, a Daban mountain type with solely cadmium presence, and a Longyangxia-Jianzha South type dominated by arsenic. Compared with the Qinghai Province soil background values, evaluations using the Pollution loading index, Geological Cumulative Index, and Potential Ecological Risk Index methods revealed varying degrees of potentially toxic element content exceedance. From an ecological risk perspective, the individual element with the highest potential ecological risk coefficients were mercury, followed by cadmium and arsenic; however, the region's overall ecological risk index was classified as low. Three distinct sources were identified: natural sources leading to high background levels of chromium, nickel, copper, zinc, and mercury; mixed natural and industrial/agricultural sources contributing to elevated cadmium levels; and human activity-related mercury enrichment. Based on the evaluation results, synergistic monitoring of soil and biota in naturally occurring risk zones is recommended to ensure the safety of agricultural and pastoral products. Additionally, ecological impact assessments and pollution source mitigation studies should be conducted in regions influenced by human activities to curb the further degradation of soil ecological quality.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Suelo , Suelo , Contaminantes del Suelo/análisis , Tibet , Medición de Riesgo , Suelo/química , Metales Pesados/análisis , Arsénico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA