Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Small ; 18(2): e2105567, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34842337

RESUMEN

Owing to the increasing power density of miniaturized and high-frequency electronic devices, flexible thermal interface materials (TIMs) with the electromagnetic interference (EMI) shielding property are in urgent demand to maintain the system performance and reliability. Recently, carbon-based TIMs receive considerable attention due to the ultrahigh intrinsic thermal conductivity (TC). However, the large-scale production of such TIMs is restricted by some technical difficulties, such as production-induced defects of graphite sheets, poor microstructure architecture within the matrix, and nonnegligible interfacial thermal resistance result from the strong phono scattering. In this work, inspired by the structure and production process of millefeuille cakes, a unique double self-assembly strategy for fabricating ultrahigh thermal conductive TIMs with superior EMI shielding performance is demonstrated. The percolating and oriented multilayered microstructure enables the TIM to exhibit an ultrahigh in-plane TC of 233.67 W m-1 K-1 together with an outstanding EMI shielding effectiveness of 79.0 dB (at 12.4 GHz). In the TIM evaluation system, a nearly 45 °C decrease is obtained by this TIM when compared to the commercial material. The obtained TIM achieves the desired balance between thermal conduction and EMI shielding performance, indicating broad prospects in the fields of military applications and next-generation thermal management systems.

2.
Polymers (Basel) ; 16(6)2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38543366

RESUMEN

A thin, lightweight and flexible electromagnetic interference (EMI) shielding paper composite is an urgent need for modern military confrontations. Herein, a sandwich-structured EMI shielding paper composite with an easy pavement consisting of a filter paper layer, middle AgNWs/MXene layer, and polyvinyl butyral (PVB) layer was constructed by vacuum-assisted filtration, spraying and air-drying. The middle AgNWs/MXene compound endowed the filter paper with excellent electrical conductivity (166 S cm-1) and the fabricated filter paper-AgNWs/MXene-PVB composite exhibits superior EMI shielding (30 dB) with a 141 µm thickness. Remarkably, the specific EMI shielding effectiveness (SSE/t) of the filter paper-AgNWs/MXene-PVB composite reached 13,000 dB cm2 g-1 within the X-band frequency range. This value represents one of the highest reported for cellulose-based EMI shielding materials. Therefore, our sandwich-structured filter paper composite with superior EMI shielding performance can be used in the medical and military fields.

3.
Adv Mater ; : e2411248, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363668

RESUMEN

The rapid development of wearable electronics, personal mobile equipment, and Internet of Things systems demands smart textiles that integrate multiple functions with enhanced durability. Herein, the study reports robust and multifunctional textiles with energy harvesting, electromagnetic interference (EMI) shielding, flame resistance, and Joule heating capabilities, fabricated by a facile yet effective integration method using the deposition of cross-linked MXene (Ti3C2Tx), poly(vinyl alcohol) (PVA), and poly(acrylic acid) (PAA) onto traditional Korean paper, Hanji via vacuum filtration. Comprehensive analyses confirm robust cross-linking, structural integrity, and interface stability in the MXene/PVA/PAA-Hanji (MPP-H) textiles, which synergistically boost their multifunctional performance. The MPP-H textiles exhibit remarkable power generation lasting over 60 min with a power density of 102.2 µW cm-3 and an energy density of 31.0 mWh cm-3 upon the application of 20 µL of NaCl solution. The EMI shielding effectiveness (SE) per unit thickness in the X-band (8.2-12.4 GHz) is up to 437.6 dB mm-1, with the ratio of absorption to reflection reaching 4.5, outperforming existing EMI shielding materials. Superior thermo-chemo-mechanical properties (flame resistance, rapid Joule heating, durability, and washability) further demonstrate their versatile usability. The MPP-H enables diverse functionalities within a single, robust textile through a scalable fabrication method, offering transformative potential for wearable and mobility platforms.

4.
Adv Mater ; 35(42): e2302826, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562445

RESUMEN

Modern materials science has witnessed the era of advanced fabrication methods to engineer functionality from the nano- to macroscales. Versatile fabrication and additive manufacturing methods are developed, but the ability to design a material for a given application is still limited. Here, a novel strategy that enables target-oriented manufacturing of ultra-lightweight aerogels with on-demand characteristics is introduced. The process relies on controllable liquid templating through interfacial complexation to generate tunable, stimuli-responsive 3D-structured (multiphase) filamentous liquid templates. The methodology involves nanoscale chemistry and microscale assembly of nanoparticles (NPs) at liquid-liquid interfaces to produce hierarchical macroscopic aerogels featuring multiscale porosity, ultralow density (3.05-3.41 mg cm-3 ), and high compressibility (90%) combined with elastic resilience and instant shape recovery. The challenges are overcome facing ultra-lightweight aerogels, including poor mechanical integrity and the inability to form predefined 3D constructs with on-demand functionality, for a multitude of applications. The controllable nature of the coined methodology enables tunable electromagnetic interference shielding with high specific shielding effectiveness (39 893 dB cm2 g-1 ), and one of the highest-ever reported oil-absorption capacities (487 times the initial weight of aerogel for chloroform), to be obtained. These properties originate from the engineerable nature of liquid templating, pushing the boundaries of lightweight materials to systematic function design and applications.

5.
Adv Mater ; 35(39): e2302141, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37172077

RESUMEN

Although 2D transition metal carbides and nitrides (MXenes) have fantastic physical and chemical properties as well as wide applications, it remains challenging to produce stable MXenes due to their rapid structural degradation. Here, unique metal-bonded atomic layers of transition metal carbides with high stabilities are produced via a simple topological reaction between chlorine-terminated MXenes and selected metals, where the metals enable them to not only remove partially Cl terminations, but also bond with adjacent atomic MXene slabs, driven by the symmetry of MAX phases. The films constructed from Al-bonded Ti3 C2 Clx atomic layers show high oxidation resistance up to 400 °C and low sheet resistance of 9.3 Ω sq-1 . Coupled to the multilayer structure, the Al-bonded Ti3 C2 Clx film displays a significantly improved electromagnetic interference (EMI) shielding capability with a total shielding effectiveness value of 39 dB at a low thickness of 3.1 µm, outperforming pure Ti3 C2 Clx film.

6.
Materials (Basel) ; 15(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35207987

RESUMEN

Embedded copper mesh coatings with low sheet resistance and high transparency were formed using a low-cost Cu seed mesh obtained with a magnetron sputtering on a cracked template, and subsequent operations electroplating and embedding in a photocurable resin layer. The influence of the mesh size on the optoelectric characteristics and the electromagnetic shielding efficiency in a wide frequency range is considered. In optimizing the coating properties, a shielding efficiency of 49.38 dB at a frequency of 1 GHz, with integral optical transparency in the visible range of 84.3%, was obtained. Embedded Cu meshes have been shown to be highly bending stable and have excellent adhesion strength. The combination of properties and economic costs for the formation of coatings indicates their high prospects for practical use in shielding transparent objects, such as windows and computer monitors.

7.
Adv Sci (Weinh) ; 9(35): e2204165, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36285685

RESUMEN

The development of infrared-radar compatible materials/devices is challenging because the requirements of material properties between infrared and radar stealth are contradictory. Herein, a composite of poly(3, 4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) coated melamine foam is designed to integrate the advantages of the dual materials and the created heterogeneous interface between them. The as-designed PEDOT:PSS@melamine composite shows excellent mechanical properties, outstanding thermal insulation, and improved thermal infrared stealth performance. The relevant superb radar stealth performance including the minimum reflection loss value of -57.57 dB, the optimum ultra-wide bandwidth of 10.52 GHz, and the simulation of radar cross section reduction value of 17.68 dB m2 , can be achieved. The optimal specific electromagnetic wave absorption performance can reach up as high as 3263.02 dB·cm3 g-1 . The average electromagnetic interference shielding effectiveness value can be 30.80 dB. This study provides an approach for the design of high-performance stealth materials with infrared-radar compatibility.

8.
Carbohydr Polym ; 274: 118652, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34702471

RESUMEN

A high-yield and straightforward method is proposed to obtain an electromagnetic interference (EMI) shielding film based on multilayered Ti3C2Tx (m-Ti3C2Tx). Holocellulose nanofibrils modified by sulfamic acid (SHCNF) with unique "core-shell" structure can act as a dispersant and a binder to assist in exfoliating m-Ti3C2Tx into delaminated-Ti3C2Tx (d-Ti3C2Tx) and fabricate flexible Ti3C2Tx/SHCNF composite films with a high-yield value. The "brick-and-mortar" composite films exhibit a superior electromagnetic interference (EMI) shielding effectiveness (SE) of 45.02 dB with an ultrathin thickness of 40 µm at the 12.4 GHz. Moreover, these flexible and strong integrated Ti3C2Tx/SHCNF composite films also display excellent specific EMI SE of SSE/t (4437 dB cm2 g-1) and high EMI shielding efficiency (99.996%). Therefore, the SHCNF-assisted method provides a cost-effective approach to fabricate a strong and flexible MXene-based nanocomposite films toward EMI shielding application.

9.
ACS Appl Mater Interfaces ; 13(51): 61413-61421, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34910873

RESUMEN

A transparent and flexible film capable of shielding electromagnetic waves over a wide range of frequencies (X and Ku bands, 8-18 GHz) is prepared. The electromagnetic wave shielding film is fabricated using the excellent transmittance, electrical conductivity, and thermal stability of indium tin oxide (ITO), a representative transparent conductive oxide. The inherent mechanical brittleness of oxide ceramics is overcome by adopting a nanobranched structure. In addition, mechanical stability is maintained even after repeated bending experiments (200 000 times). The produced transparent and flexible shielding film is applied to practical GHz devices (Wi-Fi and LTE devices), and signal sensitivity is confirmed to decrease. Therefore, it can be widely applied to various transparent and flexible electronic devices.

10.
ACS Appl Mater Interfaces ; 12(12): 14459-14467, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32150382

RESUMEN

Although flexible and multifunctional textile-based electronics are promising for wearable devices, it is still a challenge to seamlessly integrate excellent conductivity into textiles without sacrificing their intrinsic flexibility and breathability. Herein, the vertically interconnected conductive networks are constructed based on a meshy template of weave cotton fabrics with interwoven warp and weft yarns. The two-dimensional early transition metal carbides/nitrides (MXenes), with unique metallic conductivity and hydrophilic surfaces, are uniformly and intimately attached to the preformed fabric via a spray-drying coating approach. Through adjusting the spray-drying cycles, the degree of conductive interconnectivity for the fabrics is precisely tuned, thereby affording highly conductive and breathable fabrics with integrated Joule heating, electromagnetic interference (EMI) shielding and strain sensing performances. Interestingly, triggered by the interwoven conductive architecture, the MXene-decorated fabrics with a low loading of 6 wt % (0.78 mg cm-2) offer an outstanding electrical conductivity of 5 Ω sq-1. The promising electrical conductivity further endows the fabrics with superior Joule heating performance with a heating temperature up to 150 °C at a supply voltage of 6 V, excellent EMI shielding performance, and highly sensitive strain responses to human motion. Consequently, this work offers a novel strategy for the versatile design of multifunctional textile-based wearable devices.

11.
Micromachines (Basel) ; 11(8)2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32824164

RESUMEN

Electronic devices that transmit, distribute, or utilize electrical energy create electromagnetic interference (EMI) that can lead to malfunctioning and degradation of electronic devices. EMI shielding materials block the unwanted electromagnetic waves from reaching the target material. EMI issues can be solved by using a new family of building blocks constituted of polymer and nanofillers. The electromagnetic absorption index of this material is calculated by measuring the "S-parameters". In this article, we investigated the use of artificial intelligence (AI) in the EMI shielding field by developing a new system based on a multilayer perceptron neural network designed to predict the electromagnetic absorption of polycarbonate-carbon nanotubes composites films. The proposed system included 15 different multilayer perception (MLP) networks; each network was specialized to predict the absorption value of a specific category sample. The selection of appropriate networks was done automatically, using an independent block. Optimization of the hyper-parameters using hold-out validation was required to ensure the best results. To evaluate the performance of our system, we calculated the similarity error, precision accuracy, and calculation time. The results obtained over our database showed clearly that the system provided a very good result with an average accuracy of 99.7997%, with an overall average calculation time of 0.01295 s. The composite based on polycarbonate-5 wt.% carbon nanotube was found to be the ultimate absorber over microwave range according to Rozanov formalism.

12.
Sci Bull (Beijing) ; 65(8): 616-622, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659130

RESUMEN

Renewable porous biochar and 2D MXene have attracted significant attention in high-end electromagnetic interference (EMI) shielding fields, due to unique orderly structures and excellent electrical conductivity (σ) value. In this work, the wood-derived porous carbon (WPC) skeleton from natural wood was performed as a template. And excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the MXene aerogel/WPC composites, based on highly ordered honeycomb cells inner WPC as a microreactor. Higher carbonization temperature is more conducive to the graphitization degree of natural wood. MXene aerogel/WPC composites achieve the optimal EMI SE value of up to 71.3 dB at density as low as 0.197 g/cm3. Such wall-like "mortar-brick" structures (WPC skeleton as "mortar" and MXene aerogel as "brick") not only effectively solve the unstable structure problem of MXene aerogel networks, but also greatly prolong the transmission paths of the electromagnetic waves and dissipate the incident electromagnetic waves in the form of heat and electric energy, thereby exhibiting the superior EMI shielding performance. In addition, MXene aerogel/WPC composites also exhibit good anisotropic compressive strength, excellent thermal insulation and flame retardant properties. Such ultra-light, green and efficient multi-functional bio-carbon-based composites have great application potential in the high-end EMI shielding fields of aerospace and national defence industry, etc.

13.
ACS Nano ; 14(7): 8368-8382, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32628835

RESUMEN

High-performance electromagnetic interference (EMI) shielding materials with ultraflexibility, outstanding mechanical properties, and superior EMI shielding performances are highly desirable for modern integrated electronic and telecommunication systems in areas such as aerospace, military, artificial intelligence, and smart and wearable electronics. Herein, ultraflexible and mechanically strong aramid nanofiber-Ti3C2Tx MXene/silver nanowire (ANF-MXene/AgNW) nanocomposite papers with double-layered structures are fabricated via the facile two-step vacuum-assisted filtration followed by hot-pressing approach. The resultant double-layered nanocomposite papers with a low MXene/AgNW content of 20 wt % exhibit an excellent electrical conductivity of 922.0 S·cm-1, outstanding mechanical properties with a tensile strength of 235.9 MPa and fracture strain of 24.8%, superior EMI shielding effectiveness (EMI SE) of 48.1 dB, and high EMI SE/t of 10 688.9 dB·cm-1, benefiting from the highly efficient double-layered structures, high-performance ANF substrate, and extensive hydrogen-bonding interactions. Particularly, the nanocomposite papers show a maximum electrical conductivity of 3725.6 S·cm-1 and EMI SE of ∼80 dB at a MXene/AgNW content of 80 wt % with an absorption-dominant shielding mechanism owing to the massive ohmic losses in the highly conductive MXene/AgNW layer, multiple internal reflections between Ti3C2Tx MXene nanosheets and polarization relaxation of localized defects, and abundant terminal groups. Compared with the homogeneously blended ones, the double-layered nanocomposite papers possess greater advantages in electrical, mechanical, and EMI shielding performances. Moreover, the multifunctional double-layered nanocomposite papers exhibit excellent thermal management performances such as high Joule heating temperature at low supplied voltages, rapid response time, sufficient heating stability, and reliability. The results indicate that the double-layered nanocomposite papers have excellent potential for high-performance EMI shielding and thermal management applications in aerospace, military, artificial intelligence, and smart and wearable electronics.

14.
Nanomaterials (Basel) ; 9(4)2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30987033

RESUMEN

MXenes, carbon nanotubes, and nanoparticles are attractive candidates for electromagnetic interference (EMI) shielding. The composites were prepared through a filtration technique and spray coating process. The functionalization of non-woven carbon fabric is an attractive strategy. The prepared composite was characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. The MXene-oxidized carbon nanotube-sodium dodecyl sulfate composite (MXCS) exhibited 50.5 dB (99.999%), and the whole nanoparticle-based composite blocked 99.99% of the electromagnetic radiation. The functionalization increased the shielding by 15.4%. The composite possessed good thermal stability, and the maximum electric conductivity achieved was 12.5 Scm-1. Thus, the composite shows excellent potential applications towards the areas such as aeronautics, mobile phones, radars, and military.

15.
ACS Appl Mater Interfaces ; 11(50): 47340-47349, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31742999

RESUMEN

With the rapid development of the electronics, information technology, and wearable devices, problems of the power crisis and electromagnetic radiation pollution have emerged. A piezoelectric wearable textile combined with electromagnetic shielding performance has become a favorable solution. Herein, a multifunctional PVDF-based wearable sensor with both electromagnetic shielding function and human body monitoring performance is proposed by incorporating silver nanowires (Ag NWs) and multiwall carbon nanotubes (MWCNTs) hybrid-networks into PVDF-casted commercial nonwoven fabrics (NWF). The coordination of Ag NWs and MWCNTs networks ensures the ideal electrical conductivity and mechanical strength. The maximum shielding value of the developed sensor reaches up to 34 dB when the area densities of the Ag NWs and MWCNT are kept at 1.9 and 2.0 mg/cm2, respectively. Additionally, the hydrophobicity of the as-proposed sensor (water contact angle of ∼110.0°) ensures the self-cleaning function and makes it resistive against water and dirt. Moreover, the sensor possesses a force-sensing property by generating different piezoelectric voltages (0, 0.4, 1.0, and 1.5 V) when stimulated by various forces (0, 20, 44, and 60 N). Not only can it respond to different external stress in a timely manner (response sensitivity of ∼0.024 V/N, response time of ∼35 ms), but it can also monitor different body movements, such as joint bending, running, and jumping. This work opens up a new prospect of monitoring the human body as well as protecting human health from electromagnetic radiation surroundings.


Asunto(s)
Monitoreo Fisiológico/métodos , Nanocables/química , Textiles , Dispositivos Electrónicos Vestibles , Campos Electromagnéticos/efectos adversos , Fenómenos Electromagnéticos , Cuerpo Humano , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nanotubos de Carbono/química , Polivinilos/química , Plata/química , Agua/química
16.
Materials (Basel) ; 9(1)2015 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28787808

RESUMEN

Kenaf fiber-polyester composites incorporated with powdered activated carbon (PAC) were prepared using the vacuum-assisted resin transfer molding (VARTM) process. The product demonstrates the electromagnetic interference (EMI) shielding function. The kenaf fibers were retted in a pressured reactor to remove the lignin and extractives in the fiber. The PAC was loaded into the freshly retted fibers in water. The PAC loading effectiveness was determined using the Brunauer-Emmett-Teller (BET) specific surface area analysis. A higher BET value was obtained with a higher PAC loading. The transmission energies of the composites were measured by exposing the samples to the irradiation of electromagnetic waves with a variable frequency from 8 GHz to 12 GHz. As the PAC content increased from 0% to 10.0%, 20.5% and 28.9%, the EMI shielding effectiveness increased from 41.4% to 76.0%, 87.9% and 93.0%, respectively. Additionally, the EMI absorption increased from 21.2% to 31.7%, 44.7% and 64.0%, respectively. The ratio of EMI absorption/shielding of the composite at 28.9% of PAC loading was increased significantly by 37.1% as compared with the control sample. It was indicated that the incorporation of PAC into the composites was very effective for absorbing electromagnetic waves, which resulted in a decrease in secondary electromagnetic pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA