Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(17): 7600-7608, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38629313

RESUMEN

Plant guttation is an important source of water/nutrients for many beneficial insects, while the presence of pesticides in guttation has been considered as a new exposure route for nontarget insects. This study aimed to elucidate how 15 diverse pesticides are translocated from growth media to guttation by maize plants through a hydroponic experiment. All pesticides were effectively translocated from the growth solution to maize guttation and reached a steady state within 5 days. The strong positive correlation (R2 = 0.43-0.84) between the concentrations of pesticides in guttation and in xylem sap demonstrated that xylem sap was a major source of pesticides in guttation. The relationship between the bioaccumulation of pesticides in guttation (BCFguttation) and the chemical Kow was split into two distinct patterns: for pesticides with log Kow > 3, we identified a good negative linear correlation between log BCFguttation and log Kow (R2 = 0.71); however, for pesticides with log Kow < 3, all data fall close to a horizontal line of BCFguttation ≅ 1, indicating that hydrophilic pesticides can easily pass through the plants from rhizosphere solution to leaf guttation and reach saturation status. Besides, after feeding with pesticide-contaminated guttation, the mortality of honeybees was significantly impacted, even at very low levels (e.g., ∑600 µg/L with a mortality of 93%). Our results provide essential information for predicting the contamination of plant guttation with pesticides and associated ecological risks.


Asunto(s)
Plaguicidas , Hojas de la Planta , Rizosfera , Zea mays , Agua/química , Animales
2.
Environ Sci Technol ; 58(26): 11695-11706, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38877970

RESUMEN

Aminophenyl sulfone compounds (ASCs) are widely used in various fields, such as the pharmaceutical and textile industries. ASCs and their primary acetylation products are inevitably discharged into the environment. However, the high toxicity of ASCs could be released from the deacetylation of acetylation products. Still, the occurrence and ecological risks of ASCs and their acetylation products remain largely unknown. Here, we integrated all of the existing ASCs based on the core structure, together with their potential acetylation products, to establish a database covering 1105 compounds. By combining the database with R programming, 45 ASCs, sulfonamides, and their acetylation products were identified in the influent and effluent of 19 municipal wastewater treatment plants in 4 cities of China. 13 of them were detected for the first time in the aquatic environment, and 12 acetylation products were newly identified. The cumulative concentrations of 45 compounds in the influent and effluent were in the range of 231-9.96 × 103 and 26-2.70 × 103 ng/L, respectively. The proportion of the unrecognized compounds accounted for 60.6% of the influent and 62.8% of the effluent. Furthermore, nearly half of the ASCs (46.7%), other sulfonamides (49.9%), and their acetylation products (46.2%) were discharged from the effluent, posing a low-to-medium risk to aquatic organisms. The results provide a guideline for future monitoring programs, particularly for sulfadiazine and dronedarone, and emphasize that the ecological risk of ASCs, sulfonamides, and their acetylation products needs to be considered in the aquatic environment.


Asunto(s)
Sulfonamidas , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Sulfonamidas/análisis , Acetilación , Antibacterianos , Eliminación de Residuos Líquidos , China , Sulfonas , Monitoreo del Ambiente
3.
Environ Res ; 262(Pt 2): 119965, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265760

RESUMEN

Knowledge about the characteristics of overburden and tailings from manganese (Mn) mining is essential for defining their levels of potentially toxic elements (PTEs) and appropriate environmental management. This study aimed to assess the total and bioavailable contents of PTEs in Mn mining areas in the Eastern Amazon, as well as the associated environmental risks. The samples were collected in areas of overburden and tailings deposition, in addition to forest soils in the Azul mine, Carajás Mineral Province, Brazil. These samples were characterized in terms of fertility, granulometry, and total and bioavailable PTE contents. The pH values of the forest soil were more acidic than those of the overburden and tailings, and the organic matter contents were considerably higher in the forest soil. All PTEs, especially Mn, Ba, Cu, Zn, and Pb, presented higher contents in the overburden and tailings. However, chemical fractionation revealed that PTEs were predominantly in the residual fraction, with percentage contents above 60% of the total content. These results suggest a low risk of environmental contamination. The findings of this study may support more efficient environmental rehabilitation in Mn mining areas in the Amazon.

4.
Environ Res ; 245: 117932, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104913

RESUMEN

The ecological risks of biochar-derived dissolved organic matter (DOM) to soil invertebrates at different organismal levels remains limited. This study comprehensively explored the ecological risks of biochar-derived DOM on earthworm gut through assessments of enzyme activity response, histopathology, gut microbiomes, and metabolomics. Results demonstrated that DOM disturbed the digestive enzymes in earthworm, especially for 10% DOM300 groups. The integrated biomarker response v2 (IBRv2) indicated that the perturbation of earthworm digestive enzymes induced by DOM was both time-dependent and dose-dependent. Pathological observations revealed that 10% DOM300 damaged intestinal epithelium and digestive lumen of earthworms. The significant damage and injury to earthworms caused by DOM300 due to its higher concentrations of heavy metal ions and organic substrates (e.g., toluene, hexane, butanamide, and hexanamide) compared to DOM500 and DOM700. Analysis of 16S rRNA from the gut microbiota showed a significant decrease in genera (Verminephrobacter, Bacillus, and Microbacteriaceae) associated with inflammation, disease, and detoxification processes. Furthermore, 10% DOM300 caused the abnormality of metabolites, such as glutamate, fumaric acid, pyruvate, and citric acid, which were involved in energy metabolism, These findings contributed to improve our understanding of the toxic mechanism of biochar DOM from multiple perspectives.


Asunto(s)
Carbón Orgánico , Microbioma Gastrointestinal , Oligoquetos , Contaminantes del Suelo , Animales , Materia Orgánica Disuelta , ARN Ribosómico 16S/genética , Contaminantes del Suelo/análisis , Suelo
5.
Environ Res ; 250: 118544, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408630

RESUMEN

Wastewater-based epidemiology (WBE) is amply used for estimating human consumption of chemicals, yet information on regional variation of pharmaceuticals and their environmental fate are scarce. Thus, this study aims to estimate the consumption of three cardiovascular, four non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), and four psychoactive pharmaceuticals between urban and suburban catchments in China by WBE, and to explore their removal efficiencies and ecological risks. Eleven analytes were detected in both influent and effluent samples. The estimated consumptions ranged from

Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Aguas Residuales/análisis , Aguas Residuales/química , Preparaciones Farmacéuticas/análisis , Ciudades , Humanos , Medición de Riesgo , Antiinflamatorios no Esteroideos/análisis , Monitoreo del Ambiente , Monitoreo Epidemiológico Basado en Aguas Residuales , Psicotrópicos/análisis
6.
Environ Res ; 257: 119279, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38821461

RESUMEN

Despite effective mining environmental regulations, residual metal pollution persists, leading to significant ecological harm and posing substantial risks to human well-being. This study employed multiple-criteria methods to investigate the ecological and health risks caused by metals in multiple environmental media (e.g., arable soil, indoor dust, PM10, homegrown vegetables, and rice) around abandoned mine areas (MA) in central south China. The study also aimed to identify predominant risk factors and the main exposure pathway. The findings revealed that metal levels and risks in the environmental media surrounding the MA were significantly higher than those in the control areas (away from abandoned mines, CA). This indicates that the accumulation of metals in the environmental media surrounding the MA was attributed to the previous mining activities. Variations in metal content were observed among different environmental media in MA, with Cd from mining source being the primary pollutant in arable soil, indoor dust, PM10, and vegetables, while As from agricultural source was the main pollutant in rice. Additionally, the consumption of Cd-contaminated vegetables and As-contaminated rice emerged as the primary routes of health hazards for the local population, leading to significant non-carcinogenic and carcinogenic risks. Consequently, it is imperative for the government and mining companies to promptly establish risk control and remedial strategies for mitigating residual metal levels in multiple environmental media surrounding the MA.


Asunto(s)
Minería , China , Medición de Riesgo , Humanos , Metales/análisis , Monitoreo del Ambiente , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Contaminantes del Suelo/análisis , Verduras/química , Oryza/química
7.
Environ Res ; 259: 119562, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38971360

RESUMEN

Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs ß diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.


Asunto(s)
Microplásticos , Microplásticos/toxicidad , Farmacorresistencia Microbiana/genética , Bacterias/genética , Bacterias/efectos de los fármacos , Genes Bacterianos
8.
Environ Res ; 251(Pt 1): 118579, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38423497

RESUMEN

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area. The concentrations of Cl-PAHs ranged from 4.50 to 18.38 ng g-1 (average 7.19 ng g-1), while those of Br-PAHs ranged from 4.80 to 61.18 ng g-1 (average 14.11 ng g-1). The dominant Cl-PAH and Br-PAH in surface sediment were 9-chlorofluorene (17.79%) and 9-bromofluorene (58.49%), respectively. The distributions and compositions of Cl/Br-PAHs in the surface sediments varied considerably due to complex hydrodynamic and depositional conditions in the YRE and its adjacent marine area, as well as differences in physicochemical properties of different Cl/Br-PAHs. Positive matrix factorization revealed that the primary sources of Cl/Br-PAHs in the study area were e-waste dismantling (33.6%), waste incineration (23.2%), and metal smelting (11.0%). According to the risk quotient, the Cl/Br-PAHs in sediments posed no toxic risk to aquatic organisms.


Asunto(s)
Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Ríos , Contaminantes Químicos del Agua , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , China , Ríos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Agua de Mar/química , Agua de Mar/análisis
9.
Ecotoxicol Environ Saf ; 283: 116782, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39059345

RESUMEN

Tire wear particles (TWPs), common mixed particulate emerging contaminants in the environment, have global per capita emissions accounting for 0.23-1.9 kg/year, attracting global attention recently due to their wide detection, small size, mobility, and high toxicity. This review focuses on the occurrence characteristics of TWPs in multiple environmental media, adverse effects on organisms, potential toxicity mechanisms, and environmental risk prevention and control strategies of TWPs. The environmental fate of TWPs throughout the entire process is systematically investigated by the bibliometric analysis function of CiteSpace. This review supplements the gap in the joint toxicity and related toxicity mechanisms of TWPs with other environmental pollutants. Based on the risks review of TWPs and their additives, adverse impacts have been found in organisms from aquatic environments, soil, and humans, such as the growth inhibition effect on Chironomus dilutes. A multi-faceted and rationalized prevention and control treatment of "source-process-end" for the whole process can be achieved by regulating the use of studded tires, improving the tire additive formula, growing plants roadside, encouraging micro-degradation, and other methods, which are first reviewed. By addressing the current knowledge gaps and exploring prospects, this study contributes to developing strategies for reducing risks and assessing the fate of TWPs in multiple environmental media.


Asunto(s)
Material Particulado , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Tamaño de la Partícula
10.
Int J Biometeorol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955818

RESUMEN

Urban street dust (UStD) is a vital issue for human health and is crucial for urban sustainability. This study aims to enhance the creation of safe, affordable, and resilient cities by examining environmental contamination and health risks in urban residential areas. Specifically, it investigates the concentrations and spatial distribution of chromium (Cr), cadmium (Cd), nickel (Ni), copper (Cu), lead (Pb), and zinc (Zn) in UStD in Yenimahalle, Ankara. The mean concentrations of Zn, Cr, Pb, Cd, Ni, and Cu in UStD were 97.98, 66.88, 55.22, 52.45, 38.37, and 3.81 mg/kg, respectively. The geoaccumulation pollution index (Igeo) values for these elements were: Cd (5.12), Ni (1.61), Cr (1.21), Pb (1.13), Cu (0.78), and Zn (0.24). These indices indicate that the area is moderately polluted with Cr, Pb, and Ni, uncontaminated to moderately contaminated with Cu and Zn, and extremely polluted with Cd. The hazard index (HI) values for Cr, Cd, Ni, Cu, Pb, and Zn were below the non-carcinogenic risk threshold for adults, indicating no significant risk. However, for children, the HI values for Pb, Ni, Cd, and Zn were 3.37, 1.80, 1.25, and 1.25, respectively, suggesting a higher risk. Carcinogenic risk (RI) of Cd, Ni, and Pb was significant for both children and adults, indicating that exposure through ingestion, inhalation, and dermal contact is hazardous. The findings highlight the need for strategic mitigation measures for both natural and anthropogenic activities, providing essential insights for residents, policymakers, stakeholders, and urban planners.

11.
J Environ Manage ; 366: 121833, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003906

RESUMEN

Microplastics (MPs) usually appear in the aquatic environment as complex pollutants with other environmental pollutants, such as levofloxacin (LVFX). After 45-day exposure to LVFX and MPs with different particle sizes at environmental levels, we measured the weight, snout-to-vent length (SVL), and development stages of Rana nigromaculata. Furthermore, we analyzed proteins and genes related to immune system and thyroid axis regulation, intestinal histological, and bioaccumulation of LVFX and MPs in the intestine and brain to further explore the toxic mechanism of co-exposure. We found MPs exacerbated the effect of LVFX on growth and development, and the order of inhibitory effects is as follows: LVFX-MP3>LVFX-MP1>LVFX-MP2. 0.1 and 1 µm MP could penetrate the blood-brain barrier, interact with LVFX in the brain, and affect growth and development by regulating thyroid axis. Besides, LVFX with MPs caused severer interference on thyroid axis compared with LVFX alone. However, 10 µm MP was prone to accumulating in the intestine, causing severe histopathological changes, interfering with the intestinal immune system and influencing growth and development through immune enzyme activity. Thus, we concluded that MPs could regulate the thyroid axis by interfering with the intestinal immune system.


Asunto(s)
Sistema Inmunológico , Levofloxacino , Microplásticos , Tamaño de la Partícula , Glándula Tiroides , Animales , Glándula Tiroides/efectos de los fármacos , Microplásticos/toxicidad , Sistema Inmunológico/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
12.
J Environ Manage ; 352: 120071, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38246103

RESUMEN

The effectiveness of biofertilizers as a cost-effective crop yield enhancer can be compromised by residual soil pollutants. However, the impact of accumulated polyadipate/butylene terephthalate microplastics (PBAT-MPs) from biodegradable mulch films on biofertilizer application and the consequent growth of crop plants remains unclear. Here, the effects of different levels of PBAT-MPs in soil treated with Bacillus amyloliquefaciens biofertilizer were assessed in a four-week potted experiment. PBAT-MPs significantly decreased the growth-promoting effect of the biofertilizer on Brassica chinensis L., resulting in a notable reduction in both above- and belowground biomass (up to 52.91% and 57.53%, respectively), as well as nitrate and crude fiber contents (up to 12.18% and 13.64%, respectively). In the rhizosphere microenvironment, PBAT-MPs increased soil organic carbon by 2.63-fold and organic matter by 2.68-fold, while enhancing sucrase (from 67.55% to 108.89%) and cellulase (from 31.26% to 49.10%) activities. PBAT-MPs also altered the rhizospheric bacterial community composition/diversity, resulting in more complex microbial networks. With regard to microbial function, PBAT-MPs impacted carbon metabolic function by inhibiting the 3-hydroxypropionate/4-hydroxybutyrate fixation pathway and influencing chitin and lignin degradation processes. Overall, the rhizospheric microbial profiles (composition, function, and network interactions) were the main contributors to plant growth inhibition. This study provides a practical case and theoretical basis for rational use of biodegradable mulch films and indicates that the residue of biodegradable films needs pay attention.


Asunto(s)
Alquenos , Carbono , Microplásticos , Plásticos , Suelo
13.
J Environ Manage ; 364: 121452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38889651

RESUMEN

This study bridges the knowledge gap pertaining to the pathways of heavy metal accumulation and migration within the industrial chain of large-scale cattle farms. Two such farms in Shaanxi serve as a basis for our exploration into Zn, Cu, Cr, Pb, As, and Cd dynamics. Employing material flow analysis complemented by predictive models, we evaluate the potential ecological risks of arable soil from heavy metal influx via manure application. Our findings indicate that Zn and Cu predominate the heavy metal export from these operations, composing up to 60.00%-95.67% of their total content. Predictive models based on 2021 data reveal a potential increase in Cd soil concentration by 0.08 mg/kg by 2035, insinuating a reduced safe usage period for cattle manure at less than 50 years. Conversely, projections from 2022 data point towards a gradual Cu rise in soil, reaching risk threshold levels after 126 years. These outcomes inform limitations in cattle manure utilisation strategies, underscoring Cu and Cd content as key barriers. The study underscores the criticality of continuous heavy metal surveillance within farm by products to ensure environmental protection and sustainable agricultural practices.


Asunto(s)
Granjas , Estiércol , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Animales , Estiércol/análisis , Bovinos , Medición de Riesgo , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , Monitoreo del Ambiente
14.
J Environ Manage ; 352: 120032, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38184874

RESUMEN

The biogas plant plays a dual role: it directly provides energy and indirectly promotes organic farming through outlet slurry. However, agricultural biomass wastes such as rice straws (RS) and pressmud (PM), which can't be used as fertilizers on their own, were vermicomposted (60 days) with biogas slurry (BS), using earthworm, into four blends: T1(BS, 100%), T2(3:2, BS: RS), T3(3:2, BS: PM), and T4(3:1:1, BS: RS: PM). The characterization, elemental analysis, and toxicological risk assessment of derived vermimanure were carried out using various analytical tools, such as an organic elemental analyzer such as CHNS, FT-IR, FESEM-EDXA, XPS, and ICP-OES. The pH, electrical conductivity, and C/N values were within 7.1-7.8, 3.2-6.0 dSm-1, and 12-15, respectively, for all treatments. The proportions of N (38%), P (70%), K (58%), Mg (67%), Ca (42%), and ash (44%), increased significantly (P < 0.05) over the initial feedstocks. The ecological risks of heavy metals (Zn, Cu, Ni, Pb, Cd, and Cr) in all feedstocks were found to be under WHO-permitted levels. The growth performance of earthworms was also considerably higher (P < 0.05) over the control feedstock group. The analytical methods verified that feedstock T4 (3:1:1, BS: RS: PM) was more porous, containing NH4+, PO43-, K+, and other nutrients. Pellets of all vermimanure groups keep 65-75% of the original volume. As well, when these pellets have been employed for agronomy and dispersed in the field, they will cause less dust than traditional or powdered compost or manure. In comparison to the control group, the synergistic approach of RS, PM, and BS in vermimanure significantly (P < 0.05) enhanced seed germination (83%), vigour index (42.5%), and decreased mean germination time by 27%. Furthermore, pot trials with Abelmoschus esculentus seed indicated that seedlings cultivated with 40% vermimanure of T4 (3:1:1, BS: RS: PM) mixed soil showed high growth in shoot, root, and plant yield.


Asunto(s)
Oligoquetos , Oryza , Animales , Biocombustibles/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Suelo/química , Estiércol/análisis , Medición de Riesgo
15.
Environ Geochem Health ; 46(4): 132, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483701

RESUMEN

We determined the distribution, fate, and health hazards of dimethenamid-P, metazachlor, and pyroxasulfone, the effective pre-emergence herbicides widely used both in urban and agricultural settings globally. The rate-determining phase of sorption kinetics of these herbicides in five soils followed a pseudo-second-order model. Freundlich isotherm model indicated that the herbicides primarily partition into heterogeneous surface sites on clay minerals and organic matter (OM) and diffuse into soil micropores. Principal component analysis revealed that soil OM (R2, 0.47), sand (R2, 0.56), and Al oxides (R2, 0.33) positively correlated with the herbicide distribution coefficient (Kd), whereas clay (R2, ‒ 0.43), silt (R2, ‒ 0.51), Fe oxides (R2, ‒ 0.02), alkaline pH (R2, ‒ 0.57), and EC (R2, ‒ 0.03) showed a negative correlation with the Kd values. Decomposed OM rich in C=O and C-H functional groups enhanced herbicide sorption, while undecomposed/partially-decomposed OM facilitated desorption process. Also, the absence of hysteresis (H, 0.27‒0.88) indicated the enhanced propensity of herbicide desorption in soils. Leachability index (LIX, < 0.02-0.64) and groundwater ubiquity score (GUS, 0.02‒3.59) for the soils suggested low to moderate leaching potential of the herbicides to waterbodies, indicating their impact on water quality, nontarget organisms, and food safety. Hazard quotient and hazard index data for human adults and adolescents suggested that exposure to soils contaminated with herbicides via dermal contact, ingestion, and inhalation poses minimal to no non-carcinogenic risks. These insights can assist farmers in judicious use of herbicides and help the concerned regulatory authorities in monitoring the safety of human and environmental health.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Humanos , Adolescente , Suelo , Herbicidas/toxicidad , Herbicidas/análisis , Arcilla , Granjas , Contaminantes del Suelo/análisis , Adsorción , Salud Ambiental , Óxidos
16.
Environ Geochem Health ; 46(2): 50, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227205

RESUMEN

Identifying the sources of heavy metals (HMs) in river sediments is crucial to effectively mitigate sediment HM pollution and control its associated ecological risks in coal-mining areas. In this study, ecological risks resulting from different pollution sources were evaluated using an integrated method combining the positive matrix factorization (PMF) and the potential ecological risk index (RI) model. A total of 59 sediment samples were collected from the Kuye River and analyzed for eight HMs (Zn, Cr, Ni, Cu, Pb, As, Cd, and Hg). The obtained results showed that the sediment HM contents were higher than the corresponding soil background values in Shaanxi Province. The average sediment Hg content was 3.42 times higher than the corresponding background value. The PMF results indicated that HMs in the sediments were mainly derived from industrial, traffic, agricultural, and coal-mining sources. The RI values ranged from 26.15 to 483.70. Hg was the major contributor (75%) to the ecological risk in the vicinity of the Yanjiata Industrial Park. According to the PMF-based RI model, coal-mining activities exhibited the strongest impact on the river ecosystem (48.79%), followed, respectively, by traffic (34.41%), industrial (12.70%), and agricultural (4.10%) activities. These results indicated that the major anthropogenic sources contributing to the HM contents in the sediments are not necessarily those posing the greatest ecological risks. The proposed integrated approach in this study was useful in evaluating the ecological risks associated with different anthropogenic sources in the Kuye River, providing valuable suggestions for reducing sediment HM pollution and effectively protecting river ecosystems.


Asunto(s)
Mercurio , Metales Pesados , Ecosistema , Ríos , China , Carbón Mineral
17.
Environ Geochem Health ; 46(8): 291, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976115

RESUMEN

Potential toxic elements emanating from extracted ores during gold processing present occupational and unintentional health hazards in communities, the general populace, and the environment. This study investigated the concentrations and potential health effects of metal content in the topsoils of Obuasi municipality, which has been mined for gold over the past century. Surface topsoil samples, sieved to 250 µm, were initially scanned for metals using x-ray fluorescence techniques, followed by confirmation via ICP-MS. In vitro bioaccessibility assays were conducted using standard methods. The geoaccumulation indices (Igeo) indicate high enrichment of As (Igeo = 6.28) and Cd (Igeo = 3.80) in the soils, especially in the eastern part of the municipality where illegal artisanal mining is prevalent. Additionally, the southern corridor, situated near a gold mine, exhibited significant levels of As and Mn. Results obtained for the total metal concentrations and contamination indices confirmed the elevation of the studied potential toxic elements in the Obuasi community. A hazard index value of 4.42 and 3.30 among children and adults, respectively, indicates that indigens, especially children, are susceptible to non-cancer health effects.


Asunto(s)
Oro , Minería , Contaminantes del Suelo , Humanos , Ghana , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Niño , Adulto , Metales Pesados/análisis , Disponibilidad Biológica , Arsénico/análisis , Exposición a Riesgos Ambientales , Medición de Riesgo
18.
Environ Geochem Health ; 46(11): 438, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316175

RESUMEN

The concentrations of heavy metals (HMs) can be increased by various anthropogenic activities such as mining, fuel combustion, pesticide use, and urban development, which can alter the mechanisms determining their spatial variability in the environment. Determining natural concentrations, monitoring, and assessing potential ecological risks are essential in the management of pollution prevention policies and soil conservation in watersheds. The aim of this study was to determine HMs natural concentrations, establish quality reference values (QRVs), and evaluate pollution indices in a watershed-scale. Composite surface soil samples (n = 115) were collected from areas: native vegetation, pasture, perennial crops, urbanization, planted forest, annual crops, and desertification. The soil samples digestion followed the EPA 3051A, and metals determination in ICP-OES. The data were subjected to the Kruskal-Wallis test, Spearman's correlation, multivariate clustering analysis and. geostatistics. The QRVs established (75th) for the Gurgueia River watershed in descending order were (mg kg-1): V (26.16) > Cr (18.06) > Pb (6.24) > Zn (3.86) > Cu (2.66) > Ni (1.45) > Co (0.57) > Mo (0.46) > Cd (0.07). The concentrations of Cd, Co, Cr, Mo, Ni, V, and Zn in types of land and management practices were significantly increased compared to those in natural vegetation. Overall, the watershed falls into the categories of minimal to moderate enrichment, moderate to considerable contamination, and low to moderate potential ecological risk, with Cd presenting elevated values. The percentages of polluted samples ranged from 14.3 to 82.5%, indicating the need for monitoring these areas to ensure environmental quality and food safety.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados , Ríos , Contaminantes del Suelo , Metales Pesados/análisis , Brasil , Medición de Riesgo , Contaminantes del Suelo/análisis , Sedimentos Geológicos/química , Ríos/química , Suelo/química , Contaminantes Químicos del Agua/análisis
19.
Environ Geochem Health ; 46(10): 411, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222283

RESUMEN

The increase in heavy metal concentration in water bodies due to rapid industrial and socio-economic development significantly threatens ecological and human health. This study evaluated metal pollution and related risks to ecology and human health in the Maroon-Jarahi river sub-basin in the Persian Gulf and Oman Sea basin, southwest Iran, using various indicators. A total of 70 water samples were taken from the sampling sites in the Maroon, Allah, and Jarahi sub-basins and analyzed for nine heavy metals. According to the results, the mean concentration of metals in the sampling locations across the entire sub-basin of Maroon-Jarahi was observed as follows Iron (528.22 µg/L), zinc (292.62 µg/L), manganese (56.47 µg/L), copper (36.23 µg/L), chromium (11.78 µg/L), arsenic (7.09 µg/L), lead (3.43 µg/L), nickel (3.23 µg/L), and cadmium (1.38 µg/L). Most of the metals were detected at the highest concentration in the sub-basin of the Jarahi River. The Water Quality Index (WQI) index in the basin varied from 18.74 to 22.88, indicating well to excellent quality. However, the investigation of the pollution status at the monitoring stations, based on the classification of Degree of Contamination (CD) and Heavy Metal Pollution Index (HPI) indices, revealed that they are in the category of relatively high pollution (16 < CD < 32) to very high (32 ≤ CD), and in the low pollution category (HPI < 15) to high pollution (HPI < 30), respectively. According to the three sub-basins, the highest amount of WQI, HPI, and Cd was observed in the stations located in the sub-basins of the Jarahi River. The calculation of Heavy Metal Evaluation Index (HEI) also indicated that only 10% of the monitoring stations are in moderate pollution (10 < HEI < 20), while in other monitoring stations the HEI level is less than 10. The Potential ecological risk factors ( E r i ) of an individual metal was obtained as follows: Cd (173.70) > As (131.99) > Zn (57.52) > Cu (55.39) > Ni (48.98) > Cr (21.57) > Pb (0.71), revealing that Cd and As are the main elements responsible for creating ecological risk in the studied area. The Maroon-Jarahi watershed included areas with ecological risks that ranged from low (PERI ≤ 150) to very high (PERI ≥ 600). HI and ILCR health indicators indicated that consumption and long-term contact with river water in the study area can cause potential risks to human health, especially children. Moreover, the findings, the highest level of pollution and health risk for both children and adults, considering both exposure routes, occurred in the Jarahi River sub-basin, suggesting that those who live in the vicinity of the Jarahi River are likely to face more adverse health effects. In addition, the findings of the evaluation of the relationship between land use patterns and water quality in the studied basin showed that agricultural lands acts as a main source of pollutants, but forest lands play an important role in the deposition of pollutants and the protection of water quality at the basin scale. In general, the results of pollution indicators, risk assessment, and statistical techniques suggest that the lower sub-basin, the Jarahi area, and the Shadegan wetland are the most polluted areas in the investigated sub-basin due to excessive discharge of agricultural runoff, industrialization, and rapid urbanization. Thus, special measures should be considered to reduce the risks of HMs pollution in the sub-basin of the Maroon-Jarahi watershed, especially its downstream and the impact of agricultural land use on water quality should be taken into consideration in basin management plans.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Irán , Medición de Riesgo , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Humanos , Océano Índico , Ríos/química
20.
Environ Monit Assess ; 196(10): 975, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312081

RESUMEN

To accurately assess the bioavailability risk of heavy metals (HMs) in a representative polymetallic mining region, we undertook an exhaustive analysis of Cu, Pb, Ni, Co, Cd, Zn, Mn, and Cr in soils from diverse land-use types, encompassing agricultural, forest, residential, and mining areas. We employed speciation analysis methods and a modified risk assessment approach to ascertain potential ecological threats posed by the HMs. Our findings reveal that both the total potential ecological risk and the modified bioavailability risks are most pronounced in the soil of the mining area. The modified bioavailability threats are primarily caused by Pb, Ni, Cd, and Co. Although the total potential ecological risk of Cu is high in the local soil, the predominance of its stable forms reduces its mobility, thereby mitigating its detrimental impact on the ecosystem. Additionally, medium modified bioavailability risks were identified in the peripheries of agricultural and forest areas, potentially attributable to geological processes and agricultural activities. Within the urban district, medium risks were observed in residential and mining areas, likely resulting from mining, metallurgy, industrial operations, and traffic-related activities. This study provides critical insights that can assist governmental authorities in devising targeted policies to alleviate health hazards associated with soils in polymetallic mining regions.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Minería , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Suelo/química , Agricultura , Disponibilidad Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA