Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(6): 104805, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172728

RESUMEN

Bone development starts with condensations of undifferentiated mesenchymal cells that set a framework for future bones within the primordium. In the endochondral pathway, mesenchymal cells inside the condensation differentiate into chondrocytes and perichondrial cells in a SOX9-dependent mechanism. However, the identity of mesenchymal cells outside the condensation and how they participate in developing bones remain undefined. Here we show that mesenchymal cells surrounding the condensation contribute to both cartilage and perichondrium, robustly generating chondrocytes, osteoblasts, and marrow stromal cells in developing bones. Single-cell RNA-seq analysis of Prrx1-cre-marked limb bud mesenchymal cells at E11.5 reveals that Notch effector Hes1 is expressed in a mutually exclusive manner with Sox9 that is expressed in pre-cartilaginous condensations. Analysis of a Notch signaling reporter CBF1:H2B-Venus reveals that peri-condensation mesenchymal cells are active for Notch signaling. In vivo lineage-tracing analysis using Hes1-creER identifies that Hes1+ early mesenchymal cells surrounding the SOX9+ condensation at E10.5 contribute to both cartilage and perichondrium at E13.5, subsequently becoming growth plate chondrocytes, osteoblasts of trabecular and cortical bones, and marrow stromal cells in postnatal bones. In contrast, Hes1+ cells in the perichondrium at E12.5 or E14.5 do not generate chondrocytes within cartilage, contributing to osteoblasts and marrow stromal cells only through the perichondrial route. Therefore, Hes1+ peri-condensation mesenchymal cells give rise to cells of the skeletal lineage through cartilage-dependent and independent pathways, supporting the theory that early mesenchymal cells outside the condensation also play important roles in early bone development.


Asunto(s)
Desarrollo Óseo , Huesos , Cartílago , Diferenciación Celular , Linaje de la Célula , Condrocitos , Células Madre Mesenquimatosas , Factor de Transcripción HES-1 , Animales , Ratones , Huesos/citología , Cartílago/citología , Cartílago/metabolismo , Condrocitos/citología , Condrocitos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Factor de Transcripción HES-1/metabolismo , Células del Estroma/citología , Células del Estroma/metabolismo , Receptores Notch/metabolismo
2.
Dev Dyn ; 251(4): 577-608, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34582081

RESUMEN

Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.


Asunto(s)
Ciliopatías , Polidactilia , Animales , Cilios/metabolismo , Ciliopatías/genética , Ciliopatías/patología , Homeostasis , Mamíferos , Polidactilia/genética , Proteínas/genética
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142232

RESUMEN

The discovery of bone morphogenetic proteins (BMPs) inspired hope for the successful treatment of bone disorders, but side effects worsening the clinical effects were eventually observed. BMPs exert a synergistic effect, stimulating osteogenesis; however, predicting the best composition of growth factors for use in humans is difficult. Chondrocytes present within the growth plate produce growth factors stored in calcified cartilage adhering to metaphysis. These factors stimulate initial bone formation in metaphysis. We have previously determined the growth factors present in bovine calcified cartilage and produced by rat epiphyseal chondrocytes. The results suggest that growth factors stimulating physiological ossification are species dependent. The collection of human calcified cartilage for growth factors determination does not appear feasible, but chondrocytes for mRNA determination could be obtained. Their collection from young recipients, in view of the Academy of Medical Royal Colleges Recommendation, would be ethical. The authors of this review do not have facilities to conduct such a study and can only appeal to competent institutions to undertake the task. The results could help to formulate a better recipe for the stimulation of bone formation and improve clinical results.


Asunto(s)
Proteínas Morfogenéticas Óseas , Osteogénesis , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Cartílago/metabolismo , Bovinos , Condrocitos/metabolismo , Placa de Crecimiento/metabolismo , Humanos , Osteogénesis/fisiología , ARN Mensajero/metabolismo , Ratas
4.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232472

RESUMEN

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Asunto(s)
Iduronidasa , Mucopolisacaridosis I , Glicosaminoglicanos/metabolismo , Humanos , Iduronidasa/genética , Mucopolisacaridosis I/genética , Fenotipo , Calidad de Vida
5.
Development ; 145(1)2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222391

RESUMEN

The role of basal suppression of the sonic hedgehog (Shh) pathway and its interaction with Indian hedgehog (Ihh) signaling during limb/skeletal morphogenesis is not well understood. The orphan G protein-coupled receptor Gpr161 localizes to primary cilia and functions as a negative regulator of Shh signaling by promoting Gli transcriptional repressor versus activator formation. Here, we show that forelimb buds are not formed in Gpr161 knockout mouse embryos despite establishment of prospective limb fields. Limb-specific deletion of Gpr161 resulted in prematurely expanded Shh signaling and ectopic Shh-dependent patterning defects resulting in polysyndactyly. In addition, endochondral bone formation in forearms, including formation of both trabecular bone and bone collar was prevented. Endochondral bone formation defects resulted from accumulation of proliferating round/periarticular-like chondrocytes, lack of differentiation into columnar chondrocytes, and corresponding absence of Ihh signaling. Gpr161 deficiency in craniofacial mesenchyme also prevented intramembranous bone formation in calvarium. Defects in limb patterning, endochondral and intramembranous skeletal morphogenesis were suppressed in the absence of cilia. Overall, Gpr161 promotes forelimb formation, regulates limb patterning, prevents periarticular chondrocyte proliferation and drives osteoblastogenesis in intramembranous bones in a cilium-dependent manner.


Asunto(s)
Tipificación del Cuerpo/fisiología , Miembro Anterior/embriología , Osteogénesis/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Cráneo/embriología
6.
Biochem J ; 477(13): 2421-2438, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32391876

RESUMEN

One of the fundamental questions in bone biology is where osteoblasts originate and how osteoblast differentiation is regulated. The mechanism underlying which factors regulate chondrocyte to osteoblast lineage commitment remains unknown. Our data showed that Runt-related transcription factor 1 (Runx1) is expressed at different stages of both chondrocyte and osteoblast differentiation. Runx1 chondrocyte-specific knockout (Runx1f/fCol2α1-cre) mice exhibited impaired cartilage formation, decreased bone density, and an osteoporotic phenotype. The expressions of chondrocyte differentiation regulation genes, including Sox9, Ihh, CyclinD1, PTH1R, and hypertrophic chondrocyte marker genes including Col2α1, Runx2, MMP13, Col10α1 in the growth plate were significantly decreased in Runx1f/fCol2α1-cre mice chondrocytes. Importantly, the expression of osteoblast differentiation regulation genes including Osx, Runx2, ATF4, and osteoblast marker genes including osteocalcin (OCN) and osteopontin (OPN) were significantly decreased in the osteoblasts of Runx1f/fCol2α1-cre mice. Notably, our data showed that osteoblast differentiation regulation genes and marker genes are also expressed in chondrocytes and the expressions of these marker genes were significantly decreased in the chondrocytes of Runx1f/fCol2α1-cre mice. Our data showed that chromatin immunoprecipitation (ChIP) and promoter mapping analysis revealed that Runx1 directly binds to the Indian hedgehog homolog (Ihh) promoter to regulate its expression, indicating that Runx1 directly regulates the transcriptional expression of chondrocyte genes. Collectively, we revealed that Runx1 signals chondrocyte to osteoblast lineage commitment and promotes endochondral bone formation through enhancing both chondrogenesis and osteogenesis genes expressions, indicating Runx1 may be a therapeutic target to enhance endochondral bone formation and prevent osteoporosis fractures.


Asunto(s)
Condrocitos/citología , Condrocitos/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Células Cultivadas , Condrogénesis/genética , Condrogénesis/fisiología , Inmunoprecipitación de Cromatina , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Osteogénesis/genética , Osteogénesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
FASEB J ; 33(5): 6378-6389, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30776318

RESUMEN

Central ischemic necrosis is one of the biggest obstacles in the clinical application of traditional tissue-engineered bone (TEB) in critical-sized bone defect regeneration. Because of its ability to promote vascular invasion, endochondral ossification-based TEB has been applied for bone defect regeneration. However, inadequate chondrocyte hypertrophy can hinder vascular invasion and matrix mineralization during endochondral ossification. In light of recent studies suggesting that ceria nanoparticles (CNPs) improve the blood vessel distribution within TEB, we modified TEB scaffold surfaces with CNPs and investigated the effect and mechanism of CNPs on endochondral ossification-based bone regeneration. The CNPs used in this study were synthesized by the microemulsion method and modified with alendronate-anchored polyethylene glycol 600. We showed that CNPs accelerated new bone formation and enhanced endochondral ossification-based bone regeneration in both a subcutaneous ectopic osteogenesis model and a mouse model of critical-sized bone defects. Mechanistically, CNPs significantly promoted endochondral ossification-based bone regeneration by ensuring sufficient hypertrophic differentiation via the activation of the RNA helicase, DEAH (Asp-Glu-Ala-His) box helicase 15, and its downstream target, p38 MAPK. These results suggested that CNPs could be applied as a biomaterial to improve the efficacy of endochondral ossification-based bone regeneration in critical-sized bone defects.-Li, J., Kang, F., Gong, X., Bai, Y., Dai, J., Zhao, C., Dou, C., Cao, Z., Liang, M., Dong, R., Jiang, H., Yang, X., Dong, S. Ceria nanoparticles enhance endochondral ossification-based critical-sized bone defect regeneration by promoting the hypertrophic differentiation of BMSCs via DHX15 activation.


Asunto(s)
Células de la Médula Ósea/metabolismo , Regeneración Ósea/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Cerio , Fémur , Células Madre Mesenquimatosas/metabolismo , Nanopartículas/química , Osteogénesis/efectos de los fármacos , ARN Helicasas/metabolismo , Animales , Células de la Médula Ósea/patología , Cerio/química , Cerio/farmacología , Fémur/lesiones , Fémur/metabolismo , Fémur/patología , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
8.
J Biol Chem ; 293(24): 9162-9175, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29735531

RESUMEN

Chondrocyte hypertrophy is the terminal step in chondrocyte differentiation and is crucial for endochondral bone formation. How signaling pathways regulate chondrocyte hypertrophic differentiation remains incompletely understood. In this study, using a Tbx18:Cre (Tbx18Cre/+) gene-deletion approach, we selectively deleted the gene for the signaling protein SMAD family member 4 (Smad4f/f ) in the limbs of mice. We found that the Smad4-deficient mice develop a prominent shortened limb, with decreased expression of chondrocyte differentiation markers, including Col2a1 and Acan, in the humerus at mid-to-late gestation. The most striking defects in these mice were the absence of stylopod elements and failure of chondrocyte hypertrophy in the humerus. Moreover, expression levels of the chondrocyte hypertrophy-related markers Col10a1 and Panx3 were significantly decreased. Of note, we also observed that the expression of runt-related transcription factor 2 (Runx2), a critical mediator of chondrocyte hypertrophy, was also down-regulated in Smad4-deficient limbs. To determine how the skeletal defects arose in the mouse mutants, we performed RNA-Seq with ChIP-Seq analyses and found that Smad4 directly binds to regulatory elements in the Runx2 promoter. Our results suggest a new mechanism whereby Smad4 controls chondrocyte hypertrophy by up-regulating Runx2 expression during skeletal development. The regulatory mechanism involving Smad4-mediated Runx2 activation uncovered here provides critical insights into bone development and pathogenesis of chondrodysplasia.


Asunto(s)
Desarrollo Óseo , Condrocitos/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteína Smad4/genética , Animales , Diferenciación Celular , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Hipertrofia/genética , Hipertrofia/metabolismo , Hipertrofia/patología , Ratones , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Proteína Smad4/metabolismo
9.
Biochem Biophys Res Commun ; 516(4): 1097-1102, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31280862

RESUMEN

The maturation of chondrocytes is strictly regulated for proper endochondral bone formation. Although recent studies have revealed that intracellular metabolic processes regulate the proliferation and differentiation of cells, little is known about how changes in metabolite levels regulate chondrocyte maturation. To identify the metabolites which regulate chondrocyte maturation, we performed a metabolome analysis on chondrocytes of Sik3 knockout mice, in which chondrocyte maturation is delayed. Among the metabolites, acetyl-CoA was decreased in this model. Immunohistochemical analysis of the Sik3 knockout chondrocytes indicated that the expression levels of phospho-pyruvate dehydrogenase (phospho-Pdh), an inactivated form of Pdh, which is an enzyme that converts pyruvate to acetyl-CoA, and of Pdh kinase 4 (Pdk4), which phosphorylates Pdh, were increased. Inhibition of Pdh by treatment with CPI613 delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture. These results collectively suggest that decreasing the acetyl-CoA level is a cause and not result of the delayed chondrocyte maturation. Sik3 appears to increase the acetyl-CoA level by decreasing the expression level of Pdk4. Blocking ATP synthesis in the TCA cycle by treatment with rotenone also delayed chondrocyte maturation in metatarsal primordial cartilage in organ culture, suggesting the possibility that depriving acetyl-CoA as a substrate for the TCA cycle is responsible for the delayed maturation. Our finding of acetyl-CoA as a regulator of chondrocyte maturation could contribute to understanding the regulatory mechanisms controlling endochondral bone formation by metabolites.


Asunto(s)
Acetilcoenzima A/metabolismo , Condrocitos/metabolismo , Osteogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Condrocitos/citología , Condrogénesis , Femenino , Eliminación de Gen , Metaboloma , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética
10.
Development ; 143(10): 1811-22, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27052727

RESUMEN

Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth.


Asunto(s)
Desarrollo Óseo , Linaje de la Célula , Condrocitos/citología , Factores de Crecimiento de Fibroblastos/metabolismo , Osteocitos/citología , Transducción de Señal , Células Madre/citología , Animales , Animales Recién Nacidos , Desarrollo Óseo/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/metabolismo , Integrasas/metabolismo , Ratones Noqueados , Modelos Biológicos , Osteocitos/efectos de los fármacos , Osteocitos/metabolismo , Proteína Relacionada con la Hormona Paratiroidea/administración & dosificación , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp7 , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Factores de Transcripción/metabolismo
11.
Development ; 143(21): 3933-3943, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27621060

RESUMEN

Recently, blood vessels have been implicated in the morphogenesis of various organs. The vasculature is also known to be essential for endochondral bone development, yet the underlying mechanism has remained elusive. We show that a unique composition of blood vessels facilitates the role of the endothelium in bone mineralization and morphogenesis. Immunostaining and electron microscopy showed that the endothelium in developing bones lacks basement membrane, which normally isolates the blood vessel from its surroundings. Further analysis revealed the presence of collagen type I on the endothelial wall of these vessels. Because collagen type I is the main component of the osteoid, we hypothesized that the bone vasculature guides the formation of the collagenous template and consequently of the mature bone. Indeed, some of the bone vessels were found to undergo mineralization. Moreover, the vascular pattern at each embryonic stage prefigured the mineral distribution pattern observed one day later. Finally, perturbation of vascular patterning by overexpressing Vegf in osteoblasts resulted in abnormal bone morphology, supporting a role for blood vessels in bone morphogenesis. These data reveal the unique composition of the endothelium in developing bones and indicate that vascular patterning plays a role in determining bone shape by forming a template for deposition of bone matrix.


Asunto(s)
Vasos Sanguíneos/embriología , Desarrollo Óseo/fisiología , Colágeno Tipo I/metabolismo , Endotelio/metabolismo , Morfogénesis/fisiología , Animales , Vasos Sanguíneos/fisiología , Tipificación del Cuerpo/fisiología , Matriz Ósea/embriología , Matriz Ósea/metabolismo , Huesos/embriología , Huesos/metabolismo , Calcificación Fisiológica/fisiología , Embrión de Mamíferos , Endotelio/irrigación sanguínea , Femenino , Ratones , Ratones Transgénicos , Osteoblastos/fisiología , Embarazo
12.
FASEB J ; 32(8): 4573-4584, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29547701

RESUMEN

Endochondral ossification is crucial for bone formation in both adult bone repair process and embryo long-bone development. In endochondral ossification, bone marrow-derived mesenchymal stem cells (BMSCs) first differentiate to chondrocytes, then BMSC-derived chondrocytes endure a hypertrophic process to generate new bone. Endochondral ossification-based bone repair is a promising strategy to cure massive bone defect, which is a major clinical issue in orthopedics. However, challenges still remain for this novel strategy. One challenge is to ensure the sufficient hypertrophic differentiation. Another is to maintain the survival of the above hypertrophic chondrocytes under the hypoxic environment of massive bone defect. To solve this issue, mangiferin (MAG) was introduced to endochondral ossification-based bone repair. In this report, we proved MAG to be a novel autophagy inducer, which promoted BMSC-derived hypertrophic chondrocyte survival against hypoxia-induced injury through inducing autophagy. Furthermore, MAG enhances hypertrophic differentiation of BMSC-derived chondrocytes via upregulating key hypertrophic markers. Mechanistically, MAG induced autophagy in BMSC-derived chondrocytes by promoting AMPKα phosphorylation. Additionally, MAG balanced the expression of sex-determining region Y-box 9 and runt-related transcription factor 2 to facilitate hypertrophic differentiation. These results indicated that MAG was a potential drug to improve the efficacy of endochondral ossification-based bone repair in massive bone defects.-Bai, Y., Liu, C., Fu, L., Gong, X., Dou, C., Cao, Z., Quan, H., Li, J., Kang, F., Dai, J., Zhao, C., Dong, S. Mangiferin enhances endochondral ossification-based bone repair in massive bone defect by inducing autophagy through activating AMP-activated protein kinase signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/efectos de los fármacos , Huesos/diagnóstico por imagen , Osteogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Xantonas/farmacología , Animales , Huesos/metabolismo , Diferenciación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Condrogénesis/efectos de los fármacos , Femenino , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos BALB C , Fosforilación/efectos de los fármacos
13.
Int J Mol Sci ; 20(5)2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30871109

RESUMEN

Eleutherococcus extract mixture (EEM) is an herbal mixture of dried stem of Eleutherococcus sessiliflorus and germinated barley, which has been highly effective, in previous screening and among the traditional medicines to tonify innate qi and acquired qi, respectively. In this study, we investigate the effects of EEM on endochondral bone formation. Female adolescent rats were given EEM, growth hormone or vehicle for 10 days. Tetracycline was intraperitoneally injected to light the fluorescent band 72 h before sacrifice to determine endochondral bone formation. In order to evaluate endocrine or paracrine/autocrine mechanisms, expressions of insulin-like growth factor 1 (IGF1), insulin-like growth factor binding protein 3 (IGFBP3), or bone morphogenetic protein 2 (BMP2) were evaluated after EEM administration in liver or growth plate (GP). EEM oral administration significantly increased endochondral bone formation and proliferative and hypertrophic zonal heights of tibial GP. EEM also upregulated hepatic IGF1 and IGFBP3 mRNA expressions, and IGF1 and BMP2 expressions in GP. Taken together, EEM increases endochondral bone formation through stimulating proliferation and hypertrophy with upregulation of hepatic IGF1 and IGFBP3 expressions. Considering immunohistochemical studies, the effect of EEM may be due to increased local IGF1 and BMP2 expression in GP, which may be considered growth hormone (GH)-dependent endocrine and autocrine/paracrine pathways.


Asunto(s)
Desarrollo Óseo/efectos de los fármacos , Condrocitos/efectos de los fármacos , Eleutherococcus/química , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Tibia/efectos de los fármacos , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proliferación Celular/efectos de los fármacos , Condrocitos/metabolismo , Femenino , Hormona del Crecimiento/metabolismo , Placa de Crecimiento/efectos de los fármacos , Placa de Crecimiento/metabolismo , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Tibia/metabolismo
14.
Histochem Cell Biol ; 149(4): 365-373, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29356962

RESUMEN

Longitudinal bone growth progresses by continuous bone replacement of epiphyseal cartilaginous tissue, known as "growth plate", produced by columnar proliferated- and differentiated-epiphyseal chondrocytes. The endochondral ossification process at the growth plate is governed by paracrine signals secreted from terminally differentiated chondrocytes (hypertrophic chondrocytes), and hedgehog signaling is one of the best known regulatory signaling pathways in this process. Here, to investigate the developmental relationship between longitudinal endochondral bone formation and osteogenic progenitors under the influence of hedgehog signaling at the growth plate, genetic lineage tracing was carried out with the use of Gli1CreERT2 mice line to follow the fate of hedgehog-signal-responsive cells during endochondral bone formation. Gli1CreERT2 genetically labeled cells are detected in hypertrophic chondrocytes and osteo-progenitors at the chondro-osseous junction (COJ); these progeny then commit to the osteogenic lineage in periosteum, trabecular and cortical bone along the developing longitudinal axis. Furthermore, in ageing bone, where longitudinal bone growth ceases, hedgehog-signal responsiveness and its implication in osteogenic lineage commitment is significantly weakened. These results show, for the first time, evidence of the developmental contribution of endochondral progenitors under the influence of epiphyseal chondrocyte-derived secretory signals in longitudinally growing bone. This study provides a precise outline for assessing the skeletal lineage commitment of osteo-progenitors in response to growth-plate-derived regulatory signals during endochondral bone formation.


Asunto(s)
Desarrollo Óseo , Huesos/metabolismo , Placa de Crecimiento/metabolismo , Proteínas Hedgehog/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Animales , Huesos/citología , Placa de Crecimiento/citología , Masculino , Ratones , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
15.
Osteoarthritis Cartilage ; 26(11): 1551-1561, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30086379

RESUMEN

OBJECTIVE: FGFR3 chondrodysplasia is caused by a gain-of-function mutation of the FGFR3 gene. The disease causes abnormal growth plate cartilage and lacks effective drug treatment. We sought to establish an in vivo model for the study of FGFR3 chondrodysplasia pathology and drug testing. DESIGN: We created cartilage from human induced pluripotent stem cells (hiPSCs) and transplanted the cartilage into the subcutaneous spaces of immunodeficient mice. We then created cartilage from the hiPSCs of patients with FGFR3 chondrodysplasia and transplanted them into immunodeficient mice. We treated some mice with a FGFR inhibitor after the transplantation. RESULTS: Xenografting the hiPSC-derived cartilage reproduced human growth plate cartilage consisting of zones of resting, proliferating, prehypertrophic and hypertrophic chondrocytes and bone in immunodeficient mice. Immunohistochemistry of xenografts using anti-human nuclear antigen antibody indicated that all chondrocytes in growth plate cartilage were human, whereas bone was composed of human and mouse cells. The pathology of small hypertrophic chondrocytes due to up-regulated FGFR3 signaling in FGFR3 skeletal dysplasia was recapitulated in growth plate cartilage formed in the xenografts of patient-specific hiPSC-derived cartilage. The mean diameters of hypertrophic chondrocytes between wild type and thanatophoric dysplasia were significantly different (95% CI: 13.2-26.9; n = 4 mice, one-way analysis of variance (ANOVA)). The pathology was corrected by systemic administration of a FGFR inhibitor to the mice. CONCLUSION: The patient-specific growth plate cartilage xenograft model for FGFR3 skeletal dysplasia indicated recapitulation of pathology and effectiveness of a FGFR inhibitor for treatment and warrants more study for its usefulness to study disease pathology and drug testing.


Asunto(s)
Cartílago/patología , Placa de Crecimiento/patología , Mutación , Osteocondrodisplasias/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Animales , Cartílago/metabolismo , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Placa de Crecimiento/metabolismo , Xenoinjertos , Ratones , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
16.
Biol Lett ; 14(6)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29899132

RESUMEN

Within jawed vertebrates, pelvic appendages have been modified or lost repeatedly, including in the most phylogenetically basal, extinct, antiarch placoderms. One Early Devonian basal antiarch, Parayunnanolepis, possessed pelvic girdles, suggesting the presence of pelvic appendages at the origin of jawed vertebrates; their absence in more derived antiarchs implies a secondary loss. Recently, paired female genital plates were identified in the Late Devonian antiarch, Bothriolepis canadensis, in the position of pelvic girdles in other placoderms. We studied these putative genital plates along an ontogenetic series of B. canadensis; ontogenetic changes in their morphology, histology and elemental composition suggest they represent endoskeletal pelvic girdles composed of perichondral and endochondral bone. We suggest that pelvic fins of derived antiarchs were lost, while pelvic girdles were retained, but reduced, relative to Parayunnanolepis This indicates developmental plasticity and evolutionary lability in pelvic appendages, shortly after these elements evolved at the origin of jawed vertebrates.


Asunto(s)
Peces/anatomía & histología , Huesos Pélvicos/anatomía & histología , Aletas de Animales , Animales , Evolución Biológica , Peces/crecimiento & desarrollo , Fósiles , Huesos Pélvicos/crecimiento & desarrollo , Filogenia
17.
Acta Neurochir Suppl ; 129: 121-126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30171324

RESUMEN

The topographical distribution of dural arteriovenous fistulas (DAVFs) was analyzed based on the embryological anatomy of the dural membrane. Sixty-six consecutive cases of intracranial and spinal DAVFs were analyzed based on the angiography, and each shunt point was identified according to the embryological bony structures. The area of dural membranes was categorized into three different groups: a ventral group located on the endochondral bone (VE group), a dorsal group on the membranous bone (DM group), and a falcotentorial group (FT group) in the falx cerebri, tentorium cerebelli, falx cerebelli, and diaphragma sellae. The FT group was derived from the neural crest and designated when the dural membrane was formed only with the dura propria (meningeal layer of the dura mater) and not from the endosteal dura. Olfactory groove, falx, tent of the cerebellum, and nerve sleeve of spinal cord were categorized in the FT group, which presented later in life and which had a male predominance, more aggressive clinical presentations, and significant cortical and spinal venous reflux. The FT group was formed only with the dura propria that was considered as an independent risk factor for aggressive clinical course and hemorrhage of DAVFs.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central/clasificación , Malformaciones Vasculares del Sistema Nervioso Central/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cresta Neural , Factores de Riesgo
18.
Osteoarthritis Cartilage ; 25(7): 1132-1142, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28323137

RESUMEN

OBJECTIVE: The role of Snorc, a novel cartilage specific transmembrane proteoglycan, was studied during skeletal development using two Snorc knockout mouse models. Hypothesizing that Snorc, like the other transmembrane proteoglycans, may be a coreceptor, we also studied its interaction with growth factors. METHODS: Skeletal development was studied in wild type (WT) and Snorc knockout mice during postnatal development by whole mount staining, X-ray imaging, histomorphometry, immunohistochemistry and qRT-PCR. Snorc promoter activity was studied by applying the LacZ reporter expressed by the targeting construct. Slot blot binding and cell proliferation assays were used to study the interaction of Snorc with several growth factors. RESULTS: Snorc expression was localized in the knee epiphyses especially to the prehypertrophic chondrocytes delineating the cartilage canals and secondary ossification center (SOC). Snorc was demonstrated to have a glycosaminoglycan independent affinity to FGF2 and it inhibited FGF2 dependent cell growth of C3H101/2 cells. In Snorc deficient mice, SOCs in knee epiphyses were smaller, and growth plate (GP) maturation was disturbed, but total bone length was not affected. Central proliferative and hypertrophic zones were enlarged with higher extracellular matrix (ECM) volume and rounded chondrocyte morphology at postnatal days P10 and P22. Increased levels of Ihh and Col10a1, and reduced Mmp13 mRNA expression were observed at P10. CONCLUSIONS: These findings suggest a role of Snorc in regulation of chondrocyte maturation and postnatal endochondral ossification. The interaction identified between recombinant Snorc core protein and FGF2 suggest functions related to FGF signaling.


Asunto(s)
Condrocitos/fisiología , Proteínas de la Membrana/deficiencia , Osteogénesis/fisiología , Proteoglicanos/deficiencia , Rodilla de Cuadrúpedos/fisiología , Animales , Huesos de la Extremidad Inferior/crecimiento & desarrollo , Proliferación Celular/fisiología , Células Cultivadas , Condrogénesis/fisiología , Epífisis/crecimiento & desarrollo , Epífisis/metabolismo , Epífisis/fisiología , Femenino , Factor 2 de Crecimiento de Fibroblastos/fisiología , Genotipo , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Proteoglicanos/metabolismo , Proteoglicanos/fisiología , ARN Mensajero/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(23): 8482-7, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24850862

RESUMEN

The pathogenesis of cleidocranial dysplasia (CCD) as well as the specific role of core binding factor ß (Cbfß) and the Runt-related transcription factor (RUNX)/Cbfß complex in postnatal skeletogenesis remain unclear. We demonstrate that Cbfß ablation in osteoblast precursors, differentiating chondrocytes, osteoblasts, and odontoblasts via Osterix-Cre, results in severe craniofacial dysplasia, skeletal dysplasia, abnormal teeth, and a phenotype recapitulating the clinical features of CCD. Cbfß(f/f)Osterix-Cre mice have fewer proliferative and hypertrophic chondrocytes, fewer osteoblasts, and almost absent trabecular bone, indicating that Cbfß may maintain trabecular bone formation through its function in hypertrophic chondrocytes and osteoblasts. Cbfß(f/f)Collagen, type 1, alpha 1 (Col1α1)-Cre mice show decreased bone mineralization and skeletal deformities, but no radical deformities in teeth, mandibles, or cartilage, indicating that osteoblast lineage-specific ablation of Cbfß results in milder bone defects and less resemblance to CCD. Activating transcription factor 4 (Atf4) and Osterix protein levels in both mutant mice are dramatically reduced. ChIP assays show that Cbfß directly associates with the promoter regions of Atf4 and Osterix. Our data further demonstrate that Cbfß highly up-regulates the expression of Atf4 at the transcriptional regulation level. Overall, our genetic dissection approach revealed that Cbfß plays an indispensable role in postnatal skeletal development and homeostasis in various skeletal cell types, at least partially by up-regulating the expression of Atf4 and Osterix. It also revealed that CCD may result from functional defects of the Runx2/Cbfß heterodimeric complex in various skeletal cells. These insights into the role of Cbfß in postnatal skeletogenesis and CCD pathogenesis may assist in the development of new therapies for CCD and osteoporosis.


Asunto(s)
Condrocitos/fisiología , Displasia Cleidocraneal/fisiopatología , Subunidad beta del Factor de Unión al Sitio Principal/fisiología , Osteoblastos/fisiología , Osteogénesis/fisiología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Condrocitos/metabolismo , Displasia Cleidocraneal/genética , Displasia Cleidocraneal/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Osteoblastos/metabolismo , Osteogénesis/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Multimerización de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cráneo/citología , Cráneo/metabolismo , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Acta Neurochir Suppl ; 123: 169-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27637645

RESUMEN

BACKGROUND: The distribution of intracranial dural AVFs (DAVFs) may be affected by the embryological bony structures that consist of membranous bone and endochondral bone. METHODS: We retrospectively analyzed the distribution of the shunt points in 58 consecutive cases of DAVFs. Shunt points were identified with selective digital subtraction angiography, high-resolution cone beam computed tomography (CT), or three-dimensional rotation angiography. All the shunt points were plotted on the map of the skull base in relation to the topography of the endochondral bone and the membranous bone. If the shunt point was localized on the surface of endochondral bone, this was categorized as the endochondral bone group. If it was located on membranous bone, this was categorized as the membranous bone group. If the shunt point was independent from both bony structures, this was categorized as the independent group. FINDINGS: In 55 of 58 cases, shunt points were identified angiographically. Three cases had multiple shunts. There were 33 shunt points (60 %) belonging to endochondral bone. In this group, 16 cases of sigmoid, 11 of carotid cavernous, 3 of petrosal apex, and 3 of sigmoid DAVF were observed. There were 12 shunt points (22 %) localized on membranous bone; in this group, there were nine cases of transverse sinus, two of superior sagittal sinus, and one case of confluence DAVF. There were ten shunt points (18 %) independent from these two bony structures: four cases of olfactory groove, four . of middle fossa, and two of hypoglossal canal DAVF. CONCLUSIONS: There were correlations between the localization of shunt points of DAVFs and the topography of endochondral bone and the membranous bone. The histological difference of endochondral bone and membranous bone at the level of epidural space might cause the formation of DAVFs.


Asunto(s)
Malformaciones Arteriovenosas Intracraneales/diagnóstico por imagen , Cráneo/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/embriología , Angiografía Cerebral , Tomografía Computarizada de Haz Cónico , Femenino , Humanos , Imagenología Tridimensional , Malformaciones Arteriovenosas Intracraneales/embriología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Cráneo/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA