Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 36(3): e4858, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36285719

RESUMEN

Acute ischemic stroke results in an ischemic core surrounded by a tissue at risk, named the penumbra, which is potentially salvageable. One way to differentiate the tissues is to measure the hypoxia status. The purpose of the current study is to correlate the abnormal brain tissue volume derived from magnetic resonance-based imaging of brain oxygen saturation (St O2 -MRI) to the fluorine-18 fluoromisonidazole ([18 F]FMISO) positron emission tomography (PET) volume for hypoxia imaging validation, and to analyze the ability of St O2 -MRI to depict the different hypoxic tissue types in the acute phase of stroke. In a pertinent model of stroke in the rat, the volume of tissue with decreased St O2 -MRI signal and that with increased uptake of [18 F]FMISO were equivalent and correlated (r = 0.706; p = 0.015). The values of St O2 in the tissue at risk were significantly greater than those quantified in the core of the lesion, and were less than those for healthy tissue (52.3% ± 2.0%; 43.3% ± 1.9%, and 67.9 ± 1.4%, respectively). A threshold value for St O2 of ≈60% as the cut-off for the identification of the tissue at risk was calculated. Tissue volumes with reduced St O2 -MRI correlated with the final lesion (r = 0.964, p < 0.0001). The findings show that the St O2 -MRI approach is sensitive for the detection of hypoxia and for the prediction of the final lesion after stroke. Once validated in acute clinical settings, this approach might be used to enhance the stratification of patients for potential therapeutic interventions.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Tomografía de Emisión de Positrones , Accidente Cerebrovascular/diagnóstico por imagen , Misonidazol , Hipoxia/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiofármacos
2.
Eur J Nucl Med Mol Imaging ; 49(5): 1650-1660, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34773163

RESUMEN

PURPOSE: Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. METHODS: Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson's correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. RESULTS: Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). CONCLUSION: Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. TRIAL REGISTRATION: The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015.


Asunto(s)
Neoplasias de Cabeza y Cuello , Interleucina-6 , Biomarcadores , Hipoxia de la Célula , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/terapia , Humanos , Hipoxia/diagnóstico por imagen , Misonidazol , Proyectos Piloto , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Estudios Prospectivos , Radiofármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico por imagen , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia
3.
Eur J Nucl Med Mol Imaging ; 49(12): 4014-4024, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35792927

RESUMEN

PURPOSE: To identify the optimal threshold in 18F-fluoromisonidazole (FMISO) PET images to accurately locate tumor hypoxia by using electron paramagnetic resonance imaging (pO2 EPRI) as ground truth for hypoxia, defined by pO2 [Formula: see text] 10 mmHg. METHODS: Tumor hypoxia images in mouse models of SCCVII squamous cell carcinoma (n = 16) were acquired in a hybrid PET/EPRI imaging system 2 h post-injection of FMISO. T2-weighted MRI was used to delineate tumor and muscle tissue. Dynamic contrast enhanced (DCE) MRI parametric images of Ktrans and ve were generated to model tumor vascular properties. Images from PET/EPR/MRI were co-registered and resampled to isotropic 0.5 mm voxel resolution for analysis. PET images were converted to standardized uptake value (SUV) and tumor-to-muscle ratio (TMR) units. FMISO uptake thresholds were evaluated using receiver operating characteristic (ROC) curve analysis to find the optimal FMISO threshold and unit with maximum overall hypoxia similarity (OHS) with pO2 EPRI, where OHS = 1 shows perfect overlap and OHS = 0 shows no overlap. The means of dice similarity coefficient, normalized Hausdorff distance, and accuracy were used to define the OHS. Monotonic relationships between EPRI/PET/DCE-MRI were evaluated with the Spearman correlation coefficient ([Formula: see text]) to quantify association of vasculature on hypoxia imaged with both FMISO PET and pO2 EPRI. RESULTS: FMISO PET thresholds to define hypoxia with maximum OHS (both OHS = 0.728 [Formula: see text] 0.2) were SUV [Formula: see text] 1.4 [Formula: see text] SUVmean and SUV [Formula: see text] 0.6 [Formula: see text] SUVmax. Weak-to-moderate correlations (|[Formula: see text]|< 0.70) were observed between PET/EPRI hypoxia images with vascular permeability (Ktrans) or fractional extracellular-extravascular space (ve) from DCE-MRI. CONCLUSION: This is the first in vivo comparison of FMISO uptake with pO2 EPRI to identify the optimal FMISO threshold to define tumor hypoxia, which may successfully direct hypoxic tumor boosts in patients, thereby enhancing tumor control.


Asunto(s)
Carcinoma de Células Escamosas , Hipoxia Tumoral , Animales , Carcinoma de Células Escamosas/diagnóstico por imagen , Carcinoma de Células Escamosas/patología , Hipoxia de la Célula , Espectroscopía de Resonancia por Spin del Electrón , Hipoxia/diagnóstico por imagen , Ratones , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tomografía Computarizada por Rayos X
4.
Eur J Nucl Med Mol Imaging ; 48(5): 1585-1592, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33125527

RESUMEN

PURPOSE: Hypoxia is associated with aggressive tumour behaviour and can influence response to systemic therapy and radiotherapy. The prevalence of hypoxia in metastatic colorectal cancer is poorly understood, and the relationship of hypoxia to patient outcomes has not been clearly established. The aims of the study were to evaluate hypoxia in metastatic colorectal cancer with [18F]Fluoromisonidazole ([18F]FMISO PET) and correlate these findings with glycolytic metabolism ([18F]FDG PET) and angiogenic blood biomarkers and patient outcomes. METHODS: Patients with metastatic colorectal cancer received routine staging investigations and both [18F] FMISO PET and [18F] FDG PET scans. Correlative blood specimens were also obtained at the time of the [18F] FMISO PET scan. Patient follow-up was performed to establish progression-free survival. RESULTS: A total of 40 patients were recruited into the trial. [18F]FMISO and [18F]FDG PET scans showed a significant correlation of SUVmax (p = 0.003). A significant correlation of progression-free survival and [18F] FMISO TNR (p = 0.02) and overall survival with [18F]FMISO TNR (p = 0.003) and [18F]FDG TGV (p = 0.02) was observed. Serum levels of osteopontin, but not VEGF, correlated with [18F] FMISO and [18F]FDG PET scan parameters. CONCLUSION: [18F]FMISO PET uptake in metastatic colorectal cancer significantly correlates with glycolytic metabolism and is predictive of progression-free and overall survival. These findings have implications for the assessment and treatment of metastatic colorectal cancer patients with novel therapies which affect tumour angiogenesis and hypoxia.


Asunto(s)
Neoplasias Colorrectales , Neoplasias de Cabeza y Cuello , Biomarcadores , Neoplasias Colorrectales/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Humanos , Hipoxia/diagnóstico por imagen , Misonidazol , Tomografía de Emisión de Positrones , Prevalencia , Radiofármacos
5.
Eur J Nucl Med Mol Imaging ; 47(6): 1476-1485, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32025750

RESUMEN

INTRODUCTION: Tumor hypoxia is a centerpiece of disease progression mechanisms such as neoangiogenesis or aggressive hypoxia-resistant malignant cells selection that impacts on radiotherapy strategies. Early identification of regions at risk for recurrence and prognostic-based classification of patients is a necessity to devise tailored therapeutic strategies. We developed an image-based algorithm to spatially map areas of aerobic and anaerobic glycolysis (Glyoxia). METHODS: 18F-FDG and 18F-FMISO PET studies were used in the algorithm to produce DICOM-co-registered representations and maximum intensity projections combined with quantitative analysis of hypoxic volume (HV), hypoxic glycolytic volume (HGV), and anaerobic glycolytic volume (AGV) with CT/MRI co-registration. This was applied to a prospective clinical trial of 10 glioblastoma patients with post-operative, pre-radiotherapy, and early post-radiotherapy 18F-FDG and 18F-FMISO PET and MRI studies. RESULTS: In the 10 glioblastoma patients (5M:5F; age range 51-69 years), 14/18 18F-FMISO PET studies showed detectable hypoxia. Seven patients survived to complete post-radiotherapy studies. The patient with the longest overall survival showed non-detectable hypoxia in both pre-radiotherapy and post-radiotherapy 18F-FMISO PET. The three patients with increased HV, HGV, and AGV volumes after radiotherapy showed 2.8 months mean progression-free interval vs. 5.9 months for the other 4 patients. These parameters correlated at that time point with progression-free interval. Parameters combining hypoxia and glycolytic information (i.e., HGV and AGV) showed more prominent variation than hypoxia-based information alone (HV). Glyoxia-generated images were consistent with disease relapse topology; in particular, one patient had distant relapse anticipated by HV, HGV, and AGV maps. CONCLUSION: Spatial mapping of aerobic and anaerobic glycolysis allows unique information on tumor metabolism and hypoxia to be evaluated with PET, providing a greater understanding of tumor biology and potential response to therapy.


Asunto(s)
Glioblastoma , Anciano , Fluorodesoxiglucosa F18 , Glioblastoma/diagnóstico por imagen , Glioblastoma/radioterapia , Glucólisis , Humanos , Hipoxia/diagnóstico por imagen , Persona de Mediana Edad , Misonidazol , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/radioterapia , Tomografía de Emisión de Positrones , Estudios Prospectivos , Radiofármacos
6.
Adv Exp Med Biol ; 1232: 177-182, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893408

RESUMEN

Tumor hypoxia may play a fundamental role in determining the radiotherapy outcome for several cancer types. Functional imaging with hypoxia specific radiotracers offers a way to visualize and quantify regions of increased radioresistance, which may benefit from dose escalation strategies. Conversion of the uptake in positron emission tomography (PET) images into oxygenation maps offers a way to quantitatively characterize the microenvironment. However, normalization of the uptake with respect to a well-oxygenated reference volume (WOV), which should be properly selected, is necessary when using conversion functions. This study aims at assessing the sensitivity of quantifying tumor oxygenation based on 18F-fluoromisonidazole (FMISO) PET with respect to the choice of the location and the oxygenation level of the WOV in head and neck cancer patients. WOVs varying not only in shape and location but also with respect to the assigned pO2 level were considered. pO2 values other than the standard 60 mmHg were selected according to the specific tissue type included in the volume. For comparison, the volume which would be considered as hypoxic based on a tissue-to-muscle ratio equal to 1.4 was also delineated, as conventionally done in clinical practice. Hypoxia mapping strategies are found highly sensitive to selection of the location of well-oxygenated region, but also on its assigned oxygenation level, which is crucial for hypoxia-guided adaptive dose escalation strategies.


Asunto(s)
Neoplasias de Cabeza y Cuello , Oximetría/instrumentación , Oximetría/normas , Oxígeno , Tomografía de Emisión de Positrones , Hipoxia Tumoral , Neoplasias de Cabeza y Cuello/fisiopatología , Humanos , Misonidazol/análogos & derivados , Misonidazol/metabolismo , Oxígeno/metabolismo , Microambiente Tumoral
7.
Future Oncol ; 14(8): 751-769, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29521519

RESUMEN

Positron emission tomography and multiparametric MRI provide crucial information concerning tumor extent and normal tissue anatomy. Moreover, they are able to visualize biological characteristics of the tumor, which can be considered in the radiation treatment planning and monitoring. In this review we discuss the impact of biological imaging positron emission tomography and multiparametric MRI for radiation oncology, based on the data of the literature and on the experience of our own institution in this field.


Asunto(s)
Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Medicina de Precisión , Oncología por Radiación/tendencias , Medios de Contraste/uso terapéutico , Imagen de Difusión por Resonancia Magnética , Humanos , Neoplasias/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Oncología por Radiación/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
8.
Eur J Nucl Med Mol Imaging ; 44(8): 1383-1392, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28315948

RESUMEN

PURPOSE: Hypoxia in gliomas is associated with tumor resistance to radio- and chemotherapy. However, positron emission tomography (PET) imaging of hypoxia remains challenging, and the validation of biological markers is, therefore, of great importance. We investigated the relationship between uptake of the PET hypoxia tracer [18F]-FMISO and other markers of hypoxia and angiogenesis and with patient survival. PATIENTS AND METHODS: In this prospective single center clinical study, 33 glioma patients (grade IV: n = 24, III: n = 3, and II: n = 6) underwent [18F]-FMISO PET and MRI including relative cerebral blood volume (rCBV) maps before surgery. Maximum standardized uptake values (SUVmax) and hypoxic volume were calculated, defining two groups of patients based on the presence or absence of [18F]-FMISO uptake. After surgery, molecular quantification of CAIX, VEGF, Ang2 (rt-qPCR), and HIF-1α (immunohistochemistry) were performed on tumor specimens. RESULTS: [18F]-FMISO PET uptake was closely linked to tumor grade, with high uptake in glioblastomas (GB, grade IV). Expression of biomarkers of hypoxia (CAIX, HIF-1α), and angiogenesis markers (VEGF, Ang2, rCBV) were significantly higher in the [18F]-FMISO uptake group. We found correlations between the degree of hypoxia (hypoxic volume and SUVmax) and expression of HIF-1α, CAIX, VEGF, Ang2, and rCBV (p < 0.01). Patients without [18F]-FMISO uptake had a longer survival time than uptake positive patients (log-rank, p < 0.005). CONCLUSIONS: Tumor hypoxia as evaluated by [18F]-FMISO PET is associated with the expression of hypoxia markers on a molecular level and is related to angiogenesis. [18F]-FMISO uptake is a mark of an aggressive tumor, almost always a glioblastoma. Our results underline that [18F]-FMISO PET could be useful to guide glioma treatment, and in particular radiotherapy, since hypoxia is a well-known factor of resistance.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glioma/diagnóstico por imagen , Glioma/cirugía , Misonidazol/análogos & derivados , Neovascularización Patológica/diagnóstico por imagen , Tomografía de Emisión de Positrones , Hipoxia Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/cirugía , Volumen Sanguíneo Cerebral , Supervivencia sin Enfermedad , Femenino , Glioma/patología , Glioma/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Misonidazol/metabolismo , Radiocirugia
9.
Eur J Nucl Med Mol Imaging ; 43(12): 2147-2154, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27251644

RESUMEN

PURPOSE: The purpose of this study was to prospectively investigate reoxygenation in the early phase of fractionated radiotherapy and serial changes of tumoricidal effects associated with intensity-modulated radiation therapy (IMRT) in patients with head and neck cancer (HNC) using F-18 fluoromisonidazole (FMISO) PET and F-18 fluorodeoxyglucose (FDG) PET. METHODS: Patients with untreated HNC underwent FMISO-PET and FDG-PET studies prospectively. A PET evaluation was conducted before each IMRT (Pre-IMRT), during IMRT (at 30 Gy/15 fr) (Inter-IMRT), and after completion of IMRT (70 Gy/35 fr) (Post-IMRT). FMISO-PET images were scanned by a PET/CT scanner at 4 h after the FMISO injection. We quantitatively analyzed the FMISO-PET images of the primary lesion using the maximum standardized uptake (SUVmax) and tumor-to-muscle ratio (TMR). The hypoxic volume (HV) was calculated as an index of tumor hypoxia, and was defined as the volume when the TMR was ≥ 1.25. Each FDG-PET scan was started 1 h after injection. The SUVmax and metabolic tumor volume (MTV) values obtained by FDG-PET were analyzed. RESULTS: Twenty patients finished the complete PET study protocol. At Pre-IMRT, 19 patients had tumor hypoxia in the primary tumor. In ten patients, the tumor hypoxia disappeared at Inter-IMRT. Another seven patients showed the disappearance of tumor hypoxia at Post-IMRT. Two patients showed tumor hypoxia at Post-IMRT. The FMISO-PET results showed that the reduction rates of both SUVmax and TMR from Pre-IMRT to Inter-IMRT were significantly higher than the corresponding reductions from Inter-IMRT to Post-IMRT (SUVmax: 27 % vs. 10 %, p = 0.025; TMR: 26 % vs. 12 %, p = 0.048). The reduction rate of SUVmax in FDG-PET from Pre-IMRT to Inter-IMRT was similar to that from Inter-IMRT to Post-IMRT (47 % vs. 48 %, p = 0.778). The reduction rate of the HV in FMISO-PET from Pre-IMRT to Inter-IMRT tended to be larger than that from Inter-IMRT to Post-IMRT (63 % vs. 40 %, p = 0.490). Conversely, the reduction rate of the MTV in FDG-PET from Pre-IMRT to Inter-IMRT was lower than that from Inter-IMRT to Post-IMRT (47 % vs. 74 %, p = 0.003). CONCLUSIONS: Both the intensity and the volume of tumor hypoxia rapidly decreased in the early phase of radiotherapy, indicating reoxygenation of the tumor hypoxia. In contrast, the FDG uptake declined gradually with the course of radiotherapy, indicating that the tumoricidal effect continues over the entire course of radiation treatment.


Asunto(s)
Fluorodesoxiglucosa F18/farmacocinética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/radioterapia , Oxígeno/metabolismo , Radioterapia Conformacional/métodos , Hipoxia Tumoral/efectos de la radiación , Adulto , Anciano , Fraccionamiento de la Dosis de Radiación , Regulación hacia Abajo/efectos de la radiación , Femenino , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad , Misonidazol/análogos & derivados , Misonidazol/farmacocinética , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Resultado del Tratamiento
10.
Eur J Nucl Med Mol Imaging ; 43(8): 1469-76, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26841941

RESUMEN

PURPOSE: Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. METHODS: This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). RESULTS: In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. CONCLUSIONS: FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for treatment decisions or surgical strategies of any type of brain tumor.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones , Adulto , Anciano , Anciano de 80 o más Años , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Necrosis
11.
Recent Results Cancer Res ; 198: 175-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27318687

RESUMEN

Hypoxia is a marker of poor prognosis in malignant tumors independent from the selected therapeutic method and the therapy should be intensified in such tumors. Hypoxia imaging with positron emission tomography (PET) is limited by low contrast to noise ratios with every available tracer. In radiation oncology appropriate delineation is required to allow therapy and intensification. While manual segmentation results are highly dependent from experience and observers condition (high inter- and intra observer variability), threshold- and gradient-based algorithms for automatic segmentation frequently fail in low contrast data sets. Likewise, calibration of these algorithms using phantoms is not useful. Complex computational models such as swarm intelligence-based algorithms are promising tools for optimized segmentation results and allow observer independent interpretation of multimodal and multidimensional imaging data.


Asunto(s)
Misonidazol/análogos & derivados , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Humanos , Misonidazol/farmacocinética , Variaciones Dependientes del Observador , Fantasmas de Imagen , Pronóstico , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Methods Mol Biol ; 2755: 133-140, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319574

RESUMEN

Tumor hypoxia is an essential factor related to malignancy, prognosis, and resistance to treatment. Positron emission tomography (PET) is a modality that visualizes the distribution of radiopharmaceuticals administered into the body. PET imaging with [18F]fluoromisonidazole ([18F]FMISO) identifies hypoxic tissues. Unlike [18F]fluorodeoxyglucose ([18F]FDG)-PET, fasting is not necessary for [18F]FMISO-PET, but the waiting time from injection to image acquisition needs to be relatively long (e.g., 2-4 h). [18F]FMISO-PET images can be displayed on an ordinary commercial viewer on a personal computer (PC). While visual assessment is fundamental, various quantitative indices such as tumor-to-muscle ratio have also been proposed. Several novel hypoxia tracers have been invented to compensate for the limitations of [18F]FMISO.


Asunto(s)
Misonidazol , Tomografía de Emisión de Positrones , Humanos , Ayuno , Fluorodesoxiglucosa F18 , Hipoxia/diagnóstico por imagen
13.
World Neurosurg ; 175: e1364-e1374, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187346

RESUMEN

BACKGROUND: Cancer stemness and immunosuppressive tumor microenvironment (TME) in accordance with tumor oxygenation are variable during bevacizumab (Bev) therapy for glioblastoma (GBM). Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) reflects hypoxic TME. The aim of this study was to compare FMISO-PET and immunohistochemical findings of tumor oxygenation in the TME of GBM during Bev treatment. METHODS: Seven patients with newly diagnosed IDH-wildtype GBM underwent FMISO-PET during follow-up. Three patients received preoperative neoadjuvant Bev (neo-Bev) and subsequently underwent surgical resection. Reoperation was performed at the recurrence. FMISO-PET was performed before and after neo-Bev. Four patients who underwent tumor resection without neo-Bev were included as the control group. Expressions of hypoxic markers (carbonic anhydrase; CA9), stem cell markers (nestin, FOXM1), and immunoregulatory molecules (CD163, FOXP3, PD-L1) in tumor tissues were analyzed by immunohistochemistry (IHC). RESULTS: All 3 patients treated with neo-Bev showed decrease in FMISO accumulation in accordance with expressions of CA9 and FOXM1 compared with the control group. Two of these 3 patients at the recurrence showed increase in FMISO accumulation. IHC showed increased CA9-and FOXM1-positive cells in recurrent tumors. Expression of PD-L1 tended to be lower after neo-Bev compared with the control group. CONCLUSIONS: FMISO-PET effectively visualized TME oxygenation after neo-Bev. Increased FMISO accumulation at the time of recurrence, even under Bev treatment, suggests that FMISO-PET might be useful for monitoring the duration of Bev efficacy by reflecting tumor oxygenation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Bevacizumab/uso terapéutico , Antígeno B7-H1 , Terapia Neoadyuvante , Inmunohistoquímica , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Microambiente Tumoral
14.
Math Biosci ; 366: 109106, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931781

RESUMEN

Immunotherapies such as checkpoint blockade to PD1 and CTLA4 can have varied effects on individual tumors. To quantify the successes and failures of these therapeutics, we developed a stepwise mathematical modeling strategy and applied it to mouse models of colorectal and breast cancer that displayed a range of therapeutic responses. Using longitudinal tumor volume data, an exponential growth model was utilized to designate response groups for each tumor type. The exponential growth model was then extended to describe the dynamics of the quality of vasculature in the tumors via [18F] fluoromisonidazole (FMISO)-positron emission tomography (PET) data estimating tumor hypoxia over time. By calibrating the mathematical system to the PET data, several biological drivers of the observed deterioration of the vasculature were quantified. The mathematical model was then further expanded to explicitly include both the immune response and drug dosing, so that model simulations are able to systematically investigate biological hypotheses about immunotherapy failure and to generate experimentally testable predictions of immune response. The modeling results suggest elevated immune response fractions (> 30 %) in tumors unresponsive to immunotherapy is due to a functional immune response that wanes over time. This experimental-mathematical approach provides a means to evaluate dynamics of the system that could not have been explored using the data alone, including tumor aggressiveness, immune exhaustion, and immune cell functionality.


Asunto(s)
Neoplasias , Ratones , Animales , Neoplasias/terapia , Neoplasias/patología , Tomografía de Emisión de Positrones/métodos , Modelos Animales de Enfermedad , Inmunoterapia
15.
Artículo en Inglés | MEDLINE | ID: mdl-37157884

RESUMEN

PURPOSE: The purpose of this study was to evaluate the radiotherapy planning feasibility of dose escalation with intensity-modulated proton therapy (IMPT) to hypoxic tumor regions identified on 18F-Fluoromisonidazole (FMISO) positron emission tomography and computed tomography (PET-CT) in NPC. MATERIALS AND METHODS: Nine patients with stages T3-4N0-3M0 NPC underwent 18F-FMISO PET-CT before and during week 3 of radiotherapy. The hypoxic volume (GTVhypo) is automatically generated by applying a subthresholding algorithm within the gross tumor volume (GTV) with a tumor to muscle standardized uptake value (SUV) ratio of 1.3 on the 18F-FMISO PET-CT scan. Two proton plans were generated for each patient, a standard plan to 70 Gy and dose escalation plan with upfront boost followed by standard 70GyE plan. The stereotactic boost was planned with single-field uniform dose optimization using two fields to deliver 10 GyE in two fractions to GTVhypo. The standard plan was generated with IMPT with robust optimization to deliver 70GyE, 60GyE in 33 fractions using simultaneous integrated boost technique. A plan sum was generated for assessment. RESULTS: Eight of nine patients showed tumor hypoxia on the baseline 18F-FMISO PET-CT scan. The mean hypoxic tumor volume was 3.9 cm3 (range .9-11.9cm3 ). The average SUVmax of the hypoxic volume was 2.2 (range 1.44-2.98). All the dose-volume parameters met the planning objectives for target coverage. Dose escalation was not feasible in three of eight patients as the D0.03cc of temporal lobe was greater than 75GyE. CONCLUSIONS: The utility of boost to the hypoxic volume before standard course of radiotherapy with IMPT is dosimetrically feasible in selected patients. Clinical trials are warranted to determine the clinical outcomes of this approach.

16.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980806

RESUMEN

Intratumoral hypoxia is associated with a poor prognosis and poor response to treatment in head and neck cancers. Its identification would allow for increasing the radiation dose to hypoxic tumor subvolumes. 18F-FMISO PET imaging is the gold standard; however, quantitative multiparametric MRI could show the presence of intratumoral hypoxia. Thus, 16 patients were prospectively included and underwent 18F-FDG PET/CT, 18F-FMISO PET/CT, and multiparametric quantitative MRI (DCE, diffusion and relaxometry T1 and T2 techniques) in the same position before treatment. PET and MRI sub-volumes were segmented and classified as hypoxic or non-hypoxic volumes to compare quantitative MRI parameters between normoxic and hypoxic volumes. In total, 13 patients had hypoxic lesions. The Dice, Jaccard, and overlap fraction similarity indices were 0.43, 0.28, and 0.71, respectively, between the FDG PET and MRI-measured lesion volumes, showing that the FDG PET tumor volume is partially contained within the MRI tumor volume. The results showed significant differences in the parameters of SUV in FDG and FMISO PET between patients with and without measurable hypoxic lesions. The quantitative MRI parameters of ADC, T1 max mapping and T2 max mapping were different between hypoxic and normoxic subvolumes. Quantitative MRI, based on free water diffusion and T1 and T2 mapping, seems to be able to identify intra-tumoral hypoxic sub-volumes for additional radiotherapy doses.

17.
Biomedicines ; 11(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36672633

RESUMEN

Hypoxia is a common feature of the tumor microenvironment, including that of triple-negative breast cancer (TNBC), an aggressive breast cancer subtype with a high five-year mortality rate. Using [18F]-fluoromisonidazole (FMISO) positron emission tomography (PET) imaging, we aimed to monitor changes in response to immunotherapy (IMT) with chemotherapy in TNBC. TNBC-tumor-bearing mice received paclitaxel (PTX) ± immune checkpoint inhibitors anti-programmed death 1 and anti-cytotoxic T-lymphocyte 4. FMISO-PET imaging was performed on treatment days 0, 6, and 12. Max and mean standard uptake values (SUVmax and SUVmean, respectively), histological analyses, and flow cytometry results were compared. FMISO-PET imaging revealed differences in tumor biology between treatment groups prior to tumor volume changes. 4T1 responders showed SUVmean 1.6-fold lower (p = 0.02) and 1.8-fold lower (p = 0.02) than non-responders on days 6 and 12, respectively. E0771 responders showed SUVmean 3.6-fold lower (p = 0.001) and 2.7-fold lower (p = 0.03) than non-responders on days 6 and 12, respectively. Immunohistochemical analyses revealed IMT plus PTX decreased hypoxia and proliferation and increased vascularity compared to control. Combination IMT/PTX recovered the loss of CD4+ T-cells observed with single-agent therapies. PET imaging can provide timely, longitudinal data on the TNBC tumor microenvironment, specifically intratumoral hypoxia, predicting therapeutic response to IMT plus chemotherapy.

18.
Math Biosci Eng ; 20(10): 17625-17645, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38052529

RESUMEN

The goal of this study is to develop a mathematical model that captures the interaction between evofosfamide, immunotherapy, and the hypoxic landscape of the tumor in the treatment of tumors. Recently, we showed that evofosfamide, a hypoxia-activated prodrug, can synergistically improve treatment outcomes when combined with immunotherapy, while evofosfamide alone showed no effects in an in vivo syngeneic model of colorectal cancer. However, the mechanisms behind the interaction between the tumor microenvironment in the context of oxygenation (hypoxic, normoxic), immunotherapy, and tumor cells are not fully understood. To begin to understand this issue, we develop a system of ordinary differential equations to simulate the growth and decline of tumors and their vascularization (oxygenation) in response to treatment with evofosfamide and immunotherapy (6 combinations of scenarios). The model is calibrated to data from in vivo experiments on mice implanted with colon adenocarcinoma cells and longitudinally imaged with [18F]-fluoromisonidazole ([18F]FMISO) positron emission tomography (PET) to quantify hypoxia. The results show that evofosfamide is able to rescue the immune response and sensitize hypoxic tumors to immunotherapy. In the hypoxic scenario, evofosfamide reduces tumor burden by $ 45.07 \pm 2.55 $%, compared to immunotherapy alone, as measured by tumor volume. The model accurately predicts the temporal evolution of five different treatment scenarios, including control, hypoxic tumors that received immunotherapy, normoxic tumors that received immunotherapy, evofosfamide alone, and hypoxic tumors that received combination immunotherapy and evofosfamide. The average concordance correlation coefficient (CCC) between predicted and observed tumor volume is $ 0.86 \pm 0.05 $. Interestingly, the model values to fit those five treatment arms was unable to accurately predict the response of normoxic tumors to combination evofosfamide and immunotherapy (CCC = $ -0.064 \pm 0.003 $). However, guided by the sensitivity analysis to rank the most influential parameters on the tumor volume, we found that increasing the tumor death rate due to immunotherapy by a factor of $ 18.6 \pm 9.3 $ increases CCC of $ 0.981 \pm 0.001 $. To the best of our knowledge, this is the first study to mathematically predict and describe the increased efficacy of immunotherapy following evofosfamide.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Ratones , Animales , Neoplasias del Colon/diagnóstico por imagen , Neoplasias del Colon/terapia , Hipoxia de la Célula , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/terapia , Modelos Animales de Enfermedad , Línea Celular Tumoral , Hipoxia/terapia , Inmunoterapia , Microambiente Tumoral
19.
Clin Transl Radiat Oncol ; 33: 120-127, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35243023

RESUMEN

BACKGROUND: Tumor hypoxia worsens the prognosis of head-and-neck squamous cell carcinoma (HNSCC) patients, and plasma hypoxia markers may be used as biomarkers for radiotherapy personalization. We therefore investigated the role of the hypoxia-associated plasma proteins osteopontin, galectin-3, vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) as surrogate markers for imaging-based tumor hypoxia. METHODS: Serial blood samples of HNSCC patients receiving chemoradiation within a prospective trial were analyzed for osteopontin, galectin-3, VEGF and CTGF concentrations. Tumor hypoxia was quantified in treatment weeks 0, 2 and 5 using [18F]FMISO PET/CT. The association between PET-defined hypoxia and the plasma markers was determined using Pearson's correlation analyses. Receiver-operating characteristic analyses were conducted to reveal the diagnostic value of the hypoxia markers. RESULTS: Baseline osteopontin (r = 0.579, p < 0.01) and galectin-3 (r = 0.429, p < 0.05) correlated with the hypoxic subvolume (HSV) prior to radiotherapy, whereas VEGF (r = 0.196, p = 0.36) and CTGF (r = 0.314, p = 0.12) showed no association. Patients with an HSV > 1 mL in week 2 exhibited increased VEGF (p < 0.05) and CTGF (p < 0.05) levels in week 5. Pretherapeutic osteopontin levels were higher in patients exhibiting residual hypoxia at the end of treatment (104.7 vs. 60.8 ng/mL, p < 0.05) and could therefore predict residual hypoxia (AUC = 0.821, 95% CI 0.604-1.000, p < 0.05). CONCLUSION: In this exploratory analysis, osteopontin correlated with the initial HSV and with residual tumor hypoxia; therefore, there may be a rationale to study hypoxic modification based on osteopontin levels. However, as plasma hypoxia markers do not correspond to any spatial information of tumor hypoxia, they have limitations regarding the replacement of [18F]FMISO PET-based focal treatments. The results need to be validated in larger patient cohorts to draw definitive conclusions.

20.
Radiother Oncol ; 171: 30-36, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395276

RESUMEN

BACKGROUND AND PURPOSE: Tumor hypoxia is a major cause of resistance to radiochemotherapy in locally advanced head-and-neck cancer (LASCCHN). We present results of a randomized phase II trial on hypoxia dose escalation (DE) in LASCCHN based on dynamic [18F]FMISO (dynFMISO) positron emission tomography (PET). The purpose was to confirm the prognostic value of hypoxia PET and assess feasibility, toxicity and efficacy of hypoxia-DE. MATERIALS AND METHODS: Patients with LASCCHN underwent baseline dynFMISO PET/CT. Hypoxic volumes (HV) were derived from dynFMISO data. Patients with hypoxic tumors (HV > 0) were randomized into standard radiotherapy (ST: 70Gy/35fx) or dose escalation (DE: 77Gy/35fx) to the HV. Patients with non-hypoxic tumors were treated with ST. After a minimum follow-up of 2 years feasibility, acute/late toxicity and local control (LC) were analyzed. RESULTS: The study was closed prematurely due to slow accrual. Between 2009 and 2017, 53 patients were enrolled, 39 (74%) had hypoxic tumors and were randomized into ST or DE. For non-hypoxic patients, 100% 5-year LC was observed compared to 74% in patients with hypoxic tumors (p = 0.039). The difference in 5-year LC between DE (16/19) and ST (10/17) was 25%, p = 0.150. No relevant differences related to acute and late toxicities between the groups were observed. CONCLUSION: This study confirmed the prognostic value of hypoxia PET in LASCCHN for LC. Outcome after hypoxia DE appears promising and may support the concept of DE. Slow accrual and premature closure may partly be due to a high complexity of the study setup which needs to be considered for future multicenter trials.


Asunto(s)
Neoplasias de Cabeza y Cuello , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Hipoxia , Misonidazol/análogos & derivados , Tomografía de Emisión de Positrones/métodos , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA