RESUMEN
Characteristic properties of secondary electrons emitted from irradiated two-dimensional materials arise from multi-length and multi-time-scale relaxation processes that connect the initial nonequilibrium excited electron distribution with their eventual emission. To understand these processes, which are critical for using secondary electrons as high-resolution thermalization probes, we combine first-principles real-time electron dynamics with irradiation experiments. Our data for cold and hot proton-irradiated graphene show signatures of kinetic and potential emission and generally good agreement for electron yields between experiment and theory. The duration of the emission pulse is about 1.5 fs, which indicates high time resolution when used as a probe. Our newly developed method to predict kinetic energy spectra shows good agreement with electron and ion irradiation experiments and prior models. We find that the lattice temperature significantly increases secondary electron emission, whereas electron temperature has a negligible effect.
RESUMEN
Electron sources are crucial elements in diverse applications such as electron microscopes, synchrotrons, and free-electron lasers. Nanometer-sharp needle tips are electron emitters with the highest beam quality, yet for a single needle the current is limited. Combining the emission of multiple needles promises large current yields while preserving the individual emitters' favorable properties. We present an ultrafast electron source consisting of a lithographically fabricated array of sharp gold tips illuminated with 25 fs laser pulses. The source provides up to 2000 electrons per pulse for moderate laser peak intensities of 1011 W/cm2 and a narrow energy width of 0.5 ± 0.05 eV at low current. The electron beam has a well-behaved Gaussian profile and is highly collimated, yielding a small normalized emittance on the order of nm·rad. These properties are well suited for applications requiring both high current and spatial resolution, such as free-electron light sources and chip-based particle accelerators.
RESUMEN
The generation of ultrashort electron wavepackets is crucial for the development of ultrafast electron microscopes. Recent studies on Coulomb-correlated few-electron number states, photoemitted from sharp metallic tapers, have shown emission nonlinearities in the multiphoton photoemission regime which scale with the electron number. Here, we study few-electron photoemission from gold nanotapers triggered by few-cycle near-infrared pulses, demonstrating extreme 20th-order nonlinearities for electron triplets. We report interferometric autocorrelation traces of the electron yield that are quenched to a single emission peak with subfemtosecond duration due to these high nonlinearities. The modulation of the emission yield by the carrier-envelope phase suggests that electron emission predominantly occurs during a single half cycle of the driving laser field. When applying a bias voltage to the tip, recollisions in the electron trajectories are suppressed and coherent subcycle electron beams are generated with promising prospects for ultrafast electron microscopy with subcycle time resolution.
RESUMEN
Field electron emission characteristics of the carbon nanotube (CNT) film emitters were investigated according to densification conditions such as nitric acid, acetic acid, and salicylic acid. The emission performance of the CNT film emitters was strongly affected by the densification conditions. Salicylic acid exhibits the best field electron emission properties of the CNT film emitters, followed by nitric acid and acetic acid. The efficient densification of the CNT film emitter by salicylic acid is caused by the role of polarity and p orbitals, nitric acid by hydrogen ions, and acetic acid by weak polarity. After the densification with salicylic acid, the turn-on field of the CNT film emitter decreases from 1.94 Vµm-1to 1.86 Vµm-1, the threshold field decreases from 3.41 Vµm-1to 2.95 Vµm-1, the emission current significantly increases from 20.92 mA to 43.98 mA, and the degradation rate from the long-term emission stability decreases from 49.9% to 21%. The improved emission characteristics are attributed to the increased emission sites at the CNT film and the increased electrical conductivity of the CNT film. The densification is a useful way to enhance the field electron emission properties of CNT film emitters.
RESUMEN
We report a tunneling diode enabling efficient and dense electron emission from SiO2 with low poisoning sensitivity. Benefiting from the shallow SiO2 channel exposed to vacuum and the low electron affinity of SiO2 (0.9 eV), hot electrons tunneling into the SiO2 channel from the cathode of the diode are efficiently emitted into vacuum with much less restriction in both space and energy than those in previous tunneling electron sources. Monte Carlo simulations on the device performance show an emission efficiency as high as 87.0% and an emission density up to 3.0 × 105 A/cm2. By construction of a tunneling diode based on Si conducting filaments in electroformed SiO2, an emission efficiency up to 83.7% and an emission density up to 4.4 × 105 A/cm2 are experimentally realized. Electron emission from the devices is demonstrated to be independent of vacuum pressure from 10-4 to 10-1 Pa without poisoning.
RESUMEN
Electron emission from quasi-freestanding bilayer epitaxial graphene (QFEG) on a silicon carbide substrate is reported, demonstrating emission currents as high as 8.5µA, at â¼200 °C, under 0.3 Torr vacuum. Given the significantly low turn-on temperature of these QFEG devices, â¼150°C, the electron emission is explained by phonon-assisted electron emission, where the acoustic and optical phonons of QFEG causes carrier acceleration and emission. Devices of differing dimensions and shapes are fabricated via a simple and scalable fabrication procedure and tested. Variations in device morphology increase the density of dangling bonds, which can act as electron emission sites. Devices exhibit emission enhancement at increased temperatures, attributed to greater phonon densities. Devices exhibit emission under various test conditions, and a superior design and operating methodology are identified.
RESUMEN
The main goal of this work was to modify the previously developed blade-type planar structure using plasmonic gold nanostars in order to stimulate photofield emission and provide efficient laser control of the electron current. Localization and enhancement of the field at the tips of gold nanostars provided a significant increase in the tunneling electron current in the experimental sample (both electrical field and photofield emission). Irradiation at a wavelength in the vicinity of the plasmon resonance (red laser) provided a gain in the photoresponse value of up to 5 times compared to irradiation far from the resonance (green laser). The prospects for transition to regimes of structure irradiation by femtosecond laser pulses at the wavelength of surface plasmon resonance, which lead to an increase in the local optical field, are discussed. The kinetics of the energy density of photoinduced hot and thermalized electrons is estimated. The proposed laser-controlled matrix current source is promising for use in X-ray computed tomography systems.
Asunto(s)
Oro , Nanopartículas del Metal , Electrones , Oro/química , Rayos Láser , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/métodosRESUMEN
We use first-principles calculations to uncover and explain a new type of anomalous low-velocity stopping effect in proton-irradiated graphene. We attribute a shoulder feature that occurs exclusively for channeling protons to enhanced electron capture from σ- and π-orbitals. Our analysis of electron emission indicates that backward emission is more sensitive to proton trajectory than forward emission and could thus produce higher contrast images in ion microscopy. For slow protons, we observe a steep drop in emission, consistent with predictions from analytical models.
Asunto(s)
Grafito , Protones , ElectronesRESUMEN
Understanding the optoelectronic properties of semiconducting polymers under external strain is essential for their applications in flexible devices. Although prior studies have highlighted the impact of static and macroscopic strains, assessing the effect of a local transient deformation before structural relaxation occurs remains challenging. Here, we employ scanning ultrafast electron microscopy (SUEM) to image the dynamics of a photoinduced transient strain in the semiconducting polymer poly(3-hexylthiophene) (P3HT). We observe that the photoinduced SUEM contrast, corresponding to the local change of secondary electron emission, exhibits an unusual ring-shaped profile. We attribute the observation to the electronic structure modulation of P3HT caused by a photoinduced strain field owing to its low modulus and strong electron-lattice coupling, supported by a finite-element analysis. Our work provides insights into tailoring optoelectronic properties using transient mechanical deformation in semiconducting polymers and demonstrates the versatility of SUEM to study photophysical processes in diverse materials.
RESUMEN
Carbon nanotube (CNT) field-emission x-ray source has great potential in x-ray communication (XCOM) because of its controllable emission and instantaneous response. A novel voltage loading mode was proposed in this work to achieve high-frequency pulse x-ray emission. The characteristics of cathode current and pulse x-ray versus voltage, frequency, and pulse amplitude were studied, and XCOM data transmission experiment was carried out. Results showed that the CNT cold cathode x-ray source, as a communication signal source, could work in 1.05 MHz pulse emission frequency. When the grid voltage was higher than 470 V, the pulse x-ray waveform amplitude achieved peak, and the shape exhibited a pseudo square wave. The duty cycle of the x-ray waveform exceeded 50%, reaching 56% when the pulse frequency reached 1 MHz. In the XCOM data transmission experiment, the pulsed x-ray waveform was well consistent with the loading data signal voltage waveform under different pulse-emission frequencies. This work realized the x-ray high-frequency pulse emission of CNT cold cathode x-ray source and lays a foundation for the development and application of CNT cold cathode x-ray source in XCOM.
RESUMEN
An important direction in the development of X-ray computed tomography sensors in systems with increased scanning speed and spatial resolution is the creation of an array of miniature current sources. In this paper, we describe a new material based on gold nanostars (GNS) embedded in nanoscale diamond-like carbon (DLC) films (thickness of 20 nm) for constructing a pixel current source with photoinduced electron emission. The effect of localized surface plasmon resonance in GNS on optical properties in the wavelength range from UV to near IR, peculiarities of localization of field and thermal sources, generation of high-energy hot electrons, and mechanisms of their transportation in vacuum are investigated. The advantages of the proposed material and the prospects for using X-ray computed tomography in the matrix source are evaluated.
RESUMEN
A novel capability built upon secondary electron (SE) spectroscopy provides an enhanced cross-linking characterization toolset for polymeric biomaterials, with cross-linking density and variation captured at a multiscale level. The potential of SE spectroscopy for material characterization has been investigated since 1947. The absence of suitable instrumentation and signal processing proved insurmountable barriers to applying SE spectroscopy to biomaterials, and consequently, capturing SE spectra containing cross-linking information is a new concept. To date, cross-linking extent is inferred from analytical techniques such as nuclear magnetic resonance (NMR), differential scanning calorimetry, and Raman spectroscopy (RS). NMR provides extremely localized information on the atomic scale and molecular scale, while RS information volume is on the microscale. Other methods for the indirect study of cross-linking are bulk mechanical averaging methods, such as tensile and compression modulus testing. However, these established averaging methods for the estimation of polymer cross-linking density are incomplete because they fail to provide information of spatial distributions within the biomaterial morphology across all relevant length scales. The efficacy of the SE spectroscopy capability is demonstrated in this paper by the analysis of poly(glycerol sebacate)-methacrylate (PGS-M) at different degrees of methacrylation delivering new insights into PGS-M morphology.
Asunto(s)
Materiales Biocompatibles/química , Decanoatos/química , Glicerol/análogos & derivados , Metacrilatos/química , Microscopía Electrónica de Rastreo , Polímeros/química , Glicerol/química , Ensayo de Materiales , Espectrometría Raman , Resistencia a la Tracción , Ingeniería de TejidosRESUMEN
Electron holographic tomography was used to obtain three-dimensional reconstructions of the morphology and electrostatic potential gradient of axial GaInP/InP nanowire tunnel diodes. Crystal growth was carried out in two opposite directions: GaInP-Zn/InP-S and InP-Sn/GaInP-Zn, using Zn as the p-type dopant in the GaInP but with changes to the n-type dopant (S or Sn) in the InP. Secondary electron and electron beam-induced current images obtained using scanning electron microscopy indicated the presence of p-n junctions in both cases and current-voltage characteristics measured via lithographic contacts showed the negative differential resistance, characteristic of band-to-band tunneling, for both diodes. Electron holographic tomography measurements confirmed a short depletion width in both cases (21 ± 3 nm) but different built-in potentials, Vbi, of 1.0 V for the p-type (Zn) to n-type (S) transition, and 0.4 V for both were lower than the expected 1.5 V for these junctions if degenerately doped. Charging induced by the electron beam was evident in phase images which showed nonlinearity in the surrounding vacuum, most severe in the case of the nanowire grounded at the p-type Au contact. We attribute their lower Vbi to asymmetric secondary electron emission, beam-induced current biasing, and poor grounding contacts.
RESUMEN
For studying the electrical properties (charge trapping, transport and secondary electron emission) of the polypropylene-based nanocomposites with different contents of natural clay, the specimens were submitted to electron irradiation of a scanning electron microscope. A device, suitably mounted on the sample holder of the scanning electron microscope, was used to measure two currents (i.e. leakage and displacement currents) induced in the polypropylene-based nanocomposites (polymer nanocomposites) under electron irradiation. The evolution of trapped charge during irradiation for each type of studied polymer nanocomposites is deduced. The amount of trapped charge at the steady state is also determined by measuring the change of secondary electron image size associated to the electron trajectory simulation. It is found, surprisingly, that not only the leakage current increases as a function of clay loading level but also trapped charge. However, this could be related to the increase of conductivity in one hand and to proliferation of interfaces between nanoparticles and neighbouring materials on the other hand. These two processes play crucial role in controlling the carrier transport (through polymer nanocomposites or/and along its surface) closely related to the charge storage and leakage current. Additional experiment using dielectric spectroscopy were performed to show the effect of clay concentration in changing the dielectric relaxation behaviour and to evidence the existence of interfaces between nanoparticles and polymer. The secondary electron emission during electron irradiation is also studied through the total electron yield that is deduced by correlating the measured leakage and displacement currents.
RESUMEN
Electrostatic potential maps of GaAs nanowire, p-n junctions have been measured via off-axis electron holography and compared to results from in situ electrical probing, and secondary electron emission microscopy using scanning electron microscopy. The built-in potential and depletion length of an axial junction was found to be 1.5 ± 0.1 V and 74 ± 9 nm, respectively, to be compared with 1.53 V and 64 nm of an abrupt junction of the same end point carrier concentrations. Associated with the switch from Te to Zn dopant precursor was a reduction in GaAs nanowire diameter 3 ± 1 nm that occurred prior to the junction center (n = p) and was followed by a rapid increase in Zn doping. The delay in Zn incorporation is attributed to the time required for Zn to equilibrate within the Au catalyst.
RESUMEN
In this paper, we first present an experimental demonstration of terahertz radiation pulse generation with energy up to 5 pJ under the electron emission during ultrafast optical discharge of a vacuum photodiode. We use a femtosecond optical excitation of metallic copper photocathode for the generation of ultrashort electron bunch and up to 45 kV/cm external electric field for the photo-emitted electron acceleration. Measurements of terahertz pulses energy as a function of emitted charge density, incidence angle of optical radiation and applied electric field have been provided. Spectral and polarization characteristics of generated terahertz pulses have also been studied. The proposed semi-analytical model and simulations in COMSOL Multiphysics prove the experimental data and allow for the optimization of experimental conditions aimed at flexible control of radiation parameters.
RESUMEN
Suppression of secondary electron emission (SEE) from metal surfaces is crucial for enhancing the performance of particle accelerators, spacecraft, and vacuum electronic devices. Earlier research has demonstrated that either etching the metal surface to create undulating structures or coating it with materials having low secondary electron yield (SEY) can markedly decrease SEE. However, the effectiveness of growing vertical graphene (VG) on laser-etched metal surfaces in suppressing SEE remains uncertain. This study examined the collective impact of these methods by applying nanoscale arrays of VG coating using plasma-enhanced chemical vapor deposition on Ni substrates, along with the formation of micrometer-sized microcavity array through laser etching. Comparative tests conducted revealed that the SEY of the samples subjected to VG coating on a microcavity array was lower compared to samples with either only a microcavity array or VG coating alone. Additionally, the crystallinity of VG grown on substrates of varying shapes exhibited variations. This study presents a new method for investigating the suppression of SEE on metal surfaces, contributing to the existing body of knowledge in this field.
RESUMEN
Progress toward single-molecule electronics relies on a thorough understanding of local physico-chemical processes and development of synthetic routines for controlled hetero-coupling. We demonstrate a structurally unexpected ring closure process for a homo-coupled 4,4'-bipicenyl, realized in on-surface synthesis. An initial covalent C-C coupling of 4-bromopicene locks at lower temperatures the position and geometrically shields part of 4,4'-bipicenyl. Employing this effect of shielding might offer a path toward controlled stepwise hetero-coupling. At higher temperatures, a thermally activated three-dimensional rotation upon hydrogen dissociation, a dehydrogenative roto-cyclization, lifts the surface-dimensionality restriction, and leads to the formation of a perylene. Thereby, the shielded molecular part becomes accessible again.
RESUMEN
A single-electron emitter, based on a single quantized energy level, can potentially achieve ultimate temporal and spatial coherence with a large emission current, which is desirable for atomic-resolution electron probes. This is first developed by constructing a nano-object on a metal tip to form a quantized double barrier structure. However, the single-electron-emission current can only achieve a picoampere level due to the low electron tunneling rate of the heterojunction with large barrier width, which limits the practical applications. In this study, carbon nanotubes (CNTs) serve as a single-electron emitter and a current up to 1.5 nA is demonstrated. The double barrier structure formed on the CNT tip enables a high tunneling rate (≈1012 s-1 ) due to the smaller barrier width. The emitter also shows high temporal coherence (energy dispersion of ≈10 meV) and spatial coherence (effective source radius of ≈0.85 nm). This work represents a highly coherent electron source to simplify the electron optics system of atomic-resolution electron microscopy and sub-10 nm electron beam lithography.
RESUMEN
A 100-nm-thick gadolinium layer deposited on a pixelated silicon sensor was activated in a neutron field to measure the internal conversion electron (ICE) spectrum generated by neutron capture products of 155Gd and 157Gd. The experiment was performed at the ISIS neutron and muon facility, using a bespoke version of the HEXITEC spectroscopic imaging camera. Signals originating from internal conversion electrons, Auger electrons, x rays and gamma rays up to 150 keV were identified. The ICE spectrum has an energy resolution of 1.8-1.9 keV at 72 keV and shows peaks from the K, L, M, N+ ICEs of the 79.51 keV and 88.967 keV 2+-0+ gamma transitions from the first excited states in 158Gd and 156Gd, respectively, as well as the K ICEs of the 4+-2+ transitions at 181.931 keV and 199.213 keV from the respective second excited states. Spectrum analysis was performed using a convolution of a Gaussian with exponential functions at the low and high energy side as the peak shaping function. Relative ICE intensities were derived from the fitted peak areas and compared with internal conversion coefficient (ICC) values calculated from the BrIcc database. Relative to the dominant L shell contribution, the K ICE intensity conforms to BrIcc and the M, N, O+ ICE intensities are somewhat higher than expected.