Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(7): e4124, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39275928

RESUMEN

Obesity and hyperlipidemia have become major disorders predominantly causing prevailing cardiovascular diseases and ultimately death. The prolonged use of anti-obesity drugs and statins for reducing obesity and blood lipid levels is leading toward adverse effects of kidneys and muscles, specifically rhabdomyolysis. The objective of this study is to evaluate potential of seeds of Ficus carica against hyperlipidemia. Various extracts and isolated compounds from fig seeds were analyzed and evaluated for their anti-hyperlipidemic potential. Methanol extract and its ethyl acetate fraction showed maximum pancreatic lipase inhibition of 61.93% and 86.45% in comparison to reference drug Orlistat. Four compounds isolated by HPLC-PDA technique were determined as Gallic acid, Catechin, Epicatechin, and Quercetin also showed strong potential to inhibit enzyme pancreatic lipase comparable to Orlistat. These isolated compounds were further analyzed for molecular docking and MM-GBSA studies. Three ligands, namely Quercetin, Epicatechin, and Catechin were found more effective against pancreatic lipase as these possessed docking scores (-9.881, -9.741, -9.410) higher to that of the reference ligand Orlistat (-5.273). The binding free energies of these compounds were -55.03, -56.54, and 60.35 kcal/mol, respectively. The results have shown that Quercetin has the highest binding affinity correlating with the highest inhibition of pancreatic lipase enzyme 1LPB. Hence, it is suggested that seeds of F. carica have promising anti-hyperlipidemic potential and foremost in reducing obesity.


Asunto(s)
Ficus , Hipolipemiantes , Simulación del Acoplamiento Molecular , Extractos Vegetales , Semillas , Ficus/química , Semillas/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hipolipemiantes/farmacología , Hipolipemiantes/química , Hipolipemiantes/aislamiento & purificación , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Humanos , Hiperlipidemias/tratamiento farmacológico
2.
Plant Dis ; 108(7): 2136-2147, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38468134

RESUMEN

Field surveys conducted during 2021 and 2022 in Western Sicily, Italy, revealed the presence of common fig trees severely affected by trunk and crown root canker and bark cracking. Moreover, in conjunction with the symptomatic tissues, the same surveyed plants showed the presence of bark beetle holes and internal wood galleries. The predominant beetle Criphalus dilutus was previously reported attacking figs in Sicily. Phylogenetic analyses based on multilocus DNA data showed the presence of different fungal taxa associated with disease symptoms, including Botryosphaeria dothidea, Ceratocystis ficicola, Diaporthe foeniculina, Neocosmospora bostrycoides, N. perseae, and Neofusicoccum luteum. Pathogenicity tests conducted on potted fig plants showed that all the species were pathogenic to fig, with C. ficicola and Neocosmospora spp. as the most aggressive fungal species. Moreover, isolations conducted from the bodies of emerging adult insects recovered from disease samples confirmed the presence of C. ficicola and Neocosmospora spp., suggesting the potential involvement of C. dilutus in their dissemination.


Asunto(s)
Escarabajos , Ficus , Filogenia , Enfermedades de las Plantas , Ficus/microbiología , Animales , Enfermedades de las Plantas/microbiología , Escarabajos/microbiología , Italia , Corteza de la Planta/microbiología , Corteza de la Planta/parasitología , Ascomicetos/genética , Ascomicetos/fisiología , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/fisiología
3.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731494

RESUMEN

Figs are the edible fruits of the fig tree, Ficus carica L., that have been used for centuries for human consumption and in traditional medicine, to treat skin problems, inflammation, and gastrointestinal disorders. Our previous study investigated the presence of phenolic compounds in aqueous extracts of two Algerian popular fig varieties, azendjar (Az) and taamriouth (Ta), as well as their in vitro antioxidant activity. In this study, we assessed hydroethanolic extracts of these fig varieties. The total phenolic content was measured, along with the phenolic profile. Rutin was determined to be the dominant phenolic compound, followed by vanillic acid, 3,4-dihydroxybenzoic acid, quercetin, 4-hydroxybenzoic acid, rosmarinic acid (in Az only), and cinnamic acid. The antioxidant activity of the extracts was evaluated both in vitro (DPPH and FRAP assays) and in vivo, in rats intoxicated with carbon tetrachloride. In all assays, the fig extract-especially the dark-peeled fig variety azendjar-showed antioxidant potency. The administration of fig extract resulted in a reduction in liver damage, expressed by both different biochemical markers and histopathological study (less degraded liver architecture, reduced fibrosis, and only mild inflammation). A dose-dependent therapeutic effect was observed. The extract from the dark-peeled fig variety, Az, was characterized by a higher phenolic content and a stronger antioxidant activity than the extract from the light-peeled variety-Ta. Our study justifies the use of figs in traditional healing and shows the potential of using fig extracts in natural medicines and functional foods.


Asunto(s)
Antioxidantes , Tetracloruro de Carbono , Ficus , Estrés Oxidativo , Extractos Vegetales , Animales , Ficus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Ratas , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Masculino , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas Wistar
4.
BMC Plant Biol ; 23(1): 320, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316788

RESUMEN

BACKGROUND: The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS: In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS: Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.


Asunto(s)
Ficus , Poligalacturonasa , Poligalacturonasa/genética , Ficus/genética , Frutas/genética , Hidrolasas
5.
Pharmacol Res ; 198: 107010, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995897

RESUMEN

The burden of metabolic disorders is alarmingly increasing globally. On the other hand, sustainability is the key project of the 21st century. Natural products offer a coherent option for the complementary management of both these challenges. Ficus carica (FC), commonly known as the fig fruit, has an experimentally proven potency for the modulation of cell cycle, immunity, inflammation, metabolism, and oxidative stress. Here, we review the potential of FC-derived products (FCDP) in slowing down the progression of cancers, acute/chronic inflammation-related conditions, infections, metabolic disorders, toxicities, neurological and neuromuscular diseases, gastrointestinal disorders, vascular diseases, and skin-stressing conditions, as well as, in boosting normal healthy functions of the endocrine, immune, metabolic, and nervous systems. It reveals a variety of cellular and molecular targets for FCDP: cytokines (TNF-α, IL-1ß, IL-6, IL-10, IL-12, IL-18, IFN-γ), chemokines (CCL2), other inflammatory mediators (CRP, PGE2), immune receptors (TLR-2, TLR-4, FcεRI), oxidative stress-related markers (SOD, GSH, MDA, GPx, catalase, ROS, NO, protein carbonyls), kinases (MAPKs, hexokinase, G6Pase, FBPase, PEPCK, Akt, AMPK, GSK3, CDKs), other enzymes (COX-2, iNOS, MMPs, caspases), growth factors/receptors (VEGF, EGFR), hormones (DHEAS, prolactin, GnRH, FSH, LH, estradiol, DHT, insulin), cell death-related markers (Bcl-2, Bax, Bak, FasL, gasdermins, cytochrome C), glucose transporter protein (Glut4), and transcription factors (NF-κB, HNF-4α, Foxo, PGC-1α, PPAR-γ, C/EBP-α, CREB, NFATC1, STAT3). FCDP cause both activation and inhibition of AMPK, MAPK, and NF-κB signaling to confer condition-specific advantages. Such a broad-range activity might be attributed to different mechanisms of action of FCDP in modulating functions within the classical immunometabolic system, but also beyond.


Asunto(s)
Ficus , Enfermedades Metabólicas , Humanos , FN-kappa B/metabolismo , Ficus/metabolismo , Proteínas Quinasas Activadas por AMP , Glucógeno Sintasa Quinasa 3 , Inflamación/metabolismo
6.
Cell Biochem Funct ; 41(5): 573-589, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37222443

RESUMEN

Inflammation is an innate reaction of the body of an individual when subjected to the noxious factors repeatedly. Pharmacological approaches focused at disrupting cytokine signaling networks have become significant therapeutic alternatives for the treatment of inflammatory illnesses, cancer and autoimmune disorders. High levels of inflammatory mediators, particularly interleukin IL-1, IL-6, IL-18, IL-12, and tumor necrosis factor alpha leads to a cytokine storm in the body. Among all the released cytokines in a patient suffering from inflammatory disorder, IL-6 mediator has a pivotal role in this inflammatory cascade which progresses to a cytokine storm. Therefore, the blockage of the IL-6 inflammatory mediator could be a promising treatment option for the patients with hyper inflammatory conditions. The phytochemicals could provide the new lead compounds against the IL-6 mediator. Ficus carica has been the ideal plant of research and investigation due to its commercial, economic and medical importance. The anti-inflammatory properties of F. carica were further investigated by in silico and in vivo approaches. The docking scores of Cyanidin-3,5-diglucoside, Kaempferol-7-O-rutinoside, Cyanidin-3-rhamnoglucoside, and Rutin are -9.231, -8.921, -8.840, and -8.335 Kcal/mole respectively. The free energy of binding and stability of the docked complexes of these top four phytochemicals with the IL-6 were further analyzed by Molecular Mechanics-Generalized Born Surface Area and Molecular Dynamic simulations, respectively. The in vivo anti-inflammatory carrageenan-induced rat paw edema model was used for the validation of in silico results. The maximum percentage paw edema inhibition with petroleum ether and ethyl acetate was 70.32% and 45.05%, respectively. The in vivo anti-inflammatory activity confirms the anti-inflammatory potential of F. carica. Therefore, it is predicted that Cyanidin-3,5-diglucoside, Kaempferol-7-O-rutinoside, Cyanidin-3-rhamnoglucoside, and Rutin have the potential to inhibit the IL-6 mediator which will aid in mitigating the cytokine storm in patients with acute inflammations.


Asunto(s)
Ficus , Interleucina-6 , Ratas , Animales , Interleucina-6/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ficus/química , Ficus/metabolismo , Quempferoles , Síndrome de Liberación de Citoquinas , Carragenina/efectos adversos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Citocinas/metabolismo , Fitoquímicos/efectos adversos , Edema/inducido químicamente
7.
Biosci Biotechnol Biochem ; 87(5): 532-540, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37037773

RESUMEN

Ficus carica produces, in addition to the cysteine protease ficin, a serine protease (FSP). Here, we purified FSP to homogeneity from the fruit of F. carica cultivar Masui Dauphine. An 81-fold enrichment in specific activity of FSP with 2.1% recovery was attained. Three protein bands (70, 62, and 60 kDa) were identified on SDS-PAGE. Each band was identified as a subtilisin-like protease (661 amino acids) by trypsin digestion, LC-MS/MS analysis, and the partial N-terminal amino acid sequence analysis. Gelatin zymography revealed that the active FSP exists as a dimer. The optimum hydrolysis pH of FSP was 7.5, and the pHs at which the enzyme retained its initial activity by 70% in 24 h were 8.0-11.0. The optimum hydrolysis temperature of FSP was 50-60 °C, and the temperature required to reduce the initial activity by 50% in 15 min was 70 °C. These results will inform the industrial use of FSP.


Asunto(s)
Ficus , Serina Proteasas , Frutas , Ficus/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Serina Endopeptidasas , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas
8.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37686451

RESUMEN

Cervical carcinogenesis is the leading cause of cancer-related deaths in women, and the role of high-risk human papillomavirus (HR-HPV) as a possible risk factor in the development of this cancer is well recognized. Despite the availability of multi-therapeutic approaches, there is still major concern regarding the prevention of metastatic dissemination and excessive tissue injuries. Therefore, it is imperative to develop a safer and more efficient treatment modality. Ficus carica, a natural plant, has shown potential therapeutic properties through its fruit latex when applied to HPV-positive cervical cancer cell lines. However, the mechanisms of action of Ficus carica (fig) latex are not well understood. This study aims to provide a deeper insight into the biological activities of fig latex on human cervical cancer cell lines expressing high-risk HPV types 16 and 18. The data obtained from this study reveal that fig latex influences the expression of genes involved in "Class I MHC-mediated antigen presentation" as well as "Antigen processing: Ubiquitination and Proteasome degradation". These genes play a crucial role in host immune surveillance and the resolution of infection. Notably, Western blot analysis corroborated these findings, demonstrating an increase in the expression of MHC class I in HeLa cells after fig latex treatment. Findings from this study suggest that fig latex may enhance T cell responses against oncogenic HPV, which could be beneficial for the clearance of early-stage cancer.


Asunto(s)
Ficus , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , RNA-Seq , Neoplasias del Cuello Uterino/genética , Virus del Papiloma Humano , Látex , Células HeLa , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Perfilación de la Expresión Génica , Expresión Génica
9.
Plant Foods Hum Nutr ; 78(3): 539-545, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37605067

RESUMEN

This study compared the phenolic composition and antioxidant properties of three varieties of fig fruits (Ficus carica L) from the Eastern Black Sea region of Türkiye. Total polyphenol content (TPC), total flavonoid content (TFC), and phenolic compositions were analyzed in green, purple, and dark purple species. The mean TPC value was 42.10 ± 5.71 mg GAE/100 g FW, ranging from 35.98 to 47.30 mg GAE/100 g FW, and was highest in the dark purple species. The mean TFC value was 1.27 ± 0.93 mg QUE/100 FW g, ranging between 0.35 and 2.21 mg QUE/100 FW g, and was highest in the purple species. The samples' total antioxidant capacity was measured based on ferric reducing/antioxidant power (FRAP), the values ranging from 151.98 to 372.97 µmol FeSO4.7H2O/100 g FW, with an average value of 239.64 µmol FeSO4.7H2O/100 g FW, being highest in the dark purple species. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the fruits was expressed as SC50 (mg/mL), and the values ranged from 10.04 to 42.42 mg/mL, being highest in the purple species. The phenolic composition was analyzed using HPLC-PDA according to the method in which 25 phenolic standards were used. Chlorogenic acid and t-cinnamic acid were the most common phenolic compounds, with rutin, chrysin, apigenin, and luteolin being detected at different amounts. In conclusion, the purple species contained the highest flavonoid content, was rich in apigenin, luteolin, and chrysin, and possessed the highest DPPH radical scavenging activity.


Asunto(s)
Ficus , Antioxidantes , Apigenina , Mar Negro , Luteolina , Fenoles , Polifenoles , Flavonoides
10.
BMC Genomics ; 23(1): 170, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236292

RESUMEN

BACKGROUND: Jasmonate-ZIM domain (JAZ) repressors negatively regulate signal transduction of jasmonates, which regulate plant development and immunity. However, no comprehensive analysis of the JAZ gene family members has been done in the common fig (Ficus carica L.) during fruit development and hormonal treatment. RESULTS: In this study, 10 non-redundant fig JAZ family genes (FcJAZs) distributed on 7 chromosomes were identified in the fig genome. Phylogenetic and structural analysis showed that FcJAZ genes can be grouped into 5 classes. All the classes contained relatively complete TIFY and Jas domains. Yeast two hybrid (Y2H) results showed that all FcJAZs proteins may interact with the identified transcription factor, FcMYC2. Tissue-specific expression analysis showed that FcJAZs were highly expressed in the female flowers and roots. Expression patterns of FcJAZs during the fruit development were analyzed by RNA-Seq and qRT-PCR. The findings showed that, most FcJAZs were significantly downregulated from stage 3 to 5 in the female flower, whereas downregulation of these genes was observed in the fruit peel from stage 4 to 5. Weighted-gene co-expression network analysis (WGCNA) showed the expression pattern of FcJAZs was correlated with hormone signal transduction and plant-pathogen interaction. Putative cis-elements analysis of FcJAZs and expression patterns of FcJAZs which respond to hormone treatments revealed that FcJAZs may regulate fig fruit development by modulating the effect of ethylene or gibberellin. CONCLUSIONS: This study provides a comprehensive analysis of the FcJAZ family members and provides information on FcJAZs contributions and their role in regulating the common fig fruit development.


Asunto(s)
Ficus , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Ficus/genética , Ficus/metabolismo , Frutas , Regulación de la Expresión Génica de las Plantas , Hormonas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Plant Cell Physiol ; 63(6): 785-801, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35348748

RESUMEN

Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.


Asunto(s)
Ficus , Proteoma , Ficus/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica , Vacuolas/metabolismo
12.
Fish Shellfish Immunol ; 120: 434-440, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34922019

RESUMEN

Ficus carica polysaccharides (FCPS), one of the most effective and important compo-nents in Ficus carica L., had been considered to be a beneficial immunostimulant and may be used in immunotherapy for animals and human. However, studies were little about the effect of FCPS used as immunomodulatory and the suitable dosage in fish. The present study investigated the effect of four different dietary levels of FCPS (0.1%, 0.2%, 0.4%, 0.8%) on the growth performance, innate immune responses and survival of crucian carp against Aeromonas hydrophila infection. The results showed that compared with control group, dietary FCPS had positive effects the growth performance (final weight, feed conversion ratio and survival rate) of crucian carp. FCPS induced significant higher (p < 0.05) leukocyte phagocytosis activity, serum bactericidal activity, lysozyme activity, com-plement C3, SOD activity and total protein level in the serum of crucian carp. Moreover, innate immune response of fish in FCPS groups increased first and then decreased with increasing dietary FCPS from 0.1% to 0.8%, and reached up to the peak in 0.4% dietary FCPS groups. Besides, the cumulative mortalities in FCPS groups were remarkably lower than that of control group when challenged with A. hydrophila, the relative percent survivals were 22.67%, 55.56%, 62.22% and 17.78% in 0.1% group, 0.2% group, 0.4% group and 0.8% group, respectively. These results suggested that dietary FCPS could improve the growth performance, innate immune response and disease resistance against A. hydrophila in fish, and the suitable dietary dose of FCPS was 0.4% in crucian carp.


Asunto(s)
Carpas , Ficus , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Polisacáridos , Aeromonas hydrophila , Animales , Carpas/crecimiento & desarrollo , Carpas/inmunología , Carbohidratos de la Dieta/administración & dosificación , Suplementos Dietéticos , Resistencia a la Enfermedad , Ficus/química , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata , Polisacáridos/administración & dosificación
13.
Plant J ; 102(3): 600-614, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31808196

RESUMEN

Due to DNA heterozygosity and repeat content, assembly of non-model plant genomes is challenging. Herein, we report a high-quality genome reference of one of the oldest known domesticated species, fig (Ficus carica L.), using Pacific Biosciences single-molecule, real-time sequencing. The fig genome is ~333 Mbp in size, of which 80% has been anchored to 13 chromosomes. Genome-wide analysis of N6 -methyladenine and N4 -methylcytosine revealed high methylation levels in both genes and transposable elements, and a prevalence of methylated over non-methylated genes. Furthermore, the characterization of N6 -methyladenine sites led to the identification of ANHGA, a species-specific motif, which is prevalent for both genes and transposable elements. Finally, exploiting the contiguity of the 13 pseudomolecules, we identified 13 putative centromeric regions. The high-quality reference genome and the characterization of methylation profiles, provides an important resource for both fig breeding and for fundamental research into the relationship between epigenetic changes and phenotype, using fig as a model species.


Asunto(s)
Epigénesis Genética/genética , Ficus/genética , Genoma de Planta/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Haplotipos , Fenotipo
14.
Plant Mol Biol ; 105(4-5): 347-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33185823

RESUMEN

KEY MESSAGE: The regulatory landscape of ethephon-accelerated fig ripening is revealed; flowers and receptacles exhibit opposite responses in anthocyanin accumulation; PG, PL and EXP are suggested key genes in fig softening. Ethephon is used to accelerate fig-fruit ripening for improvement of harvesting efficiency, but the underlying molecular mechanism is still unclear. To elucidate the detailed biological mechanism of ethylene-accelerated fig ripening, fruit in phase II (the lag phase on the double sigmoid growth curve) were treated with ethephon, and reached commercial ripeness 6 days earlier than the nontreated controls. Transcriptomes of flowers and the surrounding receptacles-which together make up the pseudocarp in fig fruit-were analyzed. There were 5189, 5818 and 2563 differentially expressed genes (DEGs) 2, 4 and 6 days after treatment (DAT) in treated compared to control fruit, screened by p-adjust < 0.05 and |log2(fold change) |≥ 2. The DEGs were significantly enriched in plant hormone metabolism and signal transduction, cell-wall modification, sugar accumulation and anthocyanin accumulation pathways. DEGs in the first three pathway categories demonstrated an overall similar expression change in flowers and receptacles, whereas DEGs in anthocyanin pigmentation revealed divergent transcript abundance. Specifically, in both flowers and receptacles, ethephon significantly upregulated 1-aminocyclopropane-1-carboxylate oxidase and downregulated most of the ethylene-response factor genes; polygalacturonase, pectate lyase and expansin were mainly upregulated; two acid beta-fructofuranosidases were upregulated. However, structural genes in the anthocyanin-synthesis pathway were mainly downregulated in female flowers 2 and 4 DAT, whereas they were upregulated in the receptacles. Our study reveals the regulatory landscape of the two tissues of fig fruit in ethylene-induced ripening; the differentially expressed pathways and genes provide valuable resources for the mining of target genes for crucial biological and commercial trait improvement.


Asunto(s)
Flores/genética , Frutas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Compuestos Organofosforados/farmacología , Pigmentación/genética , Flores/fisiología , Frutas/fisiología , Ontología de Genes , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
BMC Plant Biol ; 21(1): 396, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34433422

RESUMEN

BACKGROUND: Bagging can improve the appearance of fruits and increase the food safety and commodification, it also has effects on intrinsic quality of the fruits, which was commonly reported negative changes. Fig can be regarded as a new model fruit with its relatively small genome size and long fruit season. RESULTS: In this study, widely targeted metabolomics based on HPLC MS/MS and RNA-seq of the fruit tissue of the 'Zibao' fig before and after bagging were analyzed to reveal the metabolites changes of the edible part of figs and the underneath gene expression network changes. A total of 771 metabolites were identified in the metabolome analysis using fig female flower tissue. Of these, 88 metabolites (including one carbohydrate, eight organic acids, seven amino acids, and two vitamins) showed significant differences in fruit tissue before and after bagging. Changes in 16 structural genes, 13 MYB transcription factors, and endogenous hormone (ABA, IAA, and GA) metabolism and signal transduction-related genes in the biosynthesis pathway of flavonoids after bagging were analyzed by transcriptome analysis. KEGG enrichment analysis also determined significant differences in flavonoid biosynthesis pathways in female flower tissue before and after bagging. CONCLUSIONS: This work provided comprehensive information on the composition and abundance of metabolites in the female flower tissue of fig. The results showed that the differences in flavor components of the fruit before and after bagging could be explained by changes in the composition and abundance of carbohydrates, organic acids, amino acids, and phenolic compounds. This study provides new insights into the effects of bagging on changes in the intrinsic and appearance quality of fruits.


Asunto(s)
Ficus/genética , Ficus/metabolismo , Flavonoides/análisis , Flavonoides/biosíntesis , Flavonoides/genética , Frutas/genética , Frutas/metabolismo , China , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Metaboloma
16.
BMC Plant Biol ; 21(1): 221, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34000996

RESUMEN

BACKGROUND: Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS: In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS: The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.


Asunto(s)
Evolución Molecular , Ficus/genética , Genoma de Planta , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Filogenia , Reproducibilidad de los Resultados , Especificidad de la Especie
17.
New Phytol ; 231(5): 1923-1939, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33978969

RESUMEN

Furanocoumarins are phytoalexins often cited as an example to illustrate the arms race between plants and herbivorous insects. They are distributed in a limited number of phylogenetically distant plant lineages, but synthesized through a similar pathway, which raised the question of a unique or multiple emergence in higher plants. The furanocoumarin pathway was investigated in the fig tree (Ficus carica, Moraceae). Transcriptomic and metabolomic approaches led to the identification of CYP76F112, a cytochrome P450 catalyzing an original reaction. CYP76F112 emergence was inquired using phylogenetics combined with in silico modeling and site-directed mutagenesis. CYP76F112 was found to convert demethylsuberosin into marmesin with a very high affinity. This atypical cyclization reaction represents a key step within the polyphenol biosynthesis pathway. CYP76F112 evolutionary patterns suggests that the marmesin synthase activity appeared recently in the Moraceae family, through a lineage-specific expansion and diversification. The characterization of CYP76F112 as the first known marmesin synthase opens new prospects for the use of the furanocoumarin pathway. It also supports the multiple acquisition of furanocoumarin in angiosperms by convergent evolution, and opens new perspectives regarding the ability of cytochromes P450 to evolve new functions related to plant adaptation to their environment.


Asunto(s)
Ficus , Furocumarinas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción , Filogenia
18.
Mol Biol Rep ; 48(1): 335-346, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33389534

RESUMEN

Sixteen pomological traits were employed to characterize the diversity of 30 fig accessions collected mainly from Southeastern Tunisia and maintained at CFPA 'El Gordhab', Tataouine, in Southeastern Tunisia. Additionally, 13 simple sequence repeat (SSR) loci were analyzed to detect the genetic diversity of the 30 fig accessions. In this study, qualitative data (fruit shape, fruit external color, fruit internal color, abscission of the stalk from the twig, skin peeling, fruit skin firmness) showed morphological variation within accessions. A highly significant difference (p < .01) among accessions was revealed for all the quantitative traits. The first three components (PC1, PC2, and PC3) of PCA accounted for 52.99% of the total variability. PC1, PC2, and PC3 accounted respectively for 28.02, 13.05, and 11.91% of the total variance. The most discriminating morphological parameters were fruit length and diameter, stalk length and diameter, neck length and diameter, stalk and flesh thickness, fruit shape, skin peeling, and skin firmness. Concerning the molecular results, 40 alleles were revealed. The number of alleles ranged between 2 to 6 with a mean of 3.08 alleles per locus. The observed heterozygosity (Ho) ranged from 0.03 (LMFC21, LMFC23, and LMFC32) to 0.83 (LMFC30) with an average of 0.43. The expected heterozygosity (He) varied from 0.03 (LMFC21, LMFC 23 and LMFC32) to 0.74 (LMFC30) with an average of 0.37. UPMGA cluster analysis and PCA grouped the accessions in 6 groups. Our results showed that the SSR markers used detected low genetic diversity within the accessions studied.


Asunto(s)
Ficus/genética , Variación Genética , Repeticiones de Microsatélite/genética , Alelos , Ficus/crecimiento & desarrollo , Heterocigoto , Fenotipo , Túnez
19.
Mol Biol Rep ; 48(11): 7223-7231, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34586562

RESUMEN

BACKGROUND: Clonal propagation is one of the attributes of plant tissue culture. Therefore, analysis of genetic stability among the in vitro cultured plants is a crucial step. It helps to signify the clonal propagation of the micropropagated plants. Regenerated Ficus carica var. Black Jack plantlets were established using woody plant medium supplemented with 20 µM 6-Benzylaminopurine and 8 µM Indole-3-acetic acid under different light treatments such as normal fluorescent white light (60 µmol m-2 s-1), and four different LED spectra, white (400-700 nm), blue (440 nm), red (660 nm) and blue + red (440 nm + 660 nm). Genetic stability analysis was performed on the in vitro and ex vitro plants of Ficus carica var. Black Jack. METHODS AND RESULTS: Ten primers of each, ISSR and DAMD molecular markers, were used to assess the genetic stability of the eight samples of Ficus carica var. Black Jack. ISSR markers showed 97.87% of monomorphism whereas DAMD markers showed 100% monomorphism. Polymorphism of 2.13% was observed for the UBC840 ISSR-DNA primer which was negated under the genetic similarity index analysis for the eight samples. The findings of this study revealed that ISSR and DAMD markers are efficient in determining the polymorphism and monomorphism percentage among the in vitro and ex vitro samples of Ficus carica var. Black Jack. CONCLUSION: Monomorphism of 100% obtained using DAMD markers and more than 95% of monomorphism obtained using ISSR markers indicate that the regenerated plants are significantly genetically stable. These molecular markers can be used to test the genetic stability of in vitro regenerated plants. It is recommended that genetic stability analysis should be performed for long-term maintenance of such micropropagated plants.


Asunto(s)
ADN de Plantas/genética , Ficus/genética , Inestabilidad Genómica , Repeticiones de Microsatélite , Polimorfismo Genético , Técnica del ADN Polimorfo Amplificado Aleatorio , Brotes de la Planta/genética
20.
Biosci Biotechnol Biochem ; 85(5): 1147-1156, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33580958

RESUMEN

Ficus carica produces, in addition to the cysteine protease ficin, a serine protease. Earlier study on a serine protease from F. carica cultivar Brown Turkey showed that it specifically degraded collagen. In this study, we characterized the collagenolytic activity of a serine protease in the latex of F. carica cultivar Masui Dauphine. The serine protease degraded denatured, but not undenatured, acid-solubilized type I collagen. It also degraded bovine serum albumin, while the collagenase from Clostridium histolyticum did not. These results indicated that the serine protease in Masui Dauphine is not collagen-specific. The protease was purified to homogeneity by two-dimensional gel electrophoresis, and its partial amino acid sequence was determined by liquid chromatography-tandem mass spectrometry. BLAST searches against the Viridiplantae (green plants) genome database revealed that the serine protease was a subtilisin-like protease. Our results contrast with the results of the earlier study stating that the serine protease from F. carica is collagen-specific.


Asunto(s)
Colágeno/química , Ficus/química , Látex/química , Proteínas de Plantas/metabolismo , Serina Proteasas/metabolismo , Subtilisinas/metabolismo , Secuencia de Aminoácidos , Animales , Bovinos , Electroforesis en Gel Bidimensional , Ficus/enzimología , Expresión Génica , Calor , Látex/metabolismo , Extractos Vegetales/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Desnaturalización Proteica , Proteolisis , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Serina Proteasas/química , Serina Proteasas/genética , Serina Proteasas/aislamiento & purificación , Especificidad por Sustrato , Subtilisinas/química , Subtilisinas/genética , Subtilisinas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA