Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 21(1): 26-33, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258610

RESUMEN

Colloidal quantum dots (QDs) exhibit unique characteristics such as facile color tunability, pure color emission with extremely narrow bandwidths, high luminescence efficiency, and high photostability. In addition, quantum dot light-emitting diodes (QLEDs) feature bright electroluminescence, low turn-on voltage, and ultrathin form factor, making them a promising candidate for next-generation displays. To achieve the overarching goal of the full-color display based on the electroluminescence of QDs, however it is essential to enhance the performance of QLEDs further for each color (e.g., red, green, and blue; RGB) and develop novel techniques for patterning RGB QD pixels without cross-contamination. Here, we present state-of-the-art material, process, and device technologies for full-color QLED-based displays. First, we highlight recent advances in the development of efficient red-, green-, and blue-monochromatic QLEDs. In particular, we focus on the progress of heavy-metal-free QLEDs. Then, we describe patterning techniques for individual RGB QDs to fabricate pixelated displays. Finally, we briefly summarize applications of such QLEDs, presenting the possibility of full-color QLED-based displays.

2.
Chem Rec ; 19(8): 1729-1752, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30698895

RESUMEN

The unique features of solution-processed quantum dots (QDs) including emission tunability in the visible range, high-quality saturated color and outstanding intrinsic stability in environment are highly desired in various application fields. Especially, for the preparation of wide color gamut displays, QDs with high photoluminescence quantum yield are deemed as the optimal fluorescent emitter that has been utilized in the backlight for liquid crystal display. Nevertheless, the commercialization of electrically driven self-emissive quantum dot light-emitting diode (QLED) display is the ultimate target due to its merits of high contrast, slim configuration and compatibility with flexible substrate. Through the great efforts devoted to material engineering and device configuration, astonishing progresses have been made in device performance, giving the QLED technology a great chance to compete with other counterparts for next-generation displays. In this review, we retrospect the development roadmap of QLED technology and introduce the essential principles in the QLED devices. Moreover, we discuss the key factors that affect the QLED efficiency and lifetime. Finally, the advances in device architectures and pixel patterning are also summarized.

3.
Nano Lett ; 17(10): 6034-6039, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28872882

RESUMEN

Color pixels composed of plasmonic nanostructures provide a highly promising approach for new display technologies, capable of vivid, robust coloration and incorporating the use of low-cost plasmonic materials, such as aluminum. Here we report a plasmonic device that can be tuned continuously across the entire visible spectrum, based on integrating a square array of aluminum nanostructures into an elastomeric substrate. By stretching the substrate in either of its two dimensions, the period and therefore the scattering color can be modified to the blue or the red of the at-rest structure, spanning the entire visible spectrum. The unique two-dimensional design of this structure enables active mechanical color tuning, under gentle elastic modulation with no more than 35% strain. We also demonstrate active image switching with this structure. This design strategy has the potential to open the door for next-generation flexible photonic devices for a wide variety of visible-light applications.

4.
Adv Mater ; 36(1): e2306725, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37671626

RESUMEN

The construction of high-performance white organic light-emitting transistor (OLET) with uniform area emission is crucial for smart display technologies but remains greatly challenging. Herein, high-efficiency uniform area-emissive OLETs based on a unique lateral-integrated device configuration which incorporates efficient energy transfer of phosphorescent and fluorescent guests, enabling color-tunable and white emission, are demonstrated. Through precisely regulating the energy transfer between host and guests, high external quantum efficiency of 13.9% for white-emission OLETs is achieved due to the improved high exciton utilization and light outcoupling efficiency which is the highest value reported so far for OLETs and prevents exciton-charge annihilation and electrode photon losses. Moreover, good loop stability is also achieved, along with effective gate tunability and ultralow driving voltage of below 5 V. Finally, a 4 × 6 white-emission OLET array for full-color display is demonstrated for the first time, suggesting its great potential applications for advanced display technologies.

5.
Nanomicro Lett ; 16(1): 45, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060071

RESUMEN

Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.

6.
Nanomaterials (Basel) ; 10(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322057

RESUMEN

Emerging technologies, such as smart wearable devices, augmented reality (AR)/virtual reality (VR) displays, and naked-eye 3D projection, have gradually entered our lives, accompanied by an urgent market demand for high-end display technologies. Ultra-high-resolution displays, flexible displays, and transparent displays are all important types of future display technology, and traditional display technology cannot meet the relevant requirements. Micro-light-emitting diodes (micro-LEDs), which have the advantages of a high contrast, a short response time, a wide color gamut, low power consumption, and a long life, are expected to replace traditional liquid-crystal displays (LCD) and organic light-emitting diodes (OLED) screens and become the leaders in the next generation of display technology. However, there are two major obstacles to moving micro-LEDs from the laboratory to the commercial market. One is improving the yield rate and reducing the cost of the mass transfer of micro-LEDs, and the other is realizing a full-color display using micro-LED chips. This review will outline the three main methods for applying current micro-LED full-color displays, red, green, and blue (RGB) three-color micro-LED transfer technology, color conversion technology, and single-chip multi-color growth technology, to summarize present-day micro-LED full-color display technologies and help guide the follow-up research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA