Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; : e0002224, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624217

RESUMEN

Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.

2.
J Clin Microbiol ; 62(1): e0116123, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38112529

RESUMEN

Candida parapsilosis is a common cause of non-albicans candidemia. It can be transmitted in healthcare settings resulting in serious healthcare-associated infections and can develop drug resistance to commonly used antifungal agents. Following a significant increase in the percentage of fluconazole (FLU)-nonsusceptible isolates from sterile site specimens of patients in two Ontario acute care hospital networks, we used whole genome sequence (WGS) analysis to retrospectively investigate the genetic relatedness of isolates and to assess potential in-hospital spread. Phylogenomic analysis was conducted on all 19 FLU-resistant and seven susceptible-dose dependent (SDD) isolates from the two hospital networks, as well as 13 FLU susceptible C. parapsilosis isolates from the same facilities and 20 isolates from patients not related to the investigation. Twenty-five of 26 FLU-nonsusceptible isolates (resistant or SDD) and two susceptible isolates from the two hospital networks formed a phylogenomic cluster that was highly similar genetically and distinct from other isolates. The results suggest the presence of a persistent strain of FLU-nonsusceptible C. parapsilosis causing infections over a 5.5-year period. Results from WGS were largely comparable to microsatellite typing. Twenty-seven of 28 cluster isolates had a K143R substitution in lanosterol 14-α-demethylase (ERG11) associated with azole resistance. As the first report of a healthcare-associated outbreak of FLU-nonsusceptible C. parapsilosis in Canada, this study underscores the importance of monitoring local antimicrobial resistance trends and demonstrates the value of WGS analysis to detect and characterize clusters and outbreaks. Timely access to genomic epidemiological information can inform targeted infection control measures.


Asunto(s)
Candida parapsilosis , Fluconazol , Humanos , Fluconazol/farmacología , Estudios Retrospectivos , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Genómica , Hospitales , Ontario
3.
Med Mycol ; 62(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38521982

RESUMEN

Our understanding of fungal epidemiology and the burden of antifungal drug resistance in COVID-19-associated candidemia (CAC) patients is limited. Therefore, we conducted a retrospective multicenter study in Iran to explore clinical and microbiological profiles of CAC patients. Yeast isolated from blood, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method M27-A3 protocol. A total of 0.6% of the COVID-19 patients acquired CAC (43/6174). Fluconazole was the most widely used antifungal, and 37% of patients were not treated. Contrary to historic candidemia patients, Candida albicans and C. tropicalis were the most common species. In vitro resistance was high and only noted for azoles; 50%, 20%, and 13.6% of patients were infected with azole-non-susceptible (ANS) C. tropicalis, C. parapsilosis, and C. albicans isolates, respectively. ERG11 mutations conferring azole resistance were detected for C. parapsilosis isolates (Y132F), recovered from an azole-naïve patient. Our study revealed an unprecedented rise in ANS Candida isolates, including the first C. parapsilosis isolate carrying Y132F, among CAC patients in Iran, which potentially threatens the efficacy of fluconazole, the most widely used drug in our centers. Considering the high mortality rate and 37% of untreated CAC cases, our study underscores the importance of infection control strategies and antifungal stewardship to minimize the emergence of ANS Candida isolates during COVID-19.


Asunto(s)
COVID-19 , Candidemia , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candidemia/tratamiento farmacológico , Candidemia/epidemiología , Candidemia/microbiología , Candidemia/veterinaria , Fluconazol/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Pruebas de Sensibilidad Microbiana/veterinaria , COVID-19/epidemiología , COVID-19/veterinaria , Candida , Candida albicans , Candida tropicalis , Candida parapsilosis , Farmacorresistencia Fúngica
4.
Mycoses ; 67(1): e13677, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37990393

RESUMEN

BACKGROUND: Recent reports of the emergence of fluconazole resistance in Candida parapsilosis species complex poses a challenge, more specifically in settings where echinocandin-based treatment regime is not feasible. OBJECTIVE: This study reported emergence of fluconazole resistance in C. parapsilosis species complex strains isolated from blood cultures. MATERIALS AND METHODS: This retrospective observational study was conducted from 2018 to 2020 at a tertiary care laboratory from Pakistan. Fluconazole-resistant C. parapsilosis species complex fungemia cases were identified from laboratory database and clinical details were collected. Identification of C. parapsilosis species complex was done using API 20C AUX and Cornmeal Tween80 agar morphology. Minimum inhibitory concentrations (MICs) were determined using Sensititre YeastONE and interpretation was done with CLSI M60 ED1:2017. ERG11 gene region was amplified and sequenced by Sanger sequencing and analysed by MEGA 11 Software. RESULTS: A total of 13 (8.5%) fluconazole-resistant isolates were identified from 152 C. parapsilosis species complex candidemia cases. Fluconazole MICs of resistant isolates ranged between 8 and 256 µg/mL. Analysis of ERG11 gene revealed nonsynonymous mutations at position Y132F in 86% of the fluconazole-resistant isolates. Diabetes and hospitalization were important risk factors for candidemia with fluconazole-resistant C. parapsilosis complex. CONCLUSION: This is the first report of the emergence and molecular mechanisms of fluconazole resistance in C. parapsilosis species complex from Pakistan. Y132F mutation in the ERG11 gene was the most common mutation in fluconazole-resistant strains. These findings are concerning and necessitate better diagnostics, newer antifungals, ongoing surveillance and further insights on resistance mechanisms in the country.


Asunto(s)
Candidemia , Fluconazol , Humanos , Fluconazol/farmacología , Fluconazol/uso terapéutico , Candida parapsilosis/genética , Candidemia/tratamiento farmacológico , Pakistán/epidemiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Mutación , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica/genética
5.
Mycoses ; 67(3): e13704, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429226

RESUMEN

BACKGROUND: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used. However, in recent years, a number of azole-resistant strains have been described. Their mechanisms of resistance are currently poorly studied. OBJECTIVE: The aim of this study was consequently to understand the mechanisms of azole resistance in several clinical isolates of M. guilliermondii. METHODS: Ten isolates of M. guilliermondii and the ATCC 6260 reference strain were studied. MICs of azoles were determined first. Whole genome sequencing of the isolates was then carried out and the mutations identified in ERG11 were expressed in a CTG clade yeast model (C. lusitaniae). RNA expression of ERG11, MDR1 and CDR1 was evaluated by quantitative PCR. A phylogenic analysis was developed and performed on M. guilliermondii isolates. Lastly, in vitro experiments on fitness cost and virulence were carried out. RESULTS: Of the ten isolates tested, three showed pan-azole resistance. A combination of F126L and L505F mutations in Erg11 was highlighted in these three isolates. Interestingly, a combination of these two mutations was necessary to confer azole resistance. An overexpression of the Cdr1 efflux pump was also evidenced in one strain. Moreover, the three pan-azole-resistant isolates were shown to be genetically related and not associated with a fitness cost or a lower virulence, suggesting a possible clonal transmission. CONCLUSION: In conclusion, this study identified an original combination of ERG11 mutations responsible for pan-azole-resistance in M. guilliermondii. Moreover, we proposed a new MLST analysis for M. guilliermondii that identified possible clonal transmission of pan-azole-resistant strains. Future studies are needed to investigate the distribution of this clone in hospital environment and should lead to the reconsideration of the treatment for this species.


Asunto(s)
Azoles , Farmacorresistencia Fúngica , Saccharomycetales , Humanos , Azoles/farmacología , Tipificación de Secuencias Multilocus , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Mutación , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología
6.
Mycopathologia ; 189(3): 35, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637433

RESUMEN

Candida auris, an emerging and multidrug-resistant fungal pathogen, has led to numerous outbreaks in China. While the resistance mechanisms against azole and amphotericin B have been studied, the development of drug resistance in this pathogen remains poorly understood, particularly in in vivo-generated drug-resistant strains. This study employed pathogen whole-genome sequencing to investigate the epidemiology and drug-resistance mutations of C. auris using 16 strains isolated from two patients. Identification was conducted through Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial susceptibilities were assessed using broth microdilution and Sensititre YeastOne YO10. Whole-genome sequencing revealed that all isolates belonged to the South Asian lineage, displaying genetic heterogeneity. Despite low genetic variability among patient isolates, notable mutations were identified, including Y132F in ERG11 and A585S in TAC1b, likely linked to increased fluconazole resistance. Strains from patient B also carried F214L in TAC1b, resulting in a consistent voriconazole minimum inhibitory concentration of 4 µg/mL across all isolates. Furthermore, a novel frameshift mutation in the SNG1 gene was observed in amphotericin B-resistant isolates compared to susceptible ones. Our findings suggest the potential transmission of C. auris and emphasize the need to explore variations related to antifungal resistance. This involves analyzing genomic mutations and karyotypes, especially in vivo, to compare sensitive and resistant strains. Further monitoring and validation efforts are crucial for a comprehensive understanding of the mechanisms of drug resistance in C. auris.


Asunto(s)
Antifúngicos , Candidiasis , Humanos , Antifúngicos/farmacología , Candidiasis/microbiología , Candida auris , Candida , Anfotericina B/farmacología , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
7.
Mycopathologia ; 188(1-2): 21-34, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36495417

RESUMEN

Malassezia pachydermatis is part of the normal skin microbiota of various animal species but under certain circumstances becomes an opportunistic pathogen producing otitis and dermatitis. Commonly these Malassezia diseases are effectively treated using azoles. However, some cases of treatment failure have been reported. Alterations in the ERG11 gene have been associated with in vitro azole resistance in M. pachydermatis. In the present study, in vitro antifungal susceptibility of 89 different strains of M. pachydermatis isolated from different animal species and health status was studied. The susceptibility to fluconazole (FLZ), itraconazole (ITZ), ketoconazole and amphotericin B was tested by a disk diffusion method and 17 strains were also subjected to an ITZ E-test. Mueller-Hinton supplemented with 2% glucose and methylene blue was used as culture medium in both susceptibility assays. Multilocus sequence typing was performed in 30 selected strains using D1D2, ITS, CHS2 and ß-tubulin genes. Also, ERG11 gene was sequenced. The four antifungals tested were highly effective against most of the strains. Only two strains showed no inhibition zone to antifungals and a strain showed an increased MIC to ITZ. The study of the ERG11 sequences revealed a high diversity of DNA sequences and a total of 23 amino acid substitutions, from which only two have been previously described. Also, three deleterious substitutions (A302T, G459D and G461D) previously associated with azole resistance in this yeast were recovered. A correlation between certain genotypes and ERG11 mutations was observed. Some of the ERG11 mutations recovered were correlated with a reduced susceptibility to azoles.


Asunto(s)
Antifúngicos , Malassezia , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Azoles/farmacología , Malassezia/genética , Cetoconazol/farmacología , Itraconazol/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Fúngica/genética
8.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835379

RESUMEN

Opportunistic pathogen Candida albicans possesses multiple virulence factors which enable colonization and infection of host tissues. Candida-related infections frequently occur in immunocompromised patients, which is related to an insufficient inflammatory response. Furthermore, immunosuppression and multidrug resistance of C. albicans clinical isolates make the treatment of candidiasis a challenge for modern medicine. The most common resistance mechanism of C. albicans to antifungals includes point mutations in the ERG11 gene, which encodes target protein for azoles. We investigated whether the mutations or deletion of the ERG11 gene influence the pathogen-host interactions. We prove that both C. albicans erg11∆/∆ and ERG11K143R/K143R exhibit increased cell surface hydrophobicity. Additionally, C. albicans KS058 has an impaired ability of biofilm and hyphae formation. Analysis of the inflammatory response of human dermal fibroblasts and vaginal epithelial cell lines revealed that altered morphology of C. albicans erg11∆/∆ results in a significantly weaker immune response. C. albicans ERG11K143R/K143R triggered stronger production of pro-inflammatory response. Analysis of genes encoding adhesins confirmed differences in the expression pattern of key adhesins for both erg11∆/∆ and ERG11K143R/K143R strains. Obtained data indicate that alterations in Erg11p consequence in resistance to azoles and affect the key virulence factors and inflammatory response of host cells.


Asunto(s)
Candida albicans , Candidiasis , Femenino , Humanos , Fluconazol/uso terapéutico , Virulencia , Ergosterol/uso terapéutico , Farmacorresistencia Fúngica , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Azoles , Membrana Celular , Factores de Virulencia , Pruebas de Sensibilidad Microbiana
9.
Antimicrob Agents Chemother ; 66(3): e0209821, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35007132

RESUMEN

Azoles, the most commonly used antifungal drugs, specifically inhibit the fungal lanosterol α-14 demethylase enzyme, which is referred to as Erg11. Inhibition of Erg11 ultimately leads to a reduction in ergosterol production, an essential fungal membrane sterol. Many Candida species, such as Candida albicans, develop mutations in this enzyme which reduces the azole binding affinity and results in increased resistance. Candida glabrata is also a pathogenic yeast that has low intrinsic susceptibility to azole drugs and easily develops elevated resistance. In C. glabrata, these azole resistant mutations typically cause hyperactivity of the Pdr1 transcription factor and rarely lie within the ERG11 gene. Here, we generated C. glabrata ERG11 mutations that were analogous to azole resistance alleles from C. albicans ERG11. Three different Erg11 forms (Y141H, S410F, and the corresponding double mutant (DM)) conferred azole resistance in C. glabrata with the DM Erg11 form causing the strongest phenotype. The DM Erg11 also induced cross-resistance to amphotericin B and caspofungin. Resistance caused by the DM allele of ERG11 imposed a fitness cost that was not observed with hyperactive PDR1 alleles. Crucially, the presence of the DM ERG11 allele was sufficient to activate the Pdr1 transcription factor in the absence of azole drugs. Our data indicate that azole resistance linked to changes in ERG11 activity can involve cellular effects beyond an alteration in this key azole target enzyme. Understanding the physiology linking ergosterol biosynthesis with Pdr1-mediated regulation of azole resistance is crucial for ensuring the continued efficacy of azole drugs against C. glabrata.


Asunto(s)
Azoles , Candida glabrata , Proteínas de Unión al ADN , Factores de Transcripción , Alelos , Antifúngicos/metabolismo , Antifúngicos/farmacología , Azoles/metabolismo , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Pruebas de Sensibilidad Microbiana , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Antimicrob Agents Chemother ; 66(12): e0110122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36374073

RESUMEN

We analyzed a cohort of Trichosporon asahii strains with different MICs of fluconazole and voriconazole and evaluated the presence of ERG11 mutations. ERG11 mutation conferring an amino acid change was found and its resistance potential was evaluated by cloning into Saccharomyces cerevisiae susceptible host strain. Transformants were not resistant to either fluconazole nor voriconazole. Our results suggest that ERG11 variants exist among T. asahii isolates, but are not responsible for resistance phenotypes.


Asunto(s)
Azoles , Sistema Enzimático del Citocromo P-450 , Trichosporon , Antifúngicos/farmacología , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae/genética , Trichosporon/genética , Voriconazol/farmacología
11.
Antimicrob Agents Chemother ; 66(5): e0225021, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35471041

RESUMEN

Fungal infections are a major health concern because of limited antifungal drugs and development of drug resistance. Candida can develop azole drug resistance by overexpression of drug efflux pumps or mutating ERG11, the target of azoles. However, the role of epigenetic histone modifications in azole-induced gene expression and drug resistance is poorly understood in Candida glabrata. In this study, we show that Set1 mediates histone H3K4 methylation in C. glabrata. In addition, loss of SET1 and histone H3K4 methylation increases azole susceptibility in both C. glabrata and S. cerevisiae. This increase in azole susceptibility in S. cerevisiae and C. glabrata strains lacking SET1 is due to distinct mechanisms. For S. cerevisiae, loss of SET1 decreased the expression and function of the efflux pump Pdr5, but not ERG11 expression under azole treatment. In contrast, loss of SET1 in C. glabrata does not alter expression or function of efflux pumps. However, RNA sequencing revealed that C. glabrata Set1 is necessary for azole-induced expression of all 12 genes in the late ergosterol biosynthesis pathway, including ERG11 and ERG3. Furthermore, chromatin immunoprecipitation analysis shows histone H3K4 trimethylation increases upon azole-induced ERG gene expression. In addition, high performance liquid chromatography analysis indicated Set1 is necessary for maintaining proper ergosterol levels under azole treatment. Clinical isolates lacking SET1 were also hypersusceptible to azoles which is attributed to reduced ERG11 expression but not defects in drug efflux. Overall, Set1 contributes to azole susceptibility in a species-specific manner by altering the expression and consequently disrupting pathways known for mediating drug resistance.


Asunto(s)
Azoles , Proteínas de Saccharomyces cerevisiae , Antifúngicos/metabolismo , Antifúngicos/farmacología , Azoles/metabolismo , Azoles/farmacología , Candida glabrata/genética , Candida glabrata/metabolismo , Farmacorresistencia Fúngica/genética , Ergosterol/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/farmacología , Histonas/genética , Histonas/metabolismo , Pruebas de Sensibilidad Microbiana , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Antimicrob Agents Chemother ; 66(1): e0162421, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34633842

RESUMEN

ERG11 sequencing of 28 Candida auris clade III isolates revealed the presence of concomitant V125A and F126L substitutions. Heterologous expression of Erg11-V125A/F126L in Saccharomyces cerevisiae led to reduced fluconazole and voriconazole susceptibilities. Generation of single substitution gene variants through site-directed mutagenesis uncovered that F126L primarily contributes to the elevated triazole MICs. A similar yet diminished pattern of reduced susceptibility was observed with the long-tailed triazoles posaconazole and itraconazole for the V125A/F126L, F126L, Y132F, and K143R alleles.


Asunto(s)
Candida auris , Farmacorresistencia Fúngica , Sustitución de Aminoácidos , Antifúngicos/farmacología , Candida auris/efectos de los fármacos , Candida auris/genética , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pruebas de Sensibilidad Microbiana , Triazoles/farmacología
13.
Microb Pathog ; 170: 105696, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921954

RESUMEN

Vulvovaginal candidiasis (VVC) is a prevalent infection of the genitourinary tract affecting millions of women worldwide. In the present study, the importance of virulence factors, ERG11 gene mutations, ERG11 gene expression, and plasma membrane ergosterol content for fluconazole resistance in Candida species was investigated in 200 women suspected of vulvovaginitis. Isolated Candida species were identified using the ITS-restriction fragment length polymorphism (ITS-RFLP) technique. Antifungal susceptibility testing was performed according to the CLSI document. ERG11 gene expression was analyzed using real-time PCR. ERG11 gene mutation analysis was performed using sequencing methods, and the ergosterol content of the cell membrane was determined in fluconazole-resistant isolates. Furthermore, the production of phospholipase and proteinase enzymes was evaluated in recurrent and non-recurrent infections. VVC was diagnosed in 101 (50.5%) of the 200 clinical cases, of which 21 (20.8%) were confirmed as RVVC. Candida albicans was the most prevalent species, followed by C. glabrata, C. tropicalis, C. krusei, C. parapsilosis, and C. guilliermondii. Ketoconazole and fluconazole were the most effective drugs against C. albicans among five tested antifungals with MIC ranges between 0.06 and 16 µg/mL and 0.25-64 µg/mL. Substitutions of A114S, Y257H, T123I and A114V were detected in fluconazole-resistant C. albicans. The ergosterol content of the fungal cell membrane and the mean levels of ERG11 gene expression transcript were higher in fluconazole-resistant C. albicans isolates obtained from RVVC than in those obtained from VVC cases. Phospholipase and proteinase were produced in different amounts in all Candida species isolated from VVC and RVVC cases. In this review, our results demonstrated that several molecular mechanisms, including ERG11 gene expression, changes in the cell membrane ergosterol content, and mutations in ERG11 gene alone or simultaneously involved in fluconazole resistance of C. albicans species and the recurrence of VVC.


Asunto(s)
Antifúngicos , Candidiasis Vulvovaginal , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Candida albicans , Candida glabrata , Candida parapsilosis , Candida tropicalis , Candidiasis Vulvovaginal/microbiología , Farmacorresistencia Fúngica/genética , Ergosterol/farmacología , Femenino , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , Mutación , Péptido Hidrolasas/genética , Fosfolipasas/genética
14.
BMC Infect Dis ; 22(1): 678, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941587

RESUMEN

BACKGROUND: Vulvovaginal candidiasis is an important cause of morbidity among women due to Candida species. In the last decades, resistance to azoles, first-line antifungals has increased. One molecular mechanism of azole resistance by Candida involves mutations in the ERG11 gene encoding lanosterol 14-α-demethylase, the target enzyme. This study was conducted to identify the clinical Candida species associated in vulvovaginal candidiasis; to determine the rate of antifungal resistance among Candida albicans isolates and to determine mutated ERG11 gene at Saint Camille Hospital in Ouagadougou, Burkina Faso. METHODS: Antifungals susceptibility were performed using Kirby-Bauer disk diffusion method. ERG11 gene was detected using conventional PCR in C. albicans isolates resistant to at least one azole. RESULTS: Out of 262 clinical strains isolated, C. albicans accounted for 59.90%, followed by Candida glabrata 27.86%, Candida famata 7.25%, Candida tropicalis 3.05% and Saccharomyces cerevisiae 1.91%. Resistance rate of fluconazole to C. albicans was 59.54%. ERG11 gene was found in 9.79% of 92 C. albicans strains resistant to azoles. CONCLUSIONS: This detection of mutated ERG11 gene in C. albicans is the first in Burkina Faso and may be a cause of azole resistance in recurrent Candida vulvovaginitis.


Asunto(s)
Candida albicans , Candidiasis Vulvovaginal , Sistema Enzimático del Citocromo P-450/genética , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Azoles , Burkina Faso , Candidiasis Vulvovaginal/tratamiento farmacológico , Farmacorresistencia Fúngica/genética , Femenino , Fluconazol/farmacología , Proteínas Fúngicas/genética , Humanos , Pruebas de Sensibilidad Microbiana
15.
Mol Biol Rep ; 49(12): 11625-11633, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36169896

RESUMEN

BACKGROUND: Candida albicans (C. albicans) is an opportunistic fungus and the most common cause of vulvovaginal candidiasis (VVC). In recent years, the use of antifungal drugs has led to the incidence of drug-resistant C. albicans strains. The purpose of this study is twofold: to determine the pattern of drug susceptibility and the relationship between demographic factors and the incidence of drug resistance among C. albicans isolates and to investigate the expression pattern of drug-resistance genes ERG11 and TAC1 in C. albicans isolates. METHODS AND RESULTS: This descriptive cross-sectional study was conducted on 50 C. albicans isolates from women with VVC. Antifungal susceptibility of the isolates was tested by M27-A3/S4 broth micro dilution method following the Clinical and Laboratory Standards Institute (CLSI) guidelines. High susceptibility rates were recorded for itraconazole and voriconazole (68%), followed by ketoconazole (46%). Fluconazole had the lowest susceptibility to C. albicans with susceptibility of 36%. The change in ERG11 and TAC1 genes expression was determined by qPCR. The mean ∆Ct values of ERG11 and TAC1genes were significantly different between fluconazole-resistant and susceptible groups (p < 0.001). Interestingly, we found that 77% of fluconazole-susceptible isolates had significantly upregulated ERG11 gene (2.9-99.0 fold). In addition, the expression of TAC1 was upregulated in 44% of fluconazole-susceptible isolates (3.86-89.8 fold). CONCLUSION: Our finding revealed that incidence of drug resistance in C. albicans is not simply controlled by genes but is a multi-factorial phenomenon, where several factors and mechanisms are involved in the process of drug resistance.


Asunto(s)
Candida albicans , Fluconazol , Femenino , Humanos , Fluconazol/farmacología , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Estudios Transversales , Pruebas de Sensibilidad Microbiana
16.
Antimicrob Agents Chemother ; 65(11): e0109321, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370582

RESUMEN

Susceptibility testing is an important tool in the clinical setting; its utility is based on the availability of categorical endpoints, breakpoints (BPs), or epidemiological cutoff values (ECVs/ECOFFs). CLSI and EUCAST have developed antifungal susceptibility testing, BPs, and ECVs for some fungal species. Although the concentration gradient strip bioMérieux Etest is useful for routine testing in the clinical laboratory, ECVs are not available for all agent/species; the lack of clinical data precludes development of BPs. We reevaluated and consolidated Etest data points from three previous studies and included new data. We defined ECOFFinder Etest ECVs for three sets of species-agent combinations: fluconazole, posaconazole, and voriconazole and 9 Candida spp.; amphotericin B and 3 nonprevalent Candida spp.; and caspofungin and 4 Aspergillus spp. The total of Etest MICs from 23 laboratories (Europe, the Americas, and South Africa) included (antifungal agent dependent): 17,242 Candida albicans, 244 C. dubliniensis, 5,129 C. glabrata species complex (SC), 275 C. guilliermondii (Meyerozyma guilliermondii), 1,133 C. krusei (Pichia kudriavzevii), 933 C. kefyr (Kluyveromyces marxianus), 519 C. lusitaniae (Clavispora lusitaniae), 2,947 C. parapsilosis SC, 2,214 C. tropicalis, 3,212 Aspergillus fumigatus, 232 A. flavus, 181 A. niger, and 267 A. terreus SC isolates. Triazole MICs for 66 confirmed non-wild-type (non-WT) Candida isolates were available (ERG11 point mutations). Distributions fulfilling CLSI ECV criteria were pooled, and ECOFFinder Etest ECVs were established for triazoles (9 Candida spp.), amphotericin B (3 less-prevalent Candida spp.), and caspofungin (4 Aspergillus spp.). Etest fluconazole ECVs could be good detectors of Candida non-WT isolates (59/61 non-WT, 4 of 6 species).


Asunto(s)
Anfotericina B , Candida , Anfotericina B/farmacología , Antifúngicos/farmacología , Aspergillus , Caspofungina , Pruebas Antimicrobianas de Difusión por Disco , Farmacorresistencia Fúngica , Kluyveromyces , Pruebas de Sensibilidad Microbiana , Pichia , Saccharomycetales , Triazoles/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-33431412

RESUMEN

The emergence of azole-resistant fungal pathogens has posed a great threat to public health worldwide. Although the molecular mechanism of azole resistance has been extensively investigated, the potential regulators of azole resistance remain largely unexplored. In this study, we identified a new function of the fungal specific C2H2 zinc finger transcription factor SltA (involved in the salt tolerance pathway) in the regulation of azole resistance of the human fungal pathogen Aspergillus fumigatus A lack of SltA results in an itraconazole hypersusceptibility phenotype. Transcriptional profiling combined with LacZ reporter analysis and electrophoretic mobility shift assays (EMSA) demonstrated that SltA is involved in its own transcriptional regulation and also regulates the expression of genes related to ergosterol biosynthesis (erg11A, erg13A, and erg24A) and drug efflux pumps (mdr1, mfsC, and abcE) by directly binding to the conserved 5'-AGGCA-3' motif in their promoter regions, and this binding is dependent on the conserved cysteine and histidine within the C2H2 DNA binding domain of SltA. Moreover, overexpression of erg11A or mdr1 rescues sltA deletion defects under itraconazole conditions, suggesting that erg11A and mdr1 are related to sltA-mediated itraconazole resistance. Most importantly, deletion of SltA in laboratory-derived and clinical azole-resistant isolates significantly attenuates drug resistance. Collectively, we have identified a new function of the transcription factor SltA in regulating azole resistance by coordinately mediating the key azole target Erg11A and the drug efflux pump Mdr1, and targeting SltA may provide a potential strategy for intervention of clinical azole-resistant isolates to improve the efficiency of currently approved antifungal drugs.


Asunto(s)
Aspergillus fumigatus , Antifúngicos/farmacología , Aspergillus fumigatus/genética , Azoles/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Factores de Transcripción/genética
18.
Fungal Genet Biol ; 153: 103575, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34033880

RESUMEN

Hospital infections caused by the opportunistic fungus Candida albicans are increasingly common and life threatening. The first line of defense consists of administering antifungal drugs such as azoles including fluconazole that prevent ergosterol biosynthesis. C. albicans is rapidly developing resistance towards antifungal drugs through various mechanisms including mutations in ERG11 which is a gene involved in the ergosterol biosynthesis pathway. These mutations prevent the binding of the drug and inactivate ergosterol synthesis. Alternatively, upregulation of cell membrane ergosterol content generates resistance by countering the effect of the drug. In this study we sequenced the ERG11 gene in 6 fluconazole sensitive and 8 fluconazole resistant C. albicans isolates recovered from clinical settings in Lebanon and quantified the ergosterol content of their plasma membranes to identify mechanisms linked to fluconazole resistance. A number of pathogenicity attributes were also analyzed to determine any correlation with fluconazole resistance. Our results revealed an increase in ergosterol content in the fluconazole resistant isolates. In addition, we identified both novel and previously reported amino acid substitutions in ERG11 as well as frameshift mutations that might contribute to resistance. The fluconazole resistant isolates did not exhibit an increased virulence potential in a mouse model of systemic infection and showed decreased in vitro potential to form biofilms. No discrepancy between drug resistant and sensitive isolates to cell surface disrupting agents was observed. This approach is the first of its kind to be carried out in Lebanon to identify possible mechanisms and phenotypes of drug resistant C. albicans isolates.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Candidiasis/microbiología , Fluconazol/farmacología , Genes Fúngicos , Sustitución de Aminoácidos , Animales , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Pared Celular/ultraestructura , Quitina/análisis , Infección Hospitalaria/microbiología , Farmacorresistencia Fúngica , Ergosterol/metabolismo , Femenino , Mutación del Sistema de Lectura , Proteínas Fúngicas/genética , Humanos , Líbano , Ratones , Virulencia
19.
Med Mycol ; 59(7): 664-671, 2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-33305313

RESUMEN

An increasing number of outbreaks due to resistant non-albicans Candida species have been reported worldwide. Between 2014 and 2016, Candida isolates causing invasive candidiasis were recovered in a Mexican hospital. Isolates were identified to species level and antifungal susceptibility was determined. In the time period studied, 74 invasive candidiasis cases were identified, with 38% (28/74) caused by Candida parapsilosis, out of which 54% (15/28) were fluconazole resistant. The ERG11 gene was sequenced for 12 recoverable fluconazole-resistant C. parapsilosis isolates and SNPs identified. The 12 isolates had one common silent point mutation in ERG11 (T591C) and seven isolates had an additional (A395T) mutation, which corresponded to Y132F. Four of the isolates carrying this mutation were closely related within the same cluster by microsatellite typing. This is the first report of an invasive candidiasis outbreak in Mexico due to azole-resistant C. parapsilosis associated with the Y132F substitution.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Candidiasis Invasiva/epidemiología , Brotes de Enfermedades/estadística & datos numéricos , Proteínas Fúngicas/genética , Mutación/efectos de los fármacos , Adulto , Sustitución de Aminoácidos , Farmacorresistencia Fúngica , Femenino , Hospitales Generales/estadística & datos numéricos , Humanos , Masculino , México , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación/genética , Estudios Retrospectivos
20.
Med Mycol ; 59(9): 855-863, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-33838030

RESUMEN

Prototheca spp. are achlorophyllous algae, ubiquitous in nature. An increasing number of human and animal cases of Prototheca infection (protothecosis) are reported, and antifungal azoles, which inhibit sterol 14α-demethylase (CYP51/ERG11) involved in ergosterol biosynthesis, have empirically been used for the treatment of protothecosis. Although Prototheca, like fungi, has ergosterol in the cell membrane, efficacy of the antifungal azoles in the treatment of protothecosis is controversial. For investigating the interaction of azole drugs with Prototheca CYP51/ERG11, the CYP51/ERG11 genomic genes of four strains of P. wickerhamii and one strain each of P. cutis and P. miyajii were isolated and characterized in this study. Compared with the CYP51/ERG11 gene of chlorophyllous Auxenochlorella Protothecoides, it is possible that ProtothecaCYP51/ERG11 gene, whose exon-intron structure appeared to be species-specific, lost introns associated with the loss of photosynthetic activity. Analysis of the deduced amino acid sequences revealed that Prototheca CYP51/ERG11 and fungal CYP51/ERG11 are phylogenetically distant from each other although their overall structures are similar. Our basic in silico studies predicted that antifungal azoles could bind to the catalytic pocket of Prototheca CYP51/ERG11. It was also suggested that amino acid residues away from the catalytic pocket might affect the drug susceptibility. The results of this study may provide useful insights into the phylogenetic taxonomy of Prototheca spp. in relationship to the CYP51/ERG11 structure and development of novel therapeutic drugs for the treatment of protothecosis. LAY SUMMARY: Cases of infection by microalgae of Prototheca species are increasing. However, effective treatment has not been established yet. In this study, gene and structure of Prototheca's CYP51/ERG11, an enzyme which might serve as a target for therapeutic drugs, were characterized for the first time.


Asunto(s)
Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Farmacorresistencia Fúngica/genética , Prototheca/efectos de los fármacos , Prototheca/genética , Enfermedades Cutáneas Infecciosas/tratamiento farmacológico , Secuencia de Aminoácidos , Variación Genética , Genotipo , Humanos , Filogenia , Esterol 14-Desmetilasa/efectos de los fármacos , Esterol 14-Desmetilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA