Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.141
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267907

RESUMEN

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Asunto(s)
Comunicación Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 121(5): e2306816121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38266047

RESUMEN

Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.


Asunto(s)
Esclerosis Múltiple , Fragmentos de Péptidos , Inhibidor Tisular de Metaloproteinasa-1 , Animales , Ratones , Ratas , Astrocitos , Fibronectinas/genética , Clorhidrato de Fingolimod/farmacología , Ratones Endogámicos C57BL , Esclerosis Múltiple/tratamiento farmacológico , Proteómica , Inhibidor Tisular de Metaloproteinasa-1/genética
3.
Physiol Rev ; 99(4): 1655-1699, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31313981

RESUMEN

Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.


Asunto(s)
Adhesión Celular , Membrana Celular/metabolismo , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Mecanotransducción Celular , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proliferación Celular , Humanos , Integrinas/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Fosfoproteínas/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
4.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621002

RESUMEN

The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/ß1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.


Asunto(s)
Actomiosina , Integrina alfa5 , Animales , Ratones , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Proliferación Celular , Integrina alfa5/metabolismo , Mamíferos/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo
5.
J Biol Chem ; 300(8): 107578, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029626

RESUMEN

Lenalidomide, a thalidomide derivative, is prescribed as maintenance therapy for multiple myeloma (MM). Patients with MM receiving lenalidomide were found to develop a distinct therapy-related B cell acute lymphoblastic leukemia (B-ALL). However, the molecular mechanism by which lenalidomide drives B-ALL is unknown. We show that thalidomide treatment of B cell lines increased CD34 expression and fibronectin adhesion. This resembled the effects of Ikzf1 loss of function mutations in B-ALL. IKZF1 is a transcription factor that can act as both a transcriptional activator and a repressor depending upon the target loci. In our experiments, thalidomide-induced degradation of IKZF1 increased the expression of its transcriptional repression targets Itga5 and CD34 explaining the increased adhesion and stemness. Strikingly, withdrawal of thalidomide lead to the mis-localization of IKZF1 to the cytoplasm. Moreover, chromatin immunoprecipitation data showed a long-term effect of thalidomide treatment on IKZF1 target loci. This included decreased chromatin occupancy at early B cell factor 1 (EBF1) and Spi1 (PU.1). Consequently, B-cell lineage specifying transcription factors including Pax5, Spi1 and EBF1 were downregulated even after 7 days of thalidomide withdrawal. Our study thus provides a molecular mechanism of thalidomide-induced B-ALL whereby thalidomide alters the chromatin occupancy of IKZF1 at key B-cell lineage transcription factors leading to a persistent block in B-cell differentiation.


Asunto(s)
Factor de Transcripción Ikaros , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Talidomida , Humanos , Factor de Transcripción Ikaros/metabolismo , Factor de Transcripción Ikaros/genética , Talidomida/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Línea Celular Tumoral , Lenalidomida/farmacología , Transactivadores/metabolismo , Transactivadores/genética , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Proteínas Proto-Oncogénicas
6.
J Biol Chem ; 300(5): 107283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608728

RESUMEN

Over the past 3 decades, a diverse collection of small protein domains have been used as scaffolds to generate general purpose protein-binding reagents using a variety of protein display and enrichment technologies. To expand the repertoire of scaffolds and protein surfaces that might serve this purpose, we have explored the utility of (i) a pair of anti-parallel alpha-helices in a small highly disulfide-bonded 4-helix bundle, the CC4 domain from reversion-inducing Cysteine-rich Protein with Kazal Motifs and (ii) a concave beta-sheet surface and two adjacent loops in the human FN3 domain, the scaffold for the widely used monobody platform. Using M13 phage display and next generation sequencing, we observe that, in both systems, libraries of ∼30 million variants contain binding proteins with affinities in the low µM range for baits corresponding to the extracellular domains of multiple mammalian proteins. CC4- and FN3-based binding proteins were fused to the N- and/or C-termini of Fc domains and used for immunostaining of transfected cells. Additionally, FN3-based binding proteins were inserted into VP1 of AAV to direct AAV infection to cells expressing a defined surface receptor. Finally, FN3-based binding proteins were inserted into the Pvc13 tail fiber protein of an extracellular contractile injection system particle to direct protein cargo delivery to cells expressing a defined surface receptor. These experiments support the utility of CC4 helices B and C and of FN3 beta-strands C, D, and F together with adjacent loops CD and FG as surfaces for engineering general purpose protein-binding reagents.


Asunto(s)
Biblioteca de Péptidos , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Animales , Humanos , Bacteriófago M13 , Técnicas de Visualización de Superficie Celular , Células HEK293 , Unión Proteica
7.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37870164

RESUMEN

Tumor initiation at either primary or metastatic sites is an inefficient process in which tumor cells must fulfill a series of conditions. One critical condition involves the ability of individual tumor-initiating cells to overcome 'isolation stress', enabling them to survive within harsh isolating microenvironments that can feature nutrient stress, hypoxia, oxidative stress and the absence of a proper extracellular matrix (ECM). In response to isolation stress, tumor cells can exploit various adaptive strategies to develop stress tolerance and gain stemness features. In this Opinion, we discuss how strategies such as the induction of certain cell surface receptors and deposition of ECM proteins enable tumor cells to endure isolation stress, thereby gaining tumor-initiating potential. As examples, we highlight recent findings from our group demonstrating how exposure of tumor cells to isolation stress upregulates the G-protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), its downstream target fibronectin and two fibronectin-binding integrins, α5ß1 and αvß3. These responses create a fibronectin-rich niche for tumor cells, ultimately driving stress tolerance, cancer stemness and tumor initiation. We suggest that approaches to prevent cancer cells from adapting to stress by suppressing LPAR4 induction, blocking its downstream signaling or disrupting fibronectin-integrin interactions hold promise as potential strategies for cancer treatment.


Asunto(s)
Fibronectinas , Integrinas , Fibronectinas/metabolismo , Adhesión Celular/fisiología , Regulación hacia Arriba , Integrinas/metabolismo , Integrina alfa5beta1/metabolismo , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo
8.
J Cell Sci ; 136(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129180

RESUMEN

Fibronectin (FN)-binding integrins control a variety of cellular responses through Rho GTPases. The FN-binding integrins, αvß3 and α5ß1, are known to induce different effects on cell morphology and motility. Here, we report that FN-bound αvß3 integrin, but not FN-bound α5ß1 integrin, triggers the dissociation of the RhoA GEF Lfc (also known as GEF-H1 and ARHGEF2 in humans) from microtubules (MTs), leading to the activation of RhoA, formation of stress fibres and maturation of focal adhesions (FAs). Conversely, loss of Lfc expression decreases RhoA activity, stress fibre formation and FA size, suggesting that Lfc is the major GEF downstream of FN-bound αvß3 that controls RhoA activity. Mechanistically, FN-engaged αvß3 integrin activates a kinase cascade involving MARK2 and MARK3, which in turn leads to phosphorylation of several phospho-sites on Lfc. In particular, S151 was identified as the main site involved in the regulation of Lfc localization and activity. Our findings indicate that activation of Lfc and RhoA is orchestrated in FN-adherent cells in an integrin-specific manner.


Asunto(s)
Integrina alfa5beta1 , Integrina alfaV , Humanos , Integrina alfaV/metabolismo , Integrina alfa5beta1/metabolismo , Integrinas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo
9.
Exp Cell Res ; 442(2): 114251, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265920

RESUMEN

Fibronectin (Fn) is a ubiquitous extracellular matrix (ECM) glycoprotein that acts as an ECM scaffold organizer and is essential in many biological functions, including tissue repair, differentiation or cancer dissemination. Evidence suggests that the amount of Fn changes during aging. However, how these changes influence the aging process remains unclear. This study aims to understand Fn influence on cell aging. First, we assess the relative level of Fn abundance in both different biopsies of skin donors and replicative senescence cellular model. In skin biopsies, we observed that Fn level decreases with aging in the reticular dermis, while its expression remains relatively stable in the papillary dermis, likely to sustain the dermis-epidermis junction. During replicative senescence, in BJ skin fibroblasts, while intracellular Fn increases, we found that secretion and Fn fibrils formation are less effective. Reduced Fn fibrils leads to disorganization of the ECM. This could be explained by the expression of different Fn isoforms observed in the secretome of senescent cells. Surprisingly, the knockdown of Fn delays the onset of senescence while cultivating cells onto a Fn-coated support promotes it. Taken together, these new insights on the role of Fn during aging may emerge new therapeutic strategies on aged-related diseases.

10.
Exp Cell Res ; 442(1): 114186, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098465

RESUMEN

TGFß1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFß. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFß1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFß1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFß1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFß, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFß1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFß1 induced endogenous TGFß, αSMA, MMP2, MMP9 and Col I mRNA. TGFß1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFß1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFß, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFß1 was confirmed by the use of a TGFß receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFß driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.


Asunto(s)
Empalme Alternativo , Células Epiteliales , Fibronectinas , Fibrosis , Túbulos Renales Proximales , Oligonucleótidos Antisentido , Factor de Crecimiento Transformador beta1 , Humanos , Fibronectinas/metabolismo , Fibronectinas/genética , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Túbulos Renales Proximales/citología , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/genética , Fibrosis/metabolismo , Empalme Alternativo/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Células Epiteliales/efectos de los fármacos , Células Cultivadas , Comunicación Autocrina , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética
11.
Mol Ther ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39295147

RESUMEN

Epigenetic regulations, such as DNA methylation and microRNAs, play an important role in renal fibrosis. Here, we report the regulation of microRNA219a-2 by DNA methylation in fibrotic kidneys, unveiling the crosstalk between these epigenetic mechanisms. Through genome-wide DNA methylation analysis and pyrosequencing, we detected the hypermethylation of microRNA219a-2 in renal fibrosis induced by unilateral ureteral obstruction (UUO) or renal ischemia/reperfusion, which was accompanied by a significant decrease in microRNA-219a-5p expression. Functionally, overexpression of microRNA219a-2 enhanced fibronectin induction during hypoxia or TGF-ß1 treatment of cultured renal cells. In mice, inhibition of microRNA-219a-5p suppressed fibronectin accumulation in UUO and ischemic/reperfused kidneys. Aldehyde dehydrogenase 1 family member L2 (ALDH1L2) was identified to be the direct target gene of microRNA-219a-5p in renal fibrotic models. MicroRNA-219a-5p suppressed ALDH1L2 expression in cultured renal cells, while inhibition of microRNA-219a-5p prevented the decrease of ALDH1L2 in injured kidneys. Knockdown of ALDH1L2 enhanced plasminogen activator inhibitor-1 (PAI-1) induction during TGF-ß1 treatment of renal cells, which was associated with fibronectin expression. In conclusion, the hypermethylation of microRNA219a-2 in response to fibrotic stress may attenuate microRNA-219a-5p expression and induce the upregulation of its target gene ALDH1L2, which reduces fibronectin deposition by suppressing PAI-1.

12.
Cell Mol Life Sci ; 81(1): 419, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367925

RESUMEN

Fibronectin (FN) is an extracellular matrix glycoprotein essential for the development and function of major vertebrate organ systems. Mutations in FN result in an autosomal dominant skeletal dysplasia termed corner fracture-type spondylometaphyseal dysplasia (SMDCF). The precise pathomechanisms through which mutant FN induces impaired skeletal development remain elusive. Here, we have generated patient-derived induced pluripotent stem cells as a cell culture model for SMDCF to investigate the consequences of FN mutations on mesenchymal stem cells (MSCs) and their differentiation into cartilage-producing chondrocytes. In line with our previous data, FN mutations disrupted protein secretion from MSCs, causing a notable increase in intracellular FN and a significant decrease in extracellular FN levels. Analyses of plasma samples from SMDCF patients also showed reduced FN in circulation. FN and endoplasmic reticulum (ER) protein folding chaperones (BIP, HSP47) accumulated in MSCs within ribosome-covered cytosolic vesicles that emerged from the ER. Massive amounts of these vesicles were not cleared from the cytosol, and a smaller subset showed the presence of lysosomal markers. The accumulation of intracellular FN and ER proteins elevated cellular stress markers and altered mitochondrial structure. Bulk RNA sequencing revealed a specific transcriptomic dysregulation of the patient-derived cells relative to controls. Analysis of MSC differentiation into chondrocytes showed impaired mesenchymal condensation, reduced chondrogenic markers, and compromised cell proliferation in mutant cells. Moreover, FN mutant cells exhibited significantly lower transforming growth factor beta-1 (TGFß1) expression, crucial for mesenchymal condensation. Exogenous FN or TGFß1 supplementation effectively improved the MSC condensation and promoted chondrogenesis in FN mutant cells. These findings demonstrate the cellular consequences of FN mutations in SMDCF and explain the molecular pathways involved in the associated altered chondrogenesis.


Asunto(s)
Diferenciación Celular , Condrocitos , Condrogénesis , Fibronectinas , Células Madre Mesenquimatosas , Mutación , Humanos , Condrogénesis/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Diferenciación Celular/genética , Condrocitos/metabolismo , Condrocitos/patología , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Proliferación Celular/genética , Femenino
13.
Differentiation ; 138: 100792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38935992

RESUMEN

The role extracellular matrix (ECM) in multiple events of morphogenesis has been well described, little is known about its specific role in early eye development. One of the first morphogenic events in lens development is placodal thickening, which converts the presumptive lens ectoderm from cuboidal to pseudostratified epithelium. This process occurs in the anterior pre-placodal ectoderm when the optic vesicle approaches the cephalic ectoderm and is regulated by transcription factor Pax6 and secreted BMP4. Since cells and ECM have a dynamic relationship of interdependence and modulation, we hypothesized that the ECM evolves with cell shape changes during lens placode formation. This study investigates changes in optic ECM including both protein distribution deposition, extracellular gelatinase activity and gene expression patterns during early optic development using chicken and mouse models. In particular, the expression of Timp2, a metalloprotease inhibitor, corresponds with a decrease in gelatinase activity within the optic ECM. Furthermore, we demonstrate that optic ECM remodeling depends on BMP signaling in the placode. Together, our findings suggest that the lens placode plays an active role in remodeling the optic ECM during early eye development.


Asunto(s)
Matriz Extracelular , Regulación del Desarrollo de la Expresión Génica , Cristalino , Factor de Transcripción PAX6 , Animales , Matriz Extracelular/metabolismo , Ratones , Cristalino/metabolismo , Cristalino/crecimiento & desarrollo , Cristalino/citología , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Embrión de Pollo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Pollos/genética , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Ojo/embriología
14.
J Allergy Clin Immunol ; 153(2): 435-446.e4, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805024

RESUMEN

BACKGROUND: Airway remodeling is a prominent feature of asthma, which involves increased airway smooth muscle mass and altered extracellular matrix composition. Bronchial thermoplasty (BT), a bronchoscopic treatment for severe asthma, targets airway remodeling. OBJECTIVE: We sought to investigate the effect of BT on extracellular matrix composition and its association with clinical outcomes. METHODS: This is a substudy of the TASMA trial. Thirty patients with severe asthma were BT-treated, of whom 13 patients were treated for 6 months with standard therapy (control group) before BT. Demographic data, clinical data including pulmonary function, and bronchial biopsies were collected. Biopsies at BT-treated and nontreated locations were analyzed by histological and immunohistochemical staining. Associations between histology and clinical outcomes were explored. RESULTS: Six months after treatment, it was found that the reticular basement membrane thickness was reduced from 7.28 µm to 5.74 µm (21% relative reduction) and the percentage area of tissue positive for collagen increased from 26.3% to 29.8% (13% relative increase). Collagen structure analysis revealed a reduction in the curvature frequency of fibers. The percentage area positive for fibulin-1 and fibronectin increased by 2.5% and 5.9%, respectively (relative increase of 124% and 15%). No changes were found for elastin. The changes in collagen and fibulin-1 negatively associated with changes in FEV1 reversibility. CONCLUSIONS: Besides reduction of airway smooth muscle mass, BT has an impact on reticular basement membrane thickness and the extracellular matrix arrangement characterized by an increase in tissue area occupied by collagen with a less dense fiber organization. Both collagen and fibulin-1 are negatively associated with the change in FEV1 reversibility.


Asunto(s)
Asma , Termoplastia Bronquial , Humanos , Bronquios/cirugía , Bronquios/patología , Remodelación de las Vías Aéreas (Respiratorias) , Asma/tratamiento farmacológico , Matriz Extracelular/patología , Colágeno
15.
Am J Physiol Cell Physiol ; 326(4): C1212-C1225, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38372136

RESUMEN

Fibronectin (FN) is a major extracellular matrix (ECM) protein involved in a wide range of physiological processes, including cell migration. These FN-mediated cell migration events are essential to processes such as wound repair, cancer metastasis, and vertebrate development. This review synthesizes mainly current literature to provide an overview of the mechanoregulatory role of FN-mediated cell migration. Background on FN structure and role in mechanotransduction is provided. Cell migration concepts are introduced, including the general cell migration mechanism and classification of cell migration types. Then, FN-mediated events that directly affect cell migration are explored. Finally, a focus on FN in tissue repair and cancer migration is presented, as these topics represent a large amount of current research.


Asunto(s)
Fibronectinas , Neoplasias , Humanos , Fibronectinas/metabolismo , Matriz Extracelular/metabolismo , Mecanotransducción Celular , Movimiento Celular , Proteínas de la Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Adhesión Celular
16.
J Biol Chem ; 299(5): 104622, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933809

RESUMEN

Fibronectin (FN), a critical component of the extracellular matrix, is assembled into fibrils through a cell-mediated process. Heparan sulfate (HS) binds to the III13 module of FN, and fibroblasts lacking this glycosaminoglycan exhibit reduced FN fibril assembly. To determine if HS depends on III13 to control FN assembly, we deleted both III13 alleles in NIH 3T3 cells using the CRISPR-Cas9 system. ΔIII13 cells assembled fewer FN matrix fibrils and less DOC-insoluble FN matrix than wildtype cells. Little if any mutant FN matrix was assembled when purified ΔIII13 FN was provided to Chinese hamster ovary (CHO) cells, showing that lack of III13 caused the deficiency in assembly by ΔIII13 cells. Addition of heparin promoted the assembly of wildtype FN by CHO cells, but it had no effect on the assembly of ΔIII13 FN. Furthermore, heparin binding stabilized the folded conformation of III13 and prevented it from self-associating with increasing temperature suggesting that stabilization by HS/heparin binding might regulate interactions between III13 and other FN modules. This effect would be particularly important at matrix assembly sites where our data show that ΔIII13 cells require both exogenous wildtype FN and heparin in the culture medium to maximize assembly site formation. Our results show that heparin-promoted growth of fibril nucleation sites is dependent on III13. We conclude that HS/heparin binds to III13 to promote and control the nucleation and development of FN fibrils.


Asunto(s)
Fibronectinas , Heparina , Animales , Cricetinae , Ratones , Sitios de Unión , Células CHO , Cricetulus , Matriz Extracelular/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Heparina/metabolismo
17.
J Biol Chem ; 299(3): 102922, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669646

RESUMEN

Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin. We determined that S1-RBD supported adhesion of fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells, while RBD-coated microparticles attached to epithelial monolayers in a cation-dependent manner. Cell adhesion to S1-RBD was RGD dependent and inhibited by blocking antibodies against αv and ß3 but not α5 or ß1 integrins. Similarly, we observed direct binding of S1-RBD to recombinant human αvß3 and αvß6 integrins, but not α5ß1 integrins, using surface plasmon resonance. S1-RBD adhesion initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin; triggered Akt activation; and supported cell proliferation. Thus, the RGD sequence of S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raises the possibility that S1-mediated dysregulation of extracellular matrix dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Integrina alfaV , Animales , Humanos , Ratones , Adhesión Celular/fisiología , COVID-19/complicaciones , COVID-19/patología , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Integrina alfa5beta1/genética , Integrina alfa5beta1/metabolismo , Integrina alfaV/metabolismo , Oligopéptidos , Síndrome Post Agudo de COVID-19/patología , SARS-CoV-2/metabolismo
18.
Pflugers Arch ; 476(6): 963-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563997

RESUMEN

Complex interactions of the branching ureteric bud (UB) and surrounding mesenchymal cells during metanephric kidney development determine the final number of nephrons. Impaired nephron endowment predisposes to arterial hypertension and chronic kidney disease. In the kidney, extracellular matrix (ECM) proteins are usually regarded as acellular scaffolds or as the common histological end-point of chronic kidney diseases. Since only little is known about their physiological role in kidney development, we aimed for analyzing the expression and role of fibronectin. In mouse, fibronectin was expressed during all stages of kidney development with significant changes over time. At embryonic day (E) 12.5 and E13.5, fibronectin lined the UB epithelium, which became less pronounced at E16.5 and then switched to a glomerular expression in the postnatal and adult kidneys. Similar results were obtained in human kidneys. Deletion of fibronectin at E13.5 in cultured metanephric mouse kidneys resulted in reduced kidney sizes and impaired glomerulogenesis following reduced cell proliferation and branching of the UB epithelium. Fibronectin colocalized with alpha 8 integrin and fibronectin loss caused a reduction in alpha 8 integrin expression, release of glial-derived neurotrophic factor and expression of Wnt11, both of which are promoters of UB branching. In conclusion, the ECM protein fibronectin acts as a regulator of kidney development and is a determinant of the final nephron number.


Asunto(s)
Fibronectinas , Riñón , Animales , Humanos , Ratones , Proliferación Celular , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Cadenas alfa de Integrinas , Integrinas/metabolismo , Integrinas/genética , Riñón/metabolismo , Riñón/embriología , Ratones Endogámicos C57BL , Proteínas Wnt/metabolismo , Proteínas Wnt/genética
19.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L419-L430, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349126

RESUMEN

During the progression of pleural fibrosis, pleural mesothelial cells (PMCs) undergo a phenotype switching process known as mesothelial-mesenchymal transition (MesoMT). During MesoMT, transformed PMCs become myofibroblasts that produce increased extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1) that is critical to develop fibrosis. Here, we studied the mechanism that regulates FN1 expression in myofibroblasts derived from human pleural mesothelial cells (HPMCs). We found that myocardin (Myocd), a transcriptional coactivator of serum response factor (SRF) and a master regulator of smooth muscle and cardiac muscle differentiation, strongly controls FN1 gene expression. Myocd gene silencing markedly inhibited FN1 expression. FN1 promoter analysis revealed that deletion of the Smad3-binding element diminished FN1 promoter activity, whereas deletion of the putative SRF-binding element increased FN1 promoter activity. Smad3 gene silencing decreased FN1 expression, whereas SRF gene silencing increased FN1 expression. Moreover, SRF competes with Smad3 for binding to Myocd. These results indicate that Myocd activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression in HPMCs. In HPMCs, TGF-ß induced Smad3 nuclear localization, and the proximity ligation signal between Myocd and Smad3 was markedly increased after TGF-ß stimulation at nucleus, suggesting that TGF-ß facilitates nuclear translocation of Smad3 and interaction between Smad3 and Myocd. Moreover, Myocd and Smad3 were coimmunoprecipitated and isolated Myocd and Smad3 proteins directly bound each other. Chromatin immunoprecipitation assays revealed that Myocd interacts with the FN1 promoter at the Smad3-binding consensus sequence. The results indicate that Myocd regulates FN1 gene activation through interaction and activation of the Smad3 transcription factor.NEW & NOTEWORTHY During phenotype switching from mesothelial to mesenchymal, pleural mesothelial cells (PMCs) produce extracellular matrix (ECM) proteins, including collagen and fibronectin (FN1), critical components in the development of fibrosis. Here, we found that myocardin, a transcriptional coactivator of serum response factor (SRF), strongly activates FN1 expression through Smad3, whereas SRF inhibits FN1 expression. This study provides insights about the regulation of FN1 that could lead to the development of novel interventional approaches to prevent pleural fibrosis.


Asunto(s)
Fibronectinas , Proteínas Nucleares , Factor de Respuesta Sérica , Transactivadores , Humanos , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Fibronectinas/genética , Factores de Transcripción , Factor de Crecimiento Transformador beta/metabolismo , Colágeno , Fibrosis
20.
Am J Transplant ; 24(3): 498-502, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37852577

RESUMEN

Fibronectin glomerulopathy is a rare inherited kidney disease, characterized by abnormal accumulation of fibronectin in the glomeruli. We report an exceptional case of recurrent fibronectin glomerulopathy first diagnosed in the kidney allograft. The presence of IgA staining in the native kidney biopsy and the reported family history of IgA nephropathy had led to initial pretransplant diagnosis of IgA nephropathy. At 4.5 years posttransplant, the patient presented with kidney insufficiency and minimal proteinuria. The allograft biopsy revealed glomerular deposits with very weak staining for immunoglobulins and vague filamentous material. Immunostaining for fibronectin was positive, and genetic studies showed a variant of unknown significance in the fibronectin 1 gene. Proteomic analyses of the glomeruli in the native kidney biopsy demonstrated large amount of fibronectin with abundant accumulation of the peptide synthesized by the detected variant. These findings established the diagnosis of recurrent fibronectin glomerulopathy secondary to a novel variant in the fibronectin 1 gene. This report sheds light on recurrent fibronectin glomerulopathy in the allograft, highlights the diagnostic pitfalls of the disease, and underscores the importance of pathologic-genomic correlation to establish the correct diagnosis.


Asunto(s)
Glomerulonefritis por IGA , Glomerulonefritis Membranoproliferativa , Humanos , Glomerulonefritis por IGA/diagnóstico , Glomerulonefritis por IGA/genética , Fibronectinas/genética , Proteómica , Riñón , Genómica , Aloinjertos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA