Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Indian J Plast Surg ; 56(1): 44-52, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36998939

RESUMEN

Background This clinical trial aimed to evaluate the clinical efficacy of chitosan derivative hydrogel paste (CDHP) as a wound bed preparation for wounds with cavities. Methods This study enrolled 287 patients, with 143 patients randomized into the CDHP group (treatment) and 144 patients randomized into the commercial hydroactive gel (CHG) group (control). The granulation tissue, necrotic tissue, patient comfort, clinical signs, symptoms, and patient convenience during the application and removal of the dressing were assessed. Results The study was completed by 111 and 105 patients from the treatment and control groups, respectively. Both groups showed an increasing mean percentage of wound granulation over time when the initial wound size and comorbidity were adjusted (F(10,198) = 4.61; p < 0.001), but no significant difference was found between the groups (F(1,207) = 0.043; p = 0.953). The adjusted mean percentage of necrotic tissue of both groups showed a significant decrease over time (F(10,235) = 5.65; p <0.001), but no significant differences were found between the groups (F (1,244) = 0.487; p = 0.486). Conclusion CDHP is equivalent to CHG and is an alternative in wound management and wound bed preparation for wounds with cavities.

2.
Wound Repair Regen ; 29(6): 1035-1050, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34129714

RESUMEN

Dermal scarring from motor vehicle accidents, severe burns, military blasts, etc. is a major problem affecting over 80 million people worldwide annually, many of whom suffer from debilitating hypertrophic scar contractures. These stiff, shrunken scars limit mobility, impact quality of life, and cost millions of dollars each year in surgical treatment and physical therapy. Current tissue engineered scaffolds have mechanical properties akin to unwounded skin, but these collagen-based scaffolds rapidly degrade over 2 months, premature to dampen contracture occurring 6-12 months after injury. This study demonstrates a tissue engineered scaffold can be manufactured from a slow-degrading viscoelastic copolymer, poly(ι-lactide-co-ε-caprolactone), with physical and mechanical characteristics to promote tissue ingrowth and support skin-grafts. Copolymers were synthesized via ring-opening polymerization. Solvent casting/particulate leaching was used to manufacture 3D porous scaffolds by mixing copolymers with particles in an organic solvent followed by casting into molds and subsequent particle leaching with water. Scaffolds characterized through SEM, micro-CT, and tensile testing confirmed the required thickness, pore size, porosity, modulus, and strength for promoting skin-graft bioincorporation and dampening fibrosis in vivo. Scaffolds were Oxygen Plasma Treatment and collagen coated to encourage cellular proliferation. Porosity ranging from 70% to 90% was investigated in a subcutaneous murine model and found to have no clinical effect on tissue ingrowth. A swine full-thickness skin wound model confirmed through histology and Computer Planimetry that scaffolds promote skin-graft survival, with or without collagen coating, with equal safety and efficacy as a commercially available tissue engineered scaffold. This study validates a scalable method to create poly(ι-lactide-co-ε-caprolactone) scaffolds with appropriate characteristics and confirms in mouse and swine wound models that the scaffolds are safe and effective at supporting skin-grafts. The results of this study have brought us closer towards developing an alternative technology that supports skin grafts with the potential to investigate long-term hypertrophic scar contractures.


Asunto(s)
Trasplante de Piel , Ingeniería de Tejidos , Animales , Caproatos , Colágeno , Lactonas , Ratones , Poliésteres , Calidad de Vida , Porcinos , Andamios del Tejido , Cicatrización de Heridas
3.
Cell Tissue Bank ; 22(2): 199-205, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33620693

RESUMEN

INTRODUCTION: In large full-thickness skin defects, donor site morbidity limits the available thickness and surface of skin autografts and therefore only split-thickness skin grafts are possible for reconstruction. Dermal equivalents can be added to these split-thickness grafts to acquire an anatomically better skin reconstruction. Glyaderm is a human derived, acellular dermis and up until now has only been used in a two-staged procedure. This report describes results of a case series using Glyaderm and split-thickness skin grafts in a single-staged procedure. METHODS: Glyaderm was introduced in 2017 in Radboudumc (Nijmegen, The Netherlands). Glyaderm and autologous split-skin grafts were simultaneously applied to the wounds. In cases with large wound surfaces or wounds covering highly mobile areas, negative pressure wound therapy was additionally applied. The first ten cases were followed with regular intervals post-operatively, assessing graft take, scar appearance, post-operative wound problems and re-interventions. RESULTS: Patients were aged 3 weeks to 76 years-old. Treated skin surface varied from 1-16% total body surface. Wounds resulted from trauma (n = 4), burns (n = 4) or soft tissue infections (n = 2). Follow-up varied from 4 months to 1.5 years. No complications occurred after surgery. Average take rate was 98%. Two patients had a later re-intervention to further improve the aesthetic appearance of the scarred area. CONCLUSION: Our first results with the application of Glyaderm in a single-staged procedure provided good healing, graft take and scar appearance. Glyaderm was found a suitable dermal substitute in the treatment of full thickness wounds.


Asunto(s)
Dermis Acelular , Quemaduras , Trasplante de Piel , Quemaduras/cirugía , Humanos , Terapia de Presión Negativa para Heridas , Piel Artificial
4.
BMC Vet Res ; 15(1): 191, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174527

RESUMEN

BACKGROUND: Autologous platelet concentrates are currently widely used across different areas of regenerative medicine in order to enhance the wound healing process. Although several protocols for platelet concentrates are available, their application remains difficult due to different protocols leading to distinct products with vary potential biological uses. In this study, we attempted to make a platelet patch (PP) using mixtures of platelet rich plasma (PRP) injection and platelet rich fibrin (PRF) to promote wound repair and regeneration. RESULTS: Experiments were performed using a full-thickness wound model in mini-pigs. Autologous PRP, PRF and PP were prepared immediately before creating four full-thickness skin wounds in pigs. We quantified concentrations of platelets, thrombin and various growth factors to ensure that the desired effect can be produced. After surgery, hydrocolloid dressing, PRP injection, PRF and PP was applied to experimentally induced wounds. Application efficacy was evaluated by measurement of wound sizes and histological examination. The results indicated that all wounds showed a significant size reduction. Wound repair efficacy in response to PP treatment exhibited enhanced re-epithelialization compared to PRP and PRF (P < 0.05) and higher wound contraction than did PRF application (P < 0.05). Another aspect, experiment using DsRed transgenic pigs as blood donors demonstrated that leucocytes in PP were incorporated into the wound bed at the end of the study, suggesting that leucocytes activity is stimulated in response to PP application. Safety of the experimental processes was also confirmed by examination of organ biopsies. CONCLUSIONS: We used a mini-pig model to evaluate the efficacy of lab-made PP on induced full-thickness wound healing. Results demonstrated that application of one piece of PP was enough to obtain comparable efficacy versus general utilization of PRP or PRF for wound care. We also demonstrated that leucocytes in PP were incorporated into the wound bed and no safety concerns have been found in the whole experiment. This study provides a novel and feasible method for veterinary or clinical wound care.


Asunto(s)
Fibrina Rica en Plaquetas , Plasma Rico en Plaquetas , Piel/lesiones , Cicatrización de Heridas/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Leucocitos/efectos de los fármacos , Regeneración/efectos de los fármacos , Porcinos , Porcinos Enanos , Heridas y Lesiones/terapia
5.
Lasers Surg Med ; 51(10): 910-919, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31278757

RESUMEN

BACKGROUND AND OBJECTIVES: Wound contracture formation from excessive myofibroblast activity can result in debilitating morbidities. There are currently no treatments to prevent contracture. Photochemical tissue passivation (PTP), an established, safe, and user-friendly treatment modality, crosslinks collagen by a light-activated process, thus modulating the wound healing response and scarring. We hypothesised that PTP treatment would reinforce wounds by blunting the fibrotic response thus limiting contracture. STUDY DESIGN/MATERIALS AND METHODS: Full-thickness, 1 cm × 1 cm excisional wounds were created on the dorsum of 32 C57BL/6 mice. Treated wounds were painted with photosensitizing dye and exposed to visible light. Wounds were serially photographed over 6 weeks to measure wound contracture. At 7, 14, 21, and 42 days after wound creation, mice were euthanized and wounds were harvested for histologic review by a dermatopathologist. RESULTS: By Day 7, control wounds had significantly more contracture than those treated with PTP (33.0 ± 17.1% and 19.3 ± 9.0%, respectively; P = 0.011). PTP-treated wounds maintained approximately 20% less contracture than controls from Day 14 and on (P < 0.05). By Day 42, wounds had contracted by 86.9 ± 5.5% in controls and 64.2 ± 3.2% in PTP-treated wounds (P < 0.03). Histologically, PTP wounds had earlier growth and development of dermal collagen, neovascularization, and development of skin appendages, compared with control wounds. CONCLUSIONS: PTP significantly limits contracture of full-thickness wounds and improves wound healing. PTP-treated wounds histologically demonstrate more mature structural organization than untreated wounds and closely resemble native skin. PTP treatment may be applicable not only for excisional wounds, but also for wounds with a high incidence of contracture and associated morbidity. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Cicatriz/prevención & control , Contractura/prevención & control , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Rosa Bengala/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Animales , Cicatriz/etiología , Contractura/etiología , Ratones , Ratones Endogámicos C57BL , Fármacos Fotosensibilizantes/farmacología , Rosa Bengala/farmacología , Resultado del Tratamiento , Cicatrización de Heridas/fisiología
6.
Colloids Surf B Biointerfaces ; 234: 113728, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183872

RESUMEN

Wounds are a physical manifestation of injury to the skin causing it to rupture or tear. The process of wound healing naturally restores skin integrity while minimizing the extent of the damage. Hesperidin (HPN) is a natural polyphenolic flavonoid and is effective in treating wounds due to its ability to reduce inflammation and stimulate angiogenesis. However, its use is limited by its poor physicochemical attributes such as poor solubility in water. Recently, nanoparticles, particularly Cubosomes, are found to be promising candidates for advancing wound-healing therapies, owing to their unique properties. The present study was conducted to develop a hydrogel system based on Cubosomes encapsulating HPN (HPN-Cubogel), with the potential to mitigate full-thickness wounds. The therapeutic efficacy of the formulation assessed in the animal model showed that the HPN-Cubogel formulation group exhibited a wound closure rate of 98.96 ± 1.50% after 14 days post-wounding compared to 89.12 ± 2.6% in the control group suggesting superior wound contraction activity. Collagen synthesis was superior in the formulation compared to the control group, as determined through MT staining. In summary, the HPN-Cubogel formulation was found to be the most effective in enhancing full-thickness wound healing.


Asunto(s)
Hesperidina , Animales , Hesperidina/farmacología , Cicatrización de Heridas , Piel , Hidrogeles/farmacología , Hidrogeles/química , Modelos Animales
7.
Methods Mol Biol ; 2773: 87-96, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38236539

RESUMEN

Wound healing is a complex biological response to injury characterized by a sequence of interdependent and overlapping physiological actions. To study wound healing and cutaneous regeneration processes, the complexity of wound healing requires the use of animal models. In this chapter, we describe the protocol to generate skin wounds in a mouse model. In the mouse splinted excisional wound model, two full-thickness wounds are firstly created on the mouse dorsum, which is followed by application of silicone splint around wounded area. A splinting ring tightly adheres to the skin around full-thickness wound, preventing wound contraction and replicating human processes of re-epithelialization and new tissue formation. The wound is easily accessible for treatment as well as for daily monitoring and quantifying the wound closure.This technique represents valuable approach for the study of wound healing mechanisms and for evaluation of new therapeutic modalities. In this protocol, we describe how to utilize the model to study the effect of gene electrotransfer of plasmid DNA coding for antiangiogenic molecules. Additionally, we also present how to precisely regulate electrical parameters and modify electrode composition to reach optimal therapeutic effectiveness of gene electrotransfer into skin around wounded area.


Asunto(s)
Piel , Cicatrización de Heridas , Humanos , Animales , Ratones , Cicatrización de Heridas/genética , Repitelización , Modelos Animales de Enfermedad , Electricidad
8.
J Biomater Appl ; 39(4): 377-395, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39049504

RESUMEN

Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 µm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.


Asunto(s)
Carboximetilcelulosa de Sodio , Ácidos Grasos Omega-3 , Gelatina , Hidrogeles , Piel , Cicatrización de Heridas , Animales , Gelatina/química , Hidrogeles/química , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Carboximetilcelulosa de Sodio/química , Cicatrización de Heridas/efectos de los fármacos , Piel/efectos de los fármacos , Piel/lesiones , Ratas , Masculino , Vendajes , Humanos , Supervivencia Celular/efectos de los fármacos , Regeneración/efectos de los fármacos , Ratas Wistar
9.
Pathophysiology ; 31(3): 458-470, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39311308

RESUMEN

Wound healing is a complex dynamic biomechanical process as the body attempts to restore the integrity of traumatized or devitalized tissues. There are four stages of wound of healing that begins with hemostasis followed by inflammation, proliferation and finally weeks later wound remodeling. Full thickness wounds usually are covered with a dressing material after hemostasis, which allows for controlled hydration. We investigated the potential of a visco-liquid hemostat, polyhedral oligomeric silsesquioxane (POSS), for providing hemostasis and to maintain a microenvironment in the wound bed that would maintain moisture content and promote early re-epithelialization. We hypothesized that the hemostatic agent POSS if left in the wound bed would maintain a protective barrier and accelerate wound healing similar to using saline to irrigate the wound to keep the wound moist. We compared the early phase of wound repair (3-7 days) in a porcine full thickness wound model to evaluate the efficacy of the material. Biopsies were taken after 3 and 7 days to determine the acute response of the POSS hemostat or saline on inflammation, cell migration, concentrations of metalloproteinase (MMPs), and tissue inhibitors of metalloproteinase (TIMPs). Accelerated healing was observed in POSS treated wounds by changes in wound contraction, keratinocyte migration, and development of granulation tissue in comparison to saline treated wounds. Increased concentrations at day 3 of MMP-2, MMP-3, and in MMP-1 at day 7 in POSS treated wounds compared to saline coincide with keratinocyte migration observed in the tissue histology and changes in wound contraction. Tissue concentrations of TIMP-1 and TIMP-2 in POSS treated wounds appear to coordinate the sequence of MMP events in the healing tissue. Matrix metalloproteinase-13, a marker for tissue remodeling, was not upregulated in the early wound healing cascade in either POSS or saline treated wounds at 3 or 7 days. Overall, the data suggests POSS treatment contributed to enhanced early cell migration and wound closure compared to saline treatment.

10.
Int J Biol Macromol ; 251: 126349, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591426

RESUMEN

Biological macromolecules are excellent materials for wound dressing owing to their similar structure to the extracellular matrix and adjustable physicochemical properties. This research focuses on fabricating biological macromolecule-based hydrogel with desirable antibacterial, antioxidant, controlled drug release, cytocompatibility, and wound healing properties. Herein, different concentrations of nanoceria (NC) and flurbiprofen (FLU) drug-loaded gellan gum/gelatin (GG/Ge) based dual crosslinked (Ionic and EDC/NHS coupling) hydrogels were engineered. All fabricated hydrogels were hydrophilic, biodegradable, good strength, porous, antioxidant, hemocompatible and cytocompatible. Among all, hydrogel loaded with 500 µg/ml NC (GG/Ge/NC@FLU) exhibited desirable antioxidant, antibacterial (killed Staphylococcus aureus and Escherichia coli within 12 h), hemocompatible, cytocompatible, supports oxidative-stressed L929 cell growth and acted as a controlled release matrix for FLU, following Fickian diffusion, Peppas Sahlin and Korsmeyer-Peppas drug release models. Furthermore, nanocomposite hydrogel (GG/Ge/NC@FLU)-treated wounds of rats on day 14 demonstrated significantly higher collagen synthesis, nearly 100 % wound contractions, and efficiently decreased the expression of TNF-α and IL-1 while increasing the production of IL-10 and TNF-ß3, indicating antiinflammatory activity, and effectively reduced the expression of VEGF gene indicating effective angiogenesis than all other controls. In conclusion, the fabricated multifunctional GG/Ge/NC@FLU nanocomposite hydrogel shows promising potential for effectively treating full-thickness wound healing in a rat model.

11.
Int J Nanomedicine ; 18: 5183-5195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720596

RESUMEN

Background: Hydrogel dressings have been used as a crucial method to keep the wound wet and hasten the healing process. Due to safety concerns regarding the gel components, low mechanical adhesiveness, and unsatisfactory anti-inflammatory capacity qualities for practical uses in vivo, leading to the clinical translation of wound dressings is still difficult. Methods: A type of composite hydrogel (acrylamide/polyethylene glycol diacrylate/tannic acid, ie, AM/PEGDA/TA) by double bond crosslinking, Schiff base, and hydrogen bond interaction is proposed. The mechanical characteristics, adhesiveness, and biocompatibility of the hydrogel system were all thoroughly examined. Additionally, a full-thickness cutaneous wound model was employed to assess the in vivo wound healing capacity of resulting hydrogel dressings. Results: Benefiting the mechanism of multiple crosslinking, the designed composite hydrogels showed significant mechanical strength, outstanding adhesive capability, and good cytocompatibility. Moreover, the hydrogel system also had excellent shape adaptability, and they can be perfectly integrated into the irregularly shaped wounds through a fast in situ forming approach. Additional in vivo tests supported the findings that the full-thickness wound treated with the composite hydrogels showed quicker epithelial tissue regeneration, fewer inflammatory cells, more collagen deposition, and greater levels of platelet endothelial cell adhesion molecule (CD31) expression. Conclusion: These above results might offer a practical and affordable product or method of skin wound therapy in a medical context.


Asunto(s)
Hidrogeles , Cicatrización de Heridas , Hidrogeles/farmacología , Piel , Antiinflamatorios , Vendajes
12.
Adv Mater ; 35(25): e2211149, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37052392

RESUMEN

Autologous implantable scaffolds that induce vasculogenesis have shown great potential in tissue regeneration; however, previous attempts mainly relied on cell-laden hydrogel patches using fat tissues or platelet-rich plasma, which are insufficient for generating a uniform vasculature in a scalable manner. Here, implantable vascularized engineered thrombi (IVETs) are presented using autologous whole blood, which potentiate effective skin wound healing by constructing robust microcapillary vessel networks at the wound site. Microfluidic shear stresses enable the alignment of bundled fibrin fibers along the direction of the blood flow streamlines and the activation of platelets, both of which offer moderate stiffness of the microenvironment optimal for facilitating endothelial cell maturation and vascularization. Rodent dorsal skin wounds patched with IVET present superior wound closure rates (96.08 ± 1.58%), epidermis thickness, collagen deposition, hair follicle numbers, and neutrophil infiltration, which are permitted by enhanced microvascular circulation. Moreover, IVET treatment accelerates wound healing by recruiting M2 phenotype macrophages.


Asunto(s)
Fibrina , Trombosis , Humanos , Cicatrización de Heridas , Colágeno , Hidrogeles , Andamios del Tejido , Piel
13.
Int J Biol Macromol ; 253(Pt 3): 126929, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37717877

RESUMEN

The replication of skin's dermal and epidermal morphology within a full-thickness wound using a bi-layer hydrogel to cater to their distinct needs is a compelling pursuit. Moreover, human placenta extract (HPE), containing a diverse array of bioactive agents, has proven to be effective in promoting the wound healing process and enhancing epidermal keratinocytes. This study presents a multifunctional bi-layer hydrogel incorporating HPE for accelerating full-thickness wound healing through sustained HPE release, inhibition of bacteria invasion, and promotion of cell proliferation. The upper layer of the scaffold, known as the dressing layer, is composed of carboxymethyl cellulose and sodium alginate, serving as a supportive layer for cell proliferation. The under layer, referred to as the regenerative layer, is composed of chitosan and gelatin, providing an extracellular matrix-like, porous, moist, and antibacterial environment for cell growth. The scaffold was optimized to replicate the morphology of the dermal and epidermal layers, with suitable fibroblast infiltration and a pore size of approximately 283µm. Furthermore, the degradation rate of the samples matched the wound healing rate and persisted throughout this period. The sustained HPE release rate, facilitated by the degradation rate, was optimized to reach ~98% after 28 days, covering the entire healing period. The samples demonstrated robust antibacterial capabilities, with bacterial inhibition zone diameters of and 2.63±0.12cm for S. aureus and E. coli, respectively. The biocompatibility of the samples remained at approximately 68.33±4.5% after 21 days of fibroblast cell culture. The in vivo experiment indicated that the HPE@Bilayer hydrogel promotes the formation of new blood vessels and fibroblasts during the early stages of healing, leading to the appropriate formation of granulation tissue and a wound contraction rate of (79.31±3.1)%. Additionally, it resulted in the formation of a thick epidermal layer (keratinization) that effectively covered all the impaired areas, achieving a wound contraction rate of 95.83±6.3% at the late stage of wound healing. Furthermore, immunohistochemistry staining for CD31 and TGF-ß revealed that the HPE@Bilayer group had 22 blood vessels/field and 34%-66% immunoactive cells, respectively, after 14 days of healing. However, by day 21, angiogenesis and TGF-ß expression had declined, demonstrating that the wounds had been successfully treated with minimal scarring.


Asunto(s)
Quitosano , Humanos , Embarazo , Femenino , Quitosano/farmacología , Hidrogeles/farmacología , Gelatina/farmacología , Carboximetilcelulosa de Sodio/farmacología , Alginatos/farmacología , Staphylococcus aureus , Escherichia coli , Cicatrización de Heridas , Antibacterianos/farmacología , Factor de Crecimiento Transformador beta/farmacología , Placenta
14.
ACS Appl Mater Interfaces ; 15(20): 24034-24046, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37159919

RESUMEN

The emergence and innovation of three-dimensional (3D) bioprinting provide new development opportunities for tissue engineering and regenerative medicine. However, how to obtain bioinks with both biomimicry and manufacturability remains a great issue in 3D bioprinting. Developing intelligent responsive biomaterials is conducive to break through the current dilemma. Herein, a stepwise multi-cross-linking strategy concerning thermosensitive thiolated Pluronic F127 (PF127-SH) and hyaluronic acid methacrylate (HAMA) is proposed to achieve temperature-controlled 3D embedded bioprinting, specifically pre-cross-linking (Michael addition reaction) at low temperatures (4-20 °C) and subsequently self-assembly (hydrophobic interaction) in a high-temperature (30-37 °C) suspension bath as well as final photo-cross-linking (mainly thiol-ene "click" reaction). The unique stepwise cross-linking mechanism promises the thermosensitive bioink appropriate viscosity at different printing stages, making it possible to print complex structures with excellent shape fidelity and simultaneously maintain the biological activity of cells. In vitro studies reveal that 3D-printed hydrogels are beneficial for enhancing cell viability. Further, in vivo experiments demonstrate that cell-laden printed hydrogels significantly promote wound healing and re-epithelialization by modulating inflammation and accelerating collagen deposition and angiogenesis. Therefore, the proposed stepwise multi-cross-linking strategy is expected to accelerate the development of novel bioinks and promote the clinical applications of 3D bioprinting.


Asunto(s)
Bioimpresión , Andamios del Tejido , Andamios del Tejido/química , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos , Hidrogeles/química , Cicatrización de Heridas
15.
Animals (Basel) ; 12(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35739819

RESUMEN

Fraser's dolphins (Lagenodelphis hosei) exhibit the capability to restore nearly normal pigmentation after full-thickness wounding. However, the association among melanocytes, melanin and skin pigmentation during wound healing in cetaceans has yet to be addressed. Here, the number of melanocytes and the distribution of melanocytes and melanin in different-colored skin and different wound-healing stages in Fraser's dolphins were analyzed by using Fontana-Masson staining, immunofluorescence staining and immunohistochemical staining. It was noticed that there was the highest number of melanocytes in dark skin and the lowest number of melanocytes in white skin. The appearance of functional melanocytes and full-melanized neoepidermis was observed in the early stage of wound healing in Fraser's dolphins. Furthermore, the melanocyte number and skin pigmentation and pattern in healed wounds recovered to a similar condition of unwounded skin. This study provides fundamental knowledge of skin repigmentation in cetaceans for further research, and it will be warranted to elucidate the mechanisms of the replenishment of melanocytes and the regulation of melanocyte activity that contribute to the successful repigmentation in cetacean skin wounds.

16.
Biomater Adv ; 139: 212980, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35882136

RESUMEN

Full-thickness wounds are difficult to heal spontaneously. Scaffolds, meant for treating full-thickness wounds, should ensure proper tissue regeneration, both structurally and functionally. An ideal scaffold should mimic the physical, mechanical and biochemical properties of natural skin. However, available mono- or bi-layer skin scaffolds lack in the precise architecture and functionality, thus, failing to provide scar-free regeneration of full-thickness skin wounds. These unmet challenges of scar-free skin regeneration have been addressed in the present study for the first time. This research deals with the synthesis of a low-cost, structurally and functionally graded single unit biodegradable polymeric scaffold. The functional gradient in this scaffold was achieved by varying polymer concentration and electrospinning parameters. This gradient in the scaffold provided the required microenvironment for proper functional and structural reconstruction of all the layers of natural skin. The mechanical property of the scaffold matched that of the natural skin. Besides, the degradation kinetics of the scaffold was in coordination with the regeneration time for the full-thickness wound. The porosity and hydrophilicity gradients of the scaffold helped it mimic the in vivo hypodermal, dermal and epidermal microenvironments of the skin, simultaneously. Co-culturing PCS-201 (dermal fibroblasts) and HaCaT (keratinocytes) on the scaffold resulted in successful regeneration through cellular proliferation, differentiation and organization of the skin tissue. The scaffold also displayed better wound healing in vivo, in terms of speedy wound closure and proper tissue regeneration, in comparison to the standard treatment. Altogether, this study successfully established a simple, one-step synthesis process of a functionally graded, bioresorbable scaffold for scar-free, native-like, structural and functional regeneration of full-thickness skin wounds. Due to cost-effectiveness, easy synthesis process and microarchitectural features, the designed scaffold possesses a potential of translation to a good commercial wound healing product.


Asunto(s)
Piel Artificial , Andamios del Tejido , Implantes Absorbibles , Cicatriz , Humanos , Andamios del Tejido/química , Cicatrización de Heridas
17.
Biosensors (Basel) ; 12(7)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35884268

RESUMEN

Wound healing is a complex biological phenomenon, having different but overlapping stages to obtained complete re-epithelization. The aim of the current study was to develop a dendrimer-based hydrogel bandage, to ameliorate full-thickness wounds. Hesperidin, a bioflavonoid found in vegetables and citrus fruits, is used for treatment of wounds; however, its therapeutic use is limited, due to poor water solubility and poor bioavailability. This issue was overcome by incorporating hesperidin in the inner core of a dendrimer. Hence, a dendrimer-based hydrogel bandage was prepared, and the wound healing activity was determined. A hemolysis study indicated that the hesperidin-loaded dendrimer was biocompatible and can be used for wound healing. The therapeutic efficacy of the prepared formulation was evaluated on a full-thickness wound, using an animal model. H&E staining of the control group showed degenerated neutrophils and eosinophils, while 10% of the formulation showed wound closure, formation of the epidermal layer, and remodeling. The MT staining of the 10% formulation showed better collagen synthesis compared to the control group. In vivo results showed that the preparation had better wound contraction activity compared to the control group; after 14 days, the control group had 79 ± 1.41, while the 10% of formulation had 98.9 ± 0.42. In a nutshell, Hsp-P-Hyd 10% showed the best overall performance in amelioration of full-thickness wounds.


Asunto(s)
Dendrímeros , Hesperidina , Animales , Vendas Hidrocoloidales , Modelos Animales de Enfermedad , Hidrogeles , Cicatrización de Heridas
18.
Biomater Adv ; 140: 213046, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35930818

RESUMEN

An extracellular matrix-mimicking, biodegradable tissue-engineered skin substitute with improved antibacterial, antibiofilm, and wound healing capabilities is essential in skin tissue regeneration applications. The purpose of this study was to develop a novel biodegradable composite nanofibrous poly(ε-caprolactone) (PCL)/decellularized extracellular matrix (dECM) scaffolds loaded with usnic acid (UA); (PEU), where UA is employed as an antibacterial agent as well as a wound-healing accelerator. The architecture and fiber structure of the scaffolds were examined using scanning electron microscopy, and the results revealed that the average diameters decreased as the dECM content increased. The chemical composition, changes in the crystalline structure, homogeneity, and thermal stability of the nanofiber scaffolds with different material compositions were determined using Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, respectively. The composite nanofibrous scaffolds exhibited strong antibacterial activity against various bacterial species, such as Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, and Cutibactrium acnes, and fungal pathogens (such as Candida albicans). Additionally, the composite nanofibrous scaffolds exhibited biofilm inhibition properties against Klebsiella pneumoniae and Pseudomonas aeruginosa. An evaluation of the appearance of in vivo full-thickness excisional wounds treated with the composite nanofiber scaffolds, as well as a histological analysis of the wounds 21 days after surgery, revealed that treatment with nanofibrous PEU scaffolds enhanced wound healing. This study reveals that the proposed composite nanofibrous PEU scaffold has substantial potential for treating infectious full-thickness wounds.


Asunto(s)
Nanofibras , Infección de Heridas , Antibacterianos/farmacología , Benzofuranos , Matriz Extracelular Descelularizada , Humanos , Nanofibras/química , Poliésteres , Andamios del Tejido/química , Cicatrización de Heridas , Infección de Heridas/tratamiento farmacológico
19.
Biomimetics (Basel) ; 7(3)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35892357

RESUMEN

The extracellular matrix (ECM) is a 3-dimensional structure and an essential component in all human tissues. It is comprised of varying proteins, including collagens, elastin, and smaller quantities of structural proteins. Studies have demonstrated the ECM aids in cellular adherence, tissue anchoring, cellular signaling, and recruitment of cells. During times of integumentary injury or damage, either acute or chronic, the ECM is damaged. Through a series of overlapping events called the wound healing phases-hemostasis, inflammation, proliferation, and remodeling-the ECM is synthesized and ideally returned to its native state. This article synthesizes current and historical literature to demonstrate the involvement of the ECM in the varying phases of the wound healing cascade.

20.
Curr Res Transl Med ; 70(4): 103356, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940080

RESUMEN

The study was aimed to evaluate and compare the healing potential of mesenchymal stem cells (MSCs) derived from two common sources (iliac crest derived bone marrow and omental fat) in a full thickness skin wound model. Bone marrow derived MSCs clinical efficacy in the repair of cattle teat fistulae (cutaneous and muco-cutaneous wounds) was also evaluated. In a completely randomized placebo controlled experimental full thickness skin wound model, n=36 were randomly divided into three equal groups: groups I, II and III receiving Phosphate buffered saline (PBS), BM-MSCs and adipose tissue MSCs (AD-MSCs), respectively. Grossly early reduction in inflammation and enhanced epithelialization in the cell-treated groups as compared to the control was seen. Microscopy, ultramicroscopy, gene expression analysis and mechanical testing revealed better and early matrix formation with a reduced scar formation and a higher tensile strength in the cell-treated groups as compared to the control. An overall comparable healing in the cell treated groups was observed, although BM-MSCs had led to the better matrix formation tending to scarless healing while the AD-MSCs had led to the early wound closure with a good tissue strength. In the case controlled bovine clinical teat injuries study (n=17) repaired surgically, BM-MSCs (n=13) or PBS (n=4) was injected locally. In surgico-MSCs treated cases, 84.6% non-recurrence rate was observed as compared to the 50% seen in the control. It was concluded that MSCs irrespective of the donor tissue have potential to improve healing of full thickness cutaneous wounds and/ fistulae.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Animales , Bovinos , Tejido Adiposo , Cicatriz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA