Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Biol Chem ; 298(4): 101729, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35176280

RESUMEN

Elevated fasting blood glucose (FBG) is associated with increased risks of developing type 2 diabetes (T2D) and cardiovascular-associated mortality. G6PC2 is predominantly expressed in islets, encodes a glucose-6-phosphatase catalytic subunit that converts glucose-6-phosphate (G6P) to glucose, and has been linked with variations in FBG in genome-wide association studies. Deletion of G6pc2 in mice has been shown to lower FBG without affecting fasting plasma insulin levels in vivo. At 5 mM glucose, pancreatic islets from G6pc2 knockout (KO) mice exhibit no glucose cycling, increased glycolytic flux, and enhanced glucose-stimulated insulin secretion (GSIS). However, the broader effects of G6pc2 KO on ß-cell metabolism and redox regulation are unknown. Here we used CRISPR/Cas9 gene editing and metabolic flux analysis in ßTC3 cells, a murine pancreatic ß-cell line, to examine the role of G6pc2 in regulating glycolytic and mitochondrial fluxes. We found that deletion of G6pc2 led to ∼60% increases in glycolytic and citric acid cycle (CAC) fluxes at both 5 and 11 mM glucose concentrations. Furthermore, intracellular insulin content and GSIS were enhanced by approximately two-fold, along with increased cytosolic redox potential and reductive carboxylation flux. Normalization of fluxes relative to net glucose uptake revealed upregulation in two NADPH-producing pathways in the CAC. These results demonstrate that G6pc2 regulates GSIS by modulating not only glycolysis but also, independently, citric acid cycle activity in ß-cells. Overall, our findings implicate G6PC2 as a potential therapeutic target for enhancing insulin secretion and lowering FBG, which could benefit individuals with prediabetes, T2D, and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa-6-Fosfatasa , Glucosa , Células Secretoras de Insulina , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudio de Asociación del Genoma Completo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Ratones , Ratones Noqueados , Oxidación-Reducción
2.
J Endocrinol Invest ; 44(12): 2567-2574, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34128214

RESUMEN

BACKGROUND: Elevated fasting plasma glucose has been associated with increased risk for development of type 2 diabetes (T2D). The balance between glucokinase (GCK) and glucose-6-phosphate catalytic subunit 2 (G6PC2) activity are involved in glucose homeostasis through glycolytic flux, and subsequent insulin secretion. AIM: In this study, we evaluated the association between the genetic variability of G6PC2 and GCK genes and T2D-related quantitative traits. METHODS: In 794 drug-naïve, GADA-negative, newly diagnosed T2D patients (VNDS; NTC01526720) we performed: genotyping of 6 independent tag-SNPs within GCK gene and 5 tag-SNPs within G6PC2 gene; euglycaemic insulin clamp to assess insulin sensitivity; OGTT to estimate beta-cell function (derivative and proportional control; DC, PC) by mathematical modeling. Genetic association analysis has been conducted using Plink software. RESULTS: Two SNPs within GCK gene (rs882019 and rs1303722) were associated to DC in opposite way (both p < 0.004). Two G6PC2 variants (rs13387347 and rs560887) were associated to both parameters of insulin secretion (DC and PC) and to fasting C-peptide levels (all p < 0.038). Moreover, subjects carrying the A allele of rs560887 showed higher values of 2h-plasma glucose (2hPG) (p = 0.033). Haplotype analysis revealed that GCK (AACAAA) haplotype was associated to decreased fasting C-peptide levels, whereas, the most frequent haplotype of G6PC2 (GGAAG) was associated with higher fasting C-peptide levels (p = 0.001), higher PC (ß = 6.87, p = 0.022) and the lower 2hPG (p = 0.012). CONCLUSION: Our findings confirmed the role of GCK and G6PC2 in regulating the pulsatility in insulin secretion thereby influencing insulin-signaling and leading to a gradual modulation in glucose levels in Italian patients with newly diagnosed T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinasas del Centro Germinal/genética , Glucosa-6-Fosfatasa/genética , Glucosa/metabolismo , Secreción de Insulina/genética , Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Glucosa-6-Fosfato/metabolismo , Haplotipos , Humanos , Insulina/biosíntesis , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Italia/epidemiología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
3.
BMC Evol Biol ; 17(1): 43, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28173748

RESUMEN

BACKGROUND: The endoplasmic reticulum enzyme glucose-6-phosphatase catalyzes the common terminal reaction in the gluconeogenic/glycogenolytic pathways and plays a central role in glucose homeostasis. In most mammals, different G6PC subunits are encoded by three paralogous genes (G6PC, G6PC2, and G6PC3). Mutations in G6PC and G6PC3 are responsible for human mendelian diseases, whereas variants in G6PC2 are associated with fasting glucose (FG) levels. RESULTS: We analyzed the evolutionary history of G6Pase genes. Results indicated that the three paralogs originated during early vertebrate evolution and that negative selection was the major force shaping diversity at these genes in mammals. Nonetheless, site-wise estimation of evolutionary rates at corresponding sites revealed weak correlations, suggesting that mammalian G6Pases have evolved different structural features over time. We also detected pervasive positive selection at mammalian G6PC2. Most selected residues localize in the C-terminal protein region, where several human variants associated with FG levels also map. This region was re-sequenced in ~560 subjects from Saudi Arabia, 185 of whom suffering from type 2 diabetes (T2D). The frequency of rare missense and nonsense variants was not significantly different in T2D and controls. Association analysis with two common missense variants (V219L and S342C) revealed a weak but significant association for both SNPs when analyses were conditioned on rs560887, previously identified in a GWAS for FG. Two haplotypes were significantly associated with T2D with an opposite effect direction. CONCLUSIONS: We detected pervasive positive selection at mammalian G6PC2 genes and we suggest that distinct haplotypes at the G6PC2 locus modulate susceptibility to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa-6-Fosfatasa/genética , Haplotipos , Adulto , Anciano , Animales , Evolución Molecular , Femenino , Glucosa-6-Fosfatasa/metabolismo , Humanos , Invertebrados/enzimología , Invertebrados/genética , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple , Arabia Saudita , Análisis de Secuencia de ADN , Vertebrados/genética , Adulto Joven
4.
Adv Protein Chem Struct Biol ; 130: 351-373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35534112

RESUMEN

An increase in the fast blood glucose (FBG) levels has been linked to an increased risk of developing a chronic condition, type 2 diabetes (T2D). The mutation in the G6PC2 gene was identified to have a lead role in the modulation of FBG levels. The abnormal regulation of this enzyme influences glucose-stimulated insulin secretion (GSIS), which controls the insulin levels corresponding to the system's glucose level. This study focuses on the mutations at the G6PC2 gene, which cause the variation from normal expression levels and increase the risk of T2D. We examined the non-synonymous single nucleotide polymorphisms (nsSNPs) present in the G6PC2 and subjected them to pathogenicity, stability, residue conservation, and membrane simulation. The individual representation of surrounding amino acids in the mutant (I63T) model showed the loss of hydrophobic interactions compared to the native G6PC2. In addition, the trajectory results from the membrane simulation exhibited reduced stability, and the least compactness was identified for the I63T mutant model. Our study shed light on the structural and conformational changes at the transmembrane region due to the I63T mutation in G6PC2. Additionally, the Gibbs free energy landscape analysis against the two principal components showed structural differences and decreased the conformational stability of the I63T mutant model compared to the native. Like those presented in this study, dynamical simulations may indeed be crucial to comprehending the structural insights of G6PC2 mutations in cardiovascular-associated mortality and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Ayuno , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Humanos , Mutación , Polimorfismo de Nucleótido Simple
5.
Diabetol Metab Syndr ; 12(1): 97, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33292424

RESUMEN

Type 2 diabetes mellitus (T2DM) is a complex polygenic metabolic disease characterized by elevated blood glucose. Multiple environmental and genetic factors can increase the risk of T2DM and its complications, and genetic polymorphisms are no exception. This review is mainly focused on the related genes involved in glucose metabolic, including G6PC2, GCK, GCKR and OCT3. In this review, we have summarized the results reported globally and found that the genetic variants of GCK and OCT3 genes is a risk factor for T2DM while G6PC2 and GCKR genes are controversial in different ethnic groups. Hopefully, this summary could possibly help researchers and physicians understand the mechanism of T2DM so as to diagnose and even prevent T2DM at early time.

6.
Mol Metab ; 41: 101043, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32569842

RESUMEN

OBJECTIVE: G6PC2 is predominantly expressed in pancreatic islet beta cells. G6PC2 hydrolyzes glucose-6-phosphate to glucose and inorganic phosphate, thereby creating a futile substrate cycle that opposes the action of glucokinase. This substrate cycle determines the sensitivity of glucose-stimulated insulin secretion to glucose and hence regulates fasting blood glucose (FBG) but not fasting plasma insulin (FPI) levels. Our objective was to explore the physiological benefit this cycle confers. METHODS: We investigated the response of wild type (WT) and G6pc2 knockout (KO) mice to changes in nutrition. RESULTS: Pancreatic G6pc2 expression was little changed by ketogenic diet feeding but was inhibited by 24 hr fasting and strongly induced by high fat feeding. When challenged with either a ketogenic diet or 24 hr fasting, blood glucose fell to 70 mg/dl or less in G6pc2 KO but not WT mice, suggesting that G6PC2 may have evolved, in part, to prevent hypoglycemia. Prolonged ketogenic diet feeding reduced the effect of G6pc2 deletion on FBG. The hyperglycemia associated with high fat feeding was partially blunted in G6pc2 KO mice, suggesting that under these conditions the presence of G6PC2 is detrimental. As expected, FPI changed but did not differ between WT and KO mice in response to fasting, ketogenic and high fat feeding. CONCLUSIONS: Since elevated FBG levels are associated with increased risk for cardiovascular-associated mortality (CAM), these studies suggest that, while G6PC2 inhibitors would be useful for lowering FBG and the risk of CAM, partial inhibition will be important to avoid the risk of hypoglycemia.


Asunto(s)
Glucosa-6-Fosfatasa/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Glucemia/análisis , Dieta Cetogénica/métodos , Ayuno , Femenino , Glucoquinasa/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfato/metabolismo , Hipoglucemia/metabolismo , Hipoglucemia/prevención & control , Secreción de Insulina , Islotes Pancreáticos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Páncreas/patología , Polimorfismo de Nucleótido Simple
7.
Gene ; 536(2): 385-92, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24333857

RESUMEN

Forkhead box A2 (Foxa2) has been recognized as one of the most potent transcriptional activators that is implicated in the control of feeding behavior and energy homeostasis. However, similar researches about the effects of genetic variations of Foxa2 gene on growth traits are lacking. Therefore, this study detected Foxa2 gene polymorphisms by DNA pool sequencing, PCR-RFLP and PCR-ACRS methods in 822 individuals from three Chinese cattle breeds. The results showed that four sequence variants (SVs) were screened, including two mutations (SV1, g. 7005 C>T and SV2, g. 7044 C>G) in intron 4, one mutation (SV3, g. 8449 A>G) in exon 5 and one mutation (SV4, g. 8537 T>C) in the 3'UTR. Notably, association analysis of the single mutations with growth traits in total individuals (at 24months) revealed that significant statistical difference was found in four SVs, and SV4 locus was highly significantly associated with growth traits throughout all three breeds (P<0.05 or P<0.01). Meanwhile, haplotype combination CCCCAGTC also indicated remarkably associated to better chest girth and body weight in Jiaxian Red cattle (P<0.05). We herein described a comprehensive study on the variability of bovine Foxa2 gene that was predictive of molecular markers in cattle breeding for the first time.


Asunto(s)
Haplotipos/genética , Factor Nuclear 3-beta del Hepatocito/genética , Polimorfismo de Nucleótido Simple/genética , Animales , Peso Corporal/genética , Cruzamiento , Bovinos , Exones/genética , Femenino , Intrones/genética , Desequilibrio de Ligamiento/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA