Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Transl Med ; 22(1): 205, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409037

RESUMEN

BACKGROUND AND AIMS: Flavonoids are a class of secondary plant metabolites that have been shown to have multiple health benefits, including antioxidant and anti-inflammatory. This study was to explore the association between dietary flavonoid consumption and the prevalence of chronic respiratory diseases (CRDs) in adults. METHODS AND RESULTS: The six main types of flavonoids, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols, were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 by the two 24-h recall interviews. The prevalence of CRDs, including asthma, emphysema, and chronic bronchitis, was determined through a self-administered questionnaire. The analysis included 15,753 participants aged 18 years or older who had completed a diet history interview. After adjustment for potential confounders, the inverse link was found with total flavonoids, anthocyanidins, flavanones, and flavones, with an OR (95%CI) of 0.86 (0.75-0.98), 0.84 (0.72-0.97), 0.80(0.69-0.92), and 0.85(0.73-0.98) for the highest group compared to the lowest group. WQS regression revealed that the mixture of flavonoids was negatively linked with the prevalence of CRDs (OR = 0.88 [0.82-0.95], P < 0.01), and the largest effect was mainly from flavanones (weight = 0.41). In addition, we found that flavonoid intake was negatively linked with inflammatory markers, and systemic inflammation significantly mediated the associations of flavonoids with CRDs, with a mediation rate of 12.64% for CRP (P < 0.01). CONCLUSION: Higher flavonoid intake was related with a lower prevalence of CRDs in adults, and this relationship may be mediated through systemic inflammation.


Asunto(s)
Flavanonas , Flavonas , Enfermedades Respiratorias , Adulto , Humanos , Flavonoides , Encuestas Nutricionales , Antocianinas , Prevalencia , Dieta , Inflamación/epidemiología , Factores de Riesgo
2.
FASEB J ; 37(8): e23078, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37405762

RESUMEN

Preeclampsia (PE) is a serious hypertensive complication of pregnancy and is a leading cause of maternal death and major contributor to maternal and perinatal morbidity, including establishment of long-term complications. The continued prevalence of PE stresses the need for identification of novel treatments which can target prohypertensive factors implicated in the disease pathophysiology, such as soluble fms-like tyrosine kinase 1 (sFlt-1). We set out to identify novel compounds to reduce placental sFlt-1 and determine whether this occurs via hypoxia-inducible factor (HIF)-1α inhibition. We utilized a commercially available library of natural compounds to assess their ability to reduce sFlt-1 release from primary human placental cytotrophoblast cells (CTBs). Human placental explants from normotensive (NT) and preeclamptic (PE) pregnancies were treated with varying concentrations of luteolin. Protein and mRNA expression of sFlt-1 and upstream mediators were evaluated using ELISA, western blot, and real-time PCR. Of the natural compounds examined, luteolin showed the most potent inhibition of sFlt-1 release, with >95% reduction compared to vehicle-treated. Luteolin significantly inhibited sFlt-1 in cultured placental explants compared to vehicle-treated in a dose- and time-dependent manner. Additionally, significant decreases in HIF-1α expression were observed in luteolin-treated explants, suggesting a mechanism for sFlt-1 downregulation. The ability of luteolin to inhibit HIF-1α may be mediated through the Akt pathway, as inhibitors to Akt and its upstream regulator phosphatidylinositol-3 kinase (PI3K) resulted in significant HIF-1α reduction. Luteolin reduces anti-angiogenic sFlt-1 through inhibition of HIF-1α, making it a novel candidate for the treatment of PE.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Placenta/metabolismo , Luteolina/farmacología , Luteolina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Trofoblastos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Preeclampsia/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Mol Divers ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012566

RESUMEN

A large series of 2-arylchromen-4-ones containing from 1 to 3 fluorine atoms or a trifluoromethyl group in the structure was synthesized by condensation of fluorinated 2-hydroxyacetophenones with benzaldehydes in an alkaline medium and subsequent oxidative cyclization of the resulting 2'-hydroxychalcones by action of I2 in DMSO. The cytotoxicity of the obtained compounds was studied in glioblastoma cell line, SNB19, and in a monkey-derived normal kidney epithelium cell line, Vero. In addition, antiglycation activity of the obtained compounds was evaluated. The inhibitory activity of some fluorinated 2-arylchromen-4-ones against acetylcholinesterase, butyrylcholinesterase and carboxylesterase as well their primary antioxidant activity in ABTS and FRAP tests were investigated. Screening of the synthesized compounds for their inhibitory activity against influenza A virus A/Puerto Rico/8/34 (H1N1) in the MDCK cell culture revealed that fluorinated compounds 32, 31 and 39 showed manifest antiviral effects (with IS = 57, 38 and 25 correspondingly) that makes this series of new biologically attractive fluorinated heterocycles promising for further development and in-depth study.

4.
J Asian Nat Prod Res ; : 1-11, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373219

RESUMEN

In this study, two new (1, 13) and fourteen known (2-12, 14-16) compounds were isolated from the branches and leaves of Daphne retusa. On the basis of chemical evidence and spectral data analysis (UV, ECD NMR, and HR-ESI-MS), the structures of new compounds were elucidated. Furthermore, all compounds have been tested for their inhibitory effects on NO production in LPS-induced RAW 264.7 cells, and compound 3 showed obvious inhibitory effect. Through target screening and molecular docking technology, potential binding targets for compound 3 to exert anti-inflammatory effects have been predicted.

5.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892186

RESUMEN

Flavonoids are an abundant class of naturally occurring compounds with broad biological activities, but their limited abundance in nature restricts their use in medicines and food additives. Here we present the synthesis and determination of the antibacterial and antioxidant activities of twenty-two structurally related flavonoids (five of which are new) by scientifically validated methods. Flavanones (FV1-FV11) had low inhibitory activity against the bacterial growth of MRSA 97-7. However, FV2 (C5,7,3',4' = OH) and FV6 (C5,7 = OH; C4' = SCH3) had excellent bacterial growth inhibitory activity against Gram-negative E. coli (MIC = 25 µg/mL for both), while Chloramphenicol (MIC = 25 µg/mL) and FV1 (C5,7,3' = OCH3; 4' = OH) showed inhibitory activity against Gram-positive L. monocytogenes (MIC = 25 µg/mL). From the flavone series (FO1-FO11), FO2 (C5,7,3',4' = OH), FO3 (C5,7,4' = OH; 3' = OCH3), and FO5 (C5,7,4' = OH) showed good inhibitory activity against Gram-positive MRSA 97-7 (MIC = 50, 12, and 50 µg/mL, respectively), with FO3 being more active than the positive control Vancomycin (MIC = 25 µg/mL). FO10 (C5,7= OH; 4' = OCH3) showed high inhibitory activity against E. coli and L. monocytogenes (MIC = 25 and 15 µg/mL, respectively). These data add significantly to our knowledge of the structural requirements to combat these human pathogens. The positions and number of hydroxyl groups were key to the antibacterial and antioxidant activities.


Asunto(s)
Antibacterianos , Antioxidantes , Flavonoides , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Flavonoides/farmacología , Flavonoides/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Flavanonas/farmacología , Flavanonas/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos
6.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891840

RESUMEN

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Asunto(s)
Aciltransferasas , Liasas Intramoleculares , Liasas Intramoleculares/metabolismo , Liasas Intramoleculares/química , Aciltransferasas/metabolismo , Aciltransferasas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flavonoides/metabolismo , Flavonoides/química , Cinética , Flavanonas/química , Flavanonas/metabolismo , Chalconas/química , Chalconas/metabolismo , Especificidad por Sustrato , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Modelos Moleculares , Unión Proteica , Conformación Proteica
7.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063111

RESUMEN

Inflammatory bowel disease (IBD) incidence has increased in the last decades due to changes in dietary habits. IBDs are characterized by intestinal epithelial barrier disruption, increased inflammatory mediator production and excessive tissue injury. Since the current treatments are not sufficient to achieve and maintain remission, complementary and alternative medicine (CAM) becomes a primary practice as a co-adjuvant for the therapy. Thus, the intake of functional food enriched in vegetal extracts represents a promising nutritional strategy. This study evaluates the anti-inflammatory effects of artichoke, caihua and fenugreek vegetal extract original blend (ACFB) in an in vitro model of gut barrier mimicking the early acute phases of the disease. Caco2 cells cultured on transwell supports were treated with digested ACFB before exposure to pro-inflammatory cytokines. The pre-treatment counteracts the increase in barrier permeability induced by the inflammatory stimulus, as demonstrated by the evaluation of TEER and CLDN-2 parameters. In parallel, ACFB reduces p65NF-κB pro-inflammatory pathway activation that results in the decrement of COX-2 expression as PGE2 and IL-8 secretion. ACFB properties might be due to the synergistic effects of different flavonoids, indicating it as a valid candidate for new formulation in the prevention/mitigation of non-communicable diseases.


Asunto(s)
Flavonoides , FN-kappa B , Extractos Vegetales , Humanos , Células CACO-2 , Extractos Vegetales/farmacología , Flavonoides/farmacología , FN-kappa B/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Interleucina-8/metabolismo , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Ciclooxigenasa 2/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Trigonella/química , Dinoprostona/metabolismo
8.
Pharm Biol ; 62(1): 659-665, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39126171

RESUMEN

CONTEXT: The increase in bacterial resistance to currently available medications, which increases mortality rates, treatment costs is a global problem, and highlights the need for novel classes of antibacterial agents or new molecules that interact synergistically with antimicrobials. OBJECTIVE: The current work explores the potential synergistic effects of certain natural phenylpropanoids and flavonoids on ciprofloxacin (CIP), ampicillin (AMP), gentamicin (GEN), and tetracycline (TET). MATERIALS AND METHODS: The adjuvant role of cinnamic acid, p-coumaric acid, caffeic acid, ferulic acid, ferulic acid methyl ester, sinapic acid, apigenin, and luteolin was evaluated by determining the MIC (minimal inhibitory concentration) values of antibiotics in the presence of subinhibitory concentrations (200, 100, and/or 50 µM) of the compounds in Gram-positive and Gram-negative bacterial strains using a 2-fold broth microdilution method. The 96-well plates were incubated at 37 °C for 18 h, and dimethyl sulfoxide was used as a solvent control. RESULTS: The combination of luteolin with CIP, reduced the MIC values of the antibiotic from 0.625 to 0.3125 µM and to 0.078 µM in 100 and 200 µM concentration, respectively, in sensitive Staphylococcus aureus. Sinapic acid decreased the MIC value of CIP from 0.625 to 0.3125 µM in S. aureus, from 1.56 to 0.78 µM in Klebsiella pneumoniae, and the MIC of GEN from 0.39 to 0.095 µM in Pseudomonas aeruginosa strains. DISCUSSION AND CONCLUSIONS: These findings are useful in delaying the development of resistance, as the required antibacterial effect can be achieved with the use of lower concentrations of antibiotics.


Asunto(s)
Antibacterianos , Sinergismo Farmacológico , Flavonoides , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Flavonoides/farmacología , Bacterias Grampositivas/efectos de los fármacos , Relación Dosis-Respuesta a Droga
9.
Crit Rev Food Sci Nutr ; 63(16): 2749-2772, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34590507

RESUMEN

Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Flavonas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Alzheimer/tratamiento farmacológico , Flavonas/farmacología , Flavonas/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico
10.
J Biochem Mol Toxicol ; 37(4): e23298, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36727417

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a highly infectious Gram-positive pathogen known to cause severe diseases such as endocarditis, food poisoning, pneumonia, osteomyelitis, and septicemia. MRSA is a major public health issue. Among these, osteomyelitis is inflammation of the bone caused by the invasion of the bacterial pathogen in the bones. Its prominent symptoms include fever, pain, and redness of bones. In the case of children, it affects the long bones of arms and legs, whereas in the case of adults it affects the hip, feet, and spine. Bacterial osteomyelitis can trigger pathological remodeling of bones and hence causes substantial morbidity and mortality. The present study aims to evaluate the isoflavone genistein's (5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one,4',5,7 trihydroxyisoflavone) antimicrobial and anti-inflammatory effects against osteomyelitis induced by MRSA in male Wistar rats. Classification of the animals was into the following: sham (Group I), osteomyelitis (Group II, control), genistein (25 mg/kg body weight, Group III), and genistein (50 mg/kg body weight, Group IV). The rats did not receive any treatment for 4 weeks after bacterial inoculation. Genistein was then administered twice daily for 2 weeks. Bacterial growth, mean body weight bone infection status, and side effects of genistein treatment were assessed. Furthermore, lipid peroxidation, superoxide dismutase, glutathione (GSH) peroxidase, catalase, reduced GSH, tumor necrosis factor-α (TNF-α), and interleukin (IL)-6 were also determined. Two days after treatment, it was found that genistein significantly suppressed bacterial growth and reduced serum pro-inflammatory cytokines TNF-α and IL-6. Therefore, the study suggests that genistein could be a promising lead against MRSA-induced osteomyelitis.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Ratas , Masculino , Animales , Staphylococcus aureus , Genisteína/farmacología , Genisteína/uso terapéutico , Factor de Necrosis Tumoral alfa , Ratas Wistar , Antibacterianos , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/patología , Osteomielitis/etiología , Osteomielitis/microbiología , Glutatión , Interleucina-6/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
11.
Chem Biodivers ; 20(10): e202300809, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37702456

RESUMEN

The objective of this study was to evaluate the effect of ChromatiNet on vegetative growth, total antioxidant capacity, phenolic and essential oils (EOs) composition of Lippia gracilis. The plants were cultivated under full sunlight, black, blue and red ChromatiNet. The flavonoid content and antioxidant capacity were quantified spectrophotometrically. The C-glycosylflavone isomers (orientin and isoorientin) were isolated and identified by conventional spectroscopic techniques and measured using high-performance liquid chromatography-diode array detection. The EO was analysed by gas chromatography and gas chromatography-mass spectrometry. Environment influenced growth, total antioxidant capacity and phytochemical levels. Shoot dry weight, thymol, carvacrol and (E)-caryophyllene were favoured under red and black ChromatiNet. Root growth, EOs, caryophyllene oxide, p-cymene, flavonoids, orientin and isoorientin were favoured in sunlight. Growth and accumulation of EOs, flavonoids and photosynthetic pigments increased under blue ChromatiNet. Therefore, Lippia gracilis plants have plasticity related to the spectral quality of light and it cultivate depends of the phytochemicals of interest.

12.
Chem Biodivers ; 20(4): e202201201, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36938695

RESUMEN

The present investigation describes an intramolecular Oxa-Michael addition of penta-substituted phenols to the enone of the tether in the presence of iodine as the oxidizing agent. Ten C-Dimethylated flavones with moderate to good yields (10a-j, 60-89 %) were isolated by heating the corresponding C-dimethylated chalcones using iodine in DMSO. Using the Microplate Alamar Blue test (MABA) technique, the drugs' quantitative drug susceptibility against the H37Rv strain of replicating Mycobacterium TB was determined. The sensitivity of two of the developed compounds (10e, 10h) was up to 6.25 g/mL. The human lung adenocarcinoma cell lines (A549) were used in the anticancer study, which was carried out using the MTT cell proliferation assay. In A549 cell lines, four flavones demonstrated anticancer activity with IC50 values between 39 and 48 µM. The C-dimethylated flavones, 10b (3,4-dimethoxy), 10c (2,3,4-trimethoxy), 10e (p-fluoro) and 10g (N-methyl indole) substitutions on ring 'B' showed good anticancer activity with IC50 values 39.17, 39.21, 48.43 and 43.48 µM, respectively. The compounds 10b, 10c, 10d, 10e, and 10i had improved binding and interaction profiles among all the compounds examined during the current In Silico research, as shown by the docking simulations against two targets EGFR and MTB MurI.


Asunto(s)
Antineoplásicos , Chalconas , Flavonas , Humanos , Flavonas/farmacología , Pruebas de Sensibilidad Microbiana , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad , Antituberculosos/farmacología , Antituberculosos/química , Simulación del Acoplamiento Molecular
13.
Int J Vitam Nutr Res ; 93(3): 252-267, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34039010

RESUMEN

The prevalence of obesity has increased substantially over the last several decades and several environmental factors have accelerated this trend. Poly-methoxy flavones (PMFs) exist abundantly in the peels of citrus, and their biological activities have been broadly examined in recent years. Several studies have examined the effects of PMFs on obesity and its-related diseases. This systematic review conducted to focus on the effect of PMFs on obesity and its related conditions management. The PubMed, Google Scholar, Scopus, and Science Direct databases were searched for relevant studies published before November 2020. Out of 1,615 records screened, 16 studies met the study criteria. The range of dosage of PMFs was varied from 10 to 200 mg/kg (5-26 weeks) and 1-100 µmol (2h-8 days) across selected animal and in vitro studies, respectively. The literature reviewed shows that PMFs modulate several biological processes associated with obesity such as lipid and glucose metabolism, inflammation, energy balance, and oxidative stress by different mechanisms. All of the animal studies showed significant positive effects of PMFs on obesity by reducing body weight (e.g. reduced weight gain by 21.04%), insulin resistance, energy expenditure, inhibiting lipogenesis and reduced blood lipids (e.g. reduced total cholesterol by 23.10%, TG by 44.35% and LDL by 34.41%). The results of the reviewed in vitro studies have revealed that treatment with PMFs significantly inhibits lipid accumulation in adipocytes (e.g. reduced lipid accumulation by 55-60%) and 3T3-L1 pre-adipocyte differentiation as well by decreasing the expression of PPARγ and C/EBPα and also reduces the number and size of fat cells and reduced TG content in adipocytes by 45.67% and 23.10% and 16.08% for nobiletin, tangeretin and hesperetin, respectively. Although current evidence supports the use of PMFs as a complementary treatment in obesity, future research is needed to validate this promising treatment modality.


Asunto(s)
Citrus , Flavonas , Animales , Flavonas/farmacología , Inflamación , Obesidad/tratamiento farmacológico , Lípidos , Extractos Vegetales/farmacología
14.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37373329

RESUMEN

In recent years, aggregation-induced emission enhancement (AIEE) molecules have shown great potential for applications in the fields of bio-detection, imaging, optoelectronic devices, and chemical sensing. Based on our previous studies, we investigated the fluorescence properties of six flavonoids and confirmed that compounds 1-3 have good aggregation-induced emission enhancement (AIEE) properties through a series of spectroscopic experiments. Compounds with AIEE properties have addressed the limitation imposed by the aggregation-caused quenching (ACQ) of classic organic dyes owing to their strong fluorescence emission and high quantum yield. Based on their excellent fluorescence properties, we evaluated their performance in the cell and we found that they could label mitochondria specifically by comparing their Pearson correlation coefficients (R) with Mito Tracker Red and Lyso-Tracker Red. This suggests their future application in mitochondrial imaging. Furthermore, studies of uptake and distribution characterization in 48 hpf zebrafish larvae revealed their potential for monitoring real-time drug behavior. The uptake of compounds by larvae varies significantly across different time cycles (between uptake and utilization in the tissue). This observation has important implications for the development of visualization techniques for pharmacokinetic processes and can enable real-time feedback. More interestingly, according to the data presented, tested compounds aggregated in the liver and intestine of 168 hpf larvae. This finding suggests that they could potentially be used for monitoring and diagnosing liver and intestinal diseases.


Asunto(s)
Flavonas , Pez Cebra , Animales , Flavonas/farmacología , Análisis Espectral
15.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298192

RESUMEN

Cancer is a widespread but dangerous disease that can strike anyone and is the second 1leading cause of death worldwide. Prostate cancer, in particular, is a prevalent cancer that occurs in men, and much research is being done on its treatment. Although chemical drugs are effective, they have various side effects, and accordingly, anticancer drugs using natural products are emerging. To date, many natural candidates have been discovered, and new drugs are being developed as drugs to treat prostate cancer. Representative candidate compounds that have been studied to be effective in prostate cancer include apigenin, acacetin and tangeretin of the flavone family among flavonoids. In this review, we look at the effects of these three flavones on prostate cancer cells via apoptosis in vitro and in vivo. Furthermore, in addition to the existing drugs, we suggest the three flavones and their effectiveness as natural anticancer agents, a treatment model for prostate cancer.


Asunto(s)
Antineoplásicos , Flavonas , Neoplasias de la Próstata , Masculino , Humanos , Flavonas/farmacología , Flavonas/química , Flavonoides/farmacología , Flavonoides/uso terapéutico , Apoptosis , Apigenina/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico
16.
Molecules ; 28(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764304

RESUMEN

This review focuses on the synthesis and biological activity of flavones and their related flavonoidic compounds, namely flavonols and aurones. Among the biological activities of natural and synthetic flavones and aurones, their anticancer, antioxidant, and antimicrobial properties are highlighted and detailed in this review. Starting from the structures of natural flavones acting on multiple anticancer targets (myricetin, genkwanin, and other structurally related compounds), new flavone analogs were recently designed and evaluated for their anticancer activity. The most representative compounds and their anticancer activity are summarized in this review. Natural flavones recognized for their antimicrobial properties (baicalein, luteolin, quercetol, apigenin, kaempferol, tricin) have been recently derivatized or structurally modulated by chemical synthetic methods in order to obtain new effective antimicrobial flavonoidic derivatives with improved biological properties. The most promising antimicrobial agents are systematically highlighted in this review. The most applied method for the synthesis of flavones and aurones is based on the oxidative cyclization of o-hydroxychalcones. Depending on the reaction conditions and the structure of the precursor, in some cases, several cyclization products result simultaneously: flavones, flavanones, flavonols, and aurones. Based on the literature data and the results obtained by our research group, our aim is to highlight the most promising methods for the synthesis of flavones, as well as the synthetic routes for the other structurally related cyclization products, such as hydroxyflavones and aurones, while considering that, in practice, it is difficult to predict which is the main or exclusive cyclization product of o-hydroxychalcones under certain reaction conditions.

17.
Molecules ; 28(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37894669

RESUMEN

An anti-neurodegeneration activity study was carried out for 80 flavonoid compounds. The structure-activity analysis of the structures was carried out by performing three different anti-neurodegeneration screening tests, showing that in these structures, the presence of a hydroxy substituent group at position C3' as well as C5' of ring B and a methoxy substituent group at the C7 position of ring A play a vital role in neuroprotective and antioxidant as well as anti-inflammatory activity. Further, we found structure (5) was the top-performing active structure out of 80 structures. Subsequently, a molecular docking study was carried out for the 3 lead flavonoid compounds (4), (5), and (23) and 21 similar hypothetical proposed structures to estimate the binding strength between the tested compounds and proteins potentially involved in disease causation. Ligand-based pharmacophores were generated to guide future drug design studies.


Asunto(s)
Antioxidantes , Flavonoides , Flavonoides/farmacología , Flavonoides/química , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
18.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005250

RESUMEN

Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacología , Flavonoides/uso terapéutico , Quinasas Ciclina-Dependientes , Fosforilación , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis
19.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985698

RESUMEN

Sharpless asymmetric dihydroxylation is an important reaction in the enantioselective synthesis of chiral vicinal diols that involves the treatment of alkene with osmium tetroxide along with optically active quinine ligand. Sharpless introduced this methodology after considering the importance of enantioselectivity in the total synthesis of medicinally important compounds. Vicinal diols, produced as a result of this reaction, act as intermediates in the synthesis of different naturally occurring compounds. Hence, Sharpless asymmetric dihydroxylation plays an important role in synthetic organic chemistry due to its undeniable contribution to the synthesis of biologically active organic compounds. This review emphasizes the significance of Sharpless asymmetric dihydroxylation in the total synthesis of various natural products, published since 2020.


Asunto(s)
Productos Biológicos , Hidroxilación , Productos Biológicos/química , Alquenos , Estereoisomerismo
20.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677614

RESUMEN

The methoxylated flavone xanthomicrol represents an uncommon active phenolic compound identified in herbs/plants with a long application in traditional medicine. It was isolated from a sample of Achillea erba-rotta subsp. moschata (musk yar-row) flowering tops. Xanthomicrol promising biological properties include antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. This study mainly focused on the evaluation of the xanthomicrol impact on lipid metabolism in cancer HeLa cells, together with the investigation of the treatment-induced changes in cell growth, morphology, and apoptosis. At the dose range of 5-100 µM, xanthomicrol (24 h of incubation) significantly reduced viability and modulated lipid profile in cancer Hela cells. It induced marked changes in the phospholipid/cholesterol ratio, significant decreases in the levels of oleic and palmitic acids, and a marked increase of stearic acid, involving an inhibitory effect on de novo lipogenesis and desaturation in cancer cells. Moreover, marked cell morphological alterations, signs of apoptosis, and cell cycle arrest at the G2/M phase were observed in cancer treated cells. The bioactivity profile of xanthomicrol was compared to that of the anticancer methoxylated flavones eupatilin and artemetin, and structure-activity relationships were underlined.


Asunto(s)
Flavonas , Neoplasias , Humanos , Células HeLa , Flavonas/farmacología , Extractos Vegetales/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA