Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 98(3): e0146923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38345385

RESUMEN

Grass carp reovirus (GCRV), particularly the highly prevalent type II GCRV (GCRV-II), causes huge losses in the aquaculture industry. However, little is known about the mechanisms by which GCRV-II invades grass carp and further disseminates among tissues. In the present study, monocytes/macrophages (Mo/Mφs) were isolated from the peripheral blood of grass carp and infected with GCRV-II. The results of indirect immunofluorescent microscopy, transmission electron microscopy, real-time quantitative RT-PCR (qRT-PCR), western blot (WB), and flow cytometry analysis collectively demonstrated that GCRV-II invaded Mo/Mφs and replicated in them. Additionally, we observed that GCRV-II induced different types (M1 and M2) of polarization of Mo/Mφs in multiple tissues, especially in the brain, head kidney, and intestine. To assess the impact of different types of polarization on GCRV-II replication, we recombinantly expressed and purified the intact cytokines CiIFN-γ2, CiIL-4/13A, and CiIL-4/13B and successfully induced M1 and M2 type polarization of macrophages using these cytokines through in vitro experiments. qRT-PCR, WB, and flow cytometry analyses showed that M2 macrophages had higher susceptibility to GCRV-II infection than other types of Mo/Mφs. In addition, we found GCRV-II induced apoptosis of Mo/Mφs to facilitate virus replication and dissemination and also detected the presence of GCRV-II virus in plasma. Collectively, our findings indicated that GCRV-II could invade immune cells Mo/Mφs and induce apoptosis and polarization of Mo/Mφs for efficient infection and dissemination, emphasizing the crucial role of Mo/Mφs as a vector for GCRV-II infection.IMPORTANCEType II grass carp reovirus (GCRV) is a prevalent viral strain and causes huge losses in aquaculture. However, the related dissemination pathway and mechanism remain largely unclear. Here, our study focused on phagocytic immune cells, monocytes/macrophages (Mo/Mφs) in blood and tissues, and explored whether GCRV-II can invade Mo/Mφs and replicate and disseminate via Mo/Mφs with their differentiated type M1 and M2 macrophages. Our findings demonstrated that GCRV-II infected Mo/Mφs and replicated in them. Furthermore, GCRV-II infection induces an increased number of M1 and M2 macrophages in grass carp tissues and a higher viral load in M2 macrophages. Furthermore, GCRV-II induced Mo/Mφs apoptosis to release viruses, eventually infecting more cells. Our study identified Mo/Mφs as crucial components in the pathway of GCRV-II dissemination and provides a solid foundation for the development of treatment strategies for GCRV-II infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Animales , Apoptosis , Citocinas , Enfermedades de los Peces/metabolismo , Enfermedades de los Peces/patología , Enfermedades de los Peces/virología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/virología , Monocitos/metabolismo , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/patología , Infecciones por Reoviridae/veterinaria , Replicación Viral
2.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670410

RESUMEN

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Asunto(s)
Autofagia , Carpas , Enfermedades de los Peces , MicroARNs , Proteínas Proto-Oncogénicas c-akt , Infecciones por Reoviridae , Reoviridae , Animales , MicroARNs/genética , MicroARNs/inmunología , Carpas/inmunología , Carpas/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reoviridae/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Línea Celular , Regulación de la Expresión Génica/inmunología
3.
Fish Shellfish Immunol ; 151: 109712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901682

RESUMEN

The grass carp (Ctenopharyngodon idella) constitutes a significant economic resource within the aquaculture sector of our nation, yet it has been chronically afflicted by the Grass Carp Reovirus (GCRV) disease. The complement system, a vital component of fish's innate immunity, plays a crucial role in combating viral infections. This research investigates the potential role of MASP1, a key molecule in the lectin pathway of the complement system, in the GCRV infection in grass carp. An analysis of the molecular characteristics of MASP1 in grass carp revealed that its identity and similarity percentages range from 35.10 to 91.00 % and 35.30-91.00 %, respectively, in comparison to other species. Phylogenetically, MASP1 in C. idella aligns closely with species such as Danio rerio, Cyprinus carpio, and Carassius carassius, exhibiting chromosomal collinearity with the zebrafish. Subsequent tissue analysis in both healthy and GCRV-infected grass carp indicated that MASP1's basal expression was predominantly in the liver. Post-GCRV infection, MASP1 expression in various tissues exhibited temporal variations: peaking in the liver on day 5, spleen on day 7, and kidney on day 14. Furthermore, employing Complement Component 3 (C3) as a benchmark for complement system activation, it was observed that MASP1 could activate and cleave C3 to C3b. MASP1 also demonstrated an inhibitory effect on GCRV replication (compared with the control group, VP2 and VP7 decreased by 6.82-fold and 4.37-fold) and enhanced the expression of antiviral genes, namely IRF3, IRF7 and IFN1 (compared with the control group, increased 2.25-fold, 45.38-fold and 22.37-fold, respectively). In vivo protein injection experiments substantiated MASP1's influence on the relative mRNA expression levels of C3 in various tissues and its protein expression in serum. This study also verified that C3 could modulate the expression of antiviral genes such as IFN1 and IRF3.


Asunto(s)
Carpas , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Filogenia , Infecciones por Reoviridae , Reoviridae , Animales , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Carpas/inmunología , Carpas/genética , Reoviridae/fisiología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/inmunología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/genética , Secuencia de Aminoácidos , Alineación de Secuencia/veterinaria
4.
Fish Shellfish Immunol ; 151: 109730, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942250

RESUMEN

RLR helicases RIG-I and MDA5, which are known as pattern recognition receptors to sense cytoplasmic viral RNAs and trigger antiviral immune responses, are DExD/H-box helicases. In teleost, whether and how non-RLR helicases regulate RLR helicases to affect viral infection remains unclear. Here, we report that the non-RLR helicase DHX40 from grass carp (namely gcDHX40) is a negative regulator of grass carp reovirus (GCRV) infection and RLR-mediated type I IFN production. GcDHX40 was a cytoplasmic protein. Ectopic expression of gcDHX40 facilitated GCRV replication and suppressed type I IFN production induced by GCRV infection and by those genes involved the RLR antiviral signaling pathway. Mechanistically, gcDHX40 promoted the generation of viral inclusion bodies (VIBs) by interacting with the NS38 protein of GCRV. Additionally, gcDHX40 interacted with RLR helicase, and impaired the formation of RLR-MAVS functional complexes. Taken together, our results indicate that gcDHX40 is a novel important proviral host factor involving in promoting the generation of GCRV VIBs and inhibiting the production of RLR-mediated type I IFNs.


Asunto(s)
Carpas , ARN Helicasas DEAD-box , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Infecciones por Reoviridae , Reoviridae , Proteínas no Estructurales Virales , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Carpas/inmunología , Carpas/genética , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/inmunología , Reoviridae/fisiología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/inmunología , ARN Helicasas DEAD-box/metabolismo , Inmunidad Innata/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Helicasas/inmunología , Regulación de la Expresión Génica/inmunología
5.
Fish Shellfish Immunol ; 153: 109861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216711

RESUMEN

This study explored the key molecules and signal pathways in the pathogenesis of grass carp reovirus (GCRV). Using immunoprecipitation mass spectrometry and Co-IP validation, the protein CiANXA4 was identified which interacts indirectly with CiLGP2. CiANXA4 encodes 321 amino acids, including 4 ANX domains. To explore the role of CiANXA4 in the anti-GCRV immune response, we used overexpression and siRNA knockdown in cells. The results showed that overexpression of the CiANXA4 gene significantly increased the mRNA content of vp2 and vp7 in GCRV-infected cells, and the virus titer greatly increased. Knockdown of CiANXA4 significantly inhibited the mRNA levels of vp2 and vp7, and the protein levels of viral protein VP7 also significantly decreased. This suggests that CiANXA4 promotes viral proliferation. Further, we demonstrate that the ANX3 and ANX4 domains are key domains that limit CiANXA4 function by constructing domain-deletion mutants. Finally, we investigated the relationship between CiLGP2 and CiANXA4. RT-PCR and Western blot results showed that CiLGP2 mRNA and protein expression levels were not affected by CiANXA4 overexpression. In contrast, overexpression of CiLGP2 resulted in significant reductions in CiANXA4 mRNA and protein levels. This suggests that the function of CiANXA4 is restricted by CiLGP2, and CiANXA4 is a downstream molecule of CiLGP2. These results reveal that CiANXA4 plays a critical role in the anti-GCRV innate immune response of grass carp, and provides new targets and strategies to develop antiviral drugs and improve disease resistance in grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Infecciones por Reoviridae , Reoviridae , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Carpas/genética , Carpas/inmunología , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Reoviridae/fisiología , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Replicación Viral
6.
Fish Shellfish Immunol ; 147: 109453, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365163

RESUMEN

miRNAs are increasingly recognized for their crucial role in autophagy processes. Recent research has highlighted the significant function of autophagy in modulating immune responses. Within this context, specific miRNAs have been identified as indirect mediators of immune functions through their modulation of autophagy. In this study, we verified that miR-193b-5p simultaneously targeted the grass carp autophagy-related gene deptor, thereby reducing autophagy levels in CIK cells. Moreover, we found the expression levels of miR-193b-5p and deptor responding to pathogen infections in the GCRV-infected CIK cells. Notably, the overexpression of miR-193b-5p was found to induce the GCRV replication and reduce the irf3, irf7 and IFN1 expression. These findings also demonstrated that grass carp miR-193b-5p impacted the proliferation, migration, and antiapoptotic abilities of CIK cells. All the above results indicated that miR-193b-5p was linked to grass carp autophagy and played a vital role in antiviral immunity by targeting deptor. Our study may provide important insights into autophagy-related miRNAs and their roles in defense and immune mechanisms against pathogens in teleost.


Asunto(s)
Carpas , Enfermedades de los Peces , MicroARNs , Infecciones por Reoviridae , Reoviridae , Animales , Reoviridae/fisiología , Carpas/metabolismo , Autofagia , MicroARNs/metabolismo , Proteínas de Peces/genética
7.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631439

RESUMEN

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Asunto(s)
Carpas , Enfermedades de los Peces , Interferón Tipo I , Interleucina-6 , Infecciones por Reoviridae , Reoviridae , Factor de Transcripción STAT3 , Transducción de Señal , Replicación Viral , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Interleucina-6/genética , Interleucina-6/inmunología , Interleucina-6/metabolismo , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Reoviridae/fisiología , Carpas/inmunología , Carpas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/inmunología , Transducción de Señal/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/genética , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Inmunidad Innata/genética
8.
Fish Shellfish Immunol ; 148: 109477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447782

RESUMEN

Proteins from the C1q domain-containing (C1qDC) family recognize self-, non-self-, and altered-self ligands and serves as an initiator molecule for the classical complement pathway as well as recognizing immune complexes. In this study, C1qDC gene family members were identified and analyzed in grass carp (Ctenopharyngodon idellus). Members of the C1q subfamily were cloned, and their response to infection with the grass carp virus was investigated. In the grass carp genome, 54 C1qDC genes and 67 isoforms have been identified. Most were located on chromosome 3, with 52 shared zebrafish homologies. Seven substantially differentially expressed C1qDC family genes were identified in the transcriptomes of cytokine-induced killer (CIK) cells infected with grass carp reovirus (GCRV), all of which exhibited sustained upregulation. The opening reading frames of grass carp C1qA, C1qB, and C1qC, belonging to the C1q subfamily, were determined to be 738, 732, and 735 base pairs, encoding 245, 243, and 244 amino acids with molecular weights of 25.81 kDa, 25.63 kDa and 26.16 kDa, respectively. Three genes were detected in the nine collected tissues, and their expression patterns were similar, with the highest expression levels observed in the spleen. In vivo after GCRV infection showed expression trends of C1qA, C1qB, and C1qC in the liver, spleen, and kidney. An N-type pattern in the liver and kidney was characterized by an initial increase followed by a decrease, with the highest expression occurring during the recovering period, and a V-type pattern in the spleen with the lowest expression levels during the death period. In vitro, after GCRV infection showed expression trends of C1qA, C1qB, and C1qC, and this gradually increased within the first 24 h, with a notable increase observed at the 24 h time point. After CIK cells incubation with purified recombinant proteins, rC1qA, rC1qB, and rC1qC for 3 h, followed by GCRV inoculation, the GCRV replication indicated that rC1qC exerted a substantial inhibitory effect on viral replication in CIK cells after 24 h of GCRV inoculation. These findings offer valuable insights into the structure, evolution, and function of the C1qDC family genes and provide a foundational understanding of the immune function of C1q in grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Carpas/metabolismo , Pez Cebra , Complemento C1q/genética , Reoviridae/fisiología , Proteínas del Sistema Complemento , Proteínas de Peces/química
9.
Ecotoxicol Environ Saf ; 284: 116956, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39208574

RESUMEN

Grass carp hemorrhagic disease is caused by the grass carp reovirus (GCRV). The disease spreads rapidly and has a high fatality rate, which seriously affects grass carp culture. Moreover, the molecular mechanisms underlying grass carp hemorrhagic disease remain unclear. To decipher the effects of GCRV on grass carp tissues, resistant grass carp A (GA) and susceptible grass carp B (GB) were selected through GCRV treatment, and control grass carp C (GC) was also established. The gill, liver, and muscle tissues exhibited different onset symptoms under the influence of GCRV by histological observation. We selected muscle samples with significant differences in symptoms for Illumina RNA sequencing. Analyses using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes revealed 3512, 3074, and 1853 differentially expressed genes between "GC vs. GB," "GC vs. GA," and "GA vs. GB," respectively. Additionally, 40 differential immune-related genes and 28 differential interferon-stimulating genes (ISGs) related to the interferon (IFN) pathway were identified. The expression of immunogene-related genes of GB and GA, such as MDA5, IL-34, NF-KB, TRIM25, SOCS3, CEBPB, and BCL2, and genes associated with the JAK-STAT signaling pathway, such as IRF4, STAT1, STAT3, JAK 1, and JAK 2, was significantly upregulated. The IFN and JAK-STAT signaling pathways were closely related to anti-GCRV infection. The transcriptome data and predicted immune genes and ISGs in this study provide novel insights into the treatment of GCRV.

10.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928143

RESUMEN

Grass Carp Reovirus (GCRV) and Aeromonas hydrophila (Ah) are the causative agents of haemorrhagic disease in grass carp. This study aimed to investigate the molecular mechanisms and immune responses at the miRNA, mRNA, and protein levels in grass carp kidney cells (CIK) infected by Grass Carp Reovirus (GCRV, NV) and Aeromonas hydrophilus (Bacteria, NB) to gain insight into their pathogenesis. Within 48 h of infection with Grass Carp Reovirus (GCRV), 99 differentially expressed microRNA (DEMs), 2132 differentially expressed genes (DEGs), and 627 differentially expressed proteins (DEPs) were identified by sequencing; a total of 92 DEMs, 3162 DEGs, and 712 DEPs were identified within 48 h of infection with Aeromonas hydrophila. It is worth noting that most of the DEGs in the NV group were primarily involved in cellular processes, while most of the DEGs in the NB group were associated with metabolic pathways based on KEGG enrichment analysis. This study revealed that the mechanism of a grass carp haemorrhage caused by GCRV infection differs from that caused by the Aeromonas hydrophila infection. An important miRNA-mRNA-protein regulatory network was established based on comprehensive transcriptome and proteome analysis. Furthermore, 14 DEGs and 6 DEMs were randomly selected for the verification of RNA/small RNA-seq data by RT-qPCR. Our study not only contributes to the understanding of the pathogenesis of grass carp CIK cells infected with GCRV and Aeromonas hydrophila, but also serves as a significant reference value for other aquatic animal haemorrhagic diseases.


Asunto(s)
Aeromonas hydrophila , Carpas , MicroARNs , ARN Mensajero , Reoviridae , Transcriptoma , Animales , Carpas/genética , Carpas/microbiología , Carpas/virología , Carpas/inmunología , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reoviridae/fisiología , Proteómica/métodos , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/genética , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/genética , Línea Celular , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/genética , Redes Reguladoras de Genes
11.
Fish Shellfish Immunol ; 142: 109154, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37821003

RESUMEN

Ctenopharyngodon idella and Squaliobarbus curriculus, members of the Cyprinidae family and Yaroideae subfamily, have shown different levels of resistance to grass carp reo virus (GCRV), with S. curriculus exhibiting higher resilience. In the pursuit to explore the distinctions in the structural and expression traits of BF/C2 (A,B) between the two species, we conducted an analysis involving the cloning and examination of various coding sequences (CDS). We successfully cloned the CDS of ci-BF/C2A and ci-BF/C2B from C. idella, which spanned 2259 bp and 2514 bp respectively, encoding 752 and 837 amino acids. Similarly, the CDS of sc-BF/C2A and sc-BF/C2B from S. curriculus were cloned, featuring lengths of 1353 bp and 2517 bp and encoding 450 and 838 amino acids, respectively. A chromosome collinearity assessment revealed that ci-BF/C2A demonstrated collinearity with sc-BF/C2A, a finding not replicated with ci-BF/C2B and sc-BF/C2B. Delving into gene structure, we discerned that ci-BF/C2A harbored a greater number of Tryp_SPc domains compared to sc-BF/C2A. Following this, we engineered and purified six prokaryotic recombinant proteins: CI-BF/C2A, CI-BF/C2A1 (a variant resulting from the deletion of the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2A2 (representing the Tryp_SPc domain of CI-BF/C2A), CI-BF/C2B, SC-BF/C2A, and SC-BF/C2B. Through serum co-incubation tests with these recombinant proteins, we established the activation of the complement marker C3 in each case. Utilizing fluorescence quantitative expression analysis, we observed ubiquitous expression of ci-BF/C2A and ci-BF/C2B across all grass carp tissues, predominantly in the liver. This pattern mirrored in S. curriculus, where sc-BF/C2A was highly expressed in the gills, and sc-BF/C2B manifested notably in the liver. Kidney cell infection experiments on both species revealed enhanced resistance to GCRV post-incubation with the recombinant proteins. Notably, cells treated with SC-BF/C2 (A, B) exhibited pronounced resilience compared to those treated with CI-BF/C2 (A, B, A1, A2). However, cells incubated with CI-BF/C2A1 and CI-BF/C2A2 showed strengthen resistance relative to cells treated with CI-BF/C2A and CI-BF/C2B. In GCRV infection trials on grass carp, ci-BF/C2A and ci-BF/C2B expressions reached a zenith on the seventh day post-infection, highlighting a distinctive functional mode in immune defense against GCRV infection orchestrated by BF/C2. The empirical data underscores the pivotal role of the Tryp_SPc domain in immune responses to GCRV infection, pinpointing its influence on ci-BF/C2A expression. Conclusively, this investigation provides a foundational understanding of the unique immune function characteristics of BF/C2 in grass carp, paving the way for further scholarly exploration in this realm.


Asunto(s)
Carpas , Cyprinidae , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Secuencia de Aminoácidos , Carpas/genética , Carpas/metabolismo , Reoviridae/fisiología , Proteínas Recombinantes , Aminoácidos , Proteínas de Peces/química
12.
Fish Shellfish Immunol ; 134: 108623, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36809843

RESUMEN

Long noncoding RNAs (lncRNAs) play important roles in many biological processes including the immune response against virus infection. However, their roles in grass carp reovirus (GCRV) pathogenicity are largely unknown. In this study, the next-generation sequencing (NGS) technology was used to analyze the profiles of lncRNAs in GCRV-infected and mock-infected grass carp kidney (CIK) cells. Our results showed that 37 lncRNAs and 1039 mRNA transcripts exhibited differential expression in CIK cells after GCRV infection compared with the mock infection. Functional analysis through the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases (KEGG) indicated that target genes of the differentially expressed lncRNAs were mainly enriched in the biological processes - biological regulation, cellular process, metabolic process and regulation of the biological process, such as MAPK signaling pathway and Notch signaling. Furthermore, we observed that the lncRNA3076 (ON693852) was markedly upregulated after the GCRV infection. In addition, silencing lncRNA3076 decreased the GCRV replication, which indicates that it might play an important role in the replication of GCRV.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , ARN Largo no Codificante , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/metabolismo , Reoviridae/fisiología , Proteínas de Peces/genética
13.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37958486

RESUMEN

Grass carp reovirus (GCRV), one of the most serious pathogens threatening grass carp (Ctenopharyngodon idella), can lead to grass carp hemorrhagic disease (GCHD). Currently, GCRV can be divided into three genotypes, but the comparison of their pathogenic mechanisms and the host responses remain unclear. In this study, we utilized the Ctenopharyngodon idella kidney (CIK) model infected with GCRV to conduct comparative studies on the three genotypes. We observed a cytopathic effect (CPE) in the GCRV-I and GCRV-III groups, whereas the GCRV-II group did not show any CPE. Moreover, a consistent trend in the mRNA expression levels of antiviral-related genes across all experimental groups of CIK cells was detected via qPCR and further explored through RNA-seq analysis. Importantly, GO/KEGG enrichment analysis showed that GCRV-I, -II, and -III could all activate the immune response in CIK cells, but GCRV-II induced more intense immune responses. Intriguingly, transcriptomic analysis revealed a widespread down-regulation of metabolism processes such as steroid biosynthesis, butanoate metabolism, and N-Glycan biosynthesis in infected CIK cells. Overall, our results reveal the CIK cells showed unique responses in immunity and metabolism in the three genotypes of GCRV infection. These results provide a theoretical basis for understanding the pathogenesis and prevention and control methods of GCRV.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Transcriptoma , Virulencia , Reoviridae/fisiología , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/veterinaria
14.
Protein Expr Purif ; 197: 106099, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35525405

RESUMEN

Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngon idellus) production in China. VP6 could be suitable for developing vaccine for the control of GCRV. Transgenic plants are an attractive bioreactor for their safety and ability to make economical vaccines. The B subunit of Escherichia coli heat-labile enterotoxin (LTB) fused to VP6 (LTB-VP6) was transformed into rice calli by Agrobacterium tumefaciens-mediated gene transformation. Transgenic rice calli was confirmed by PCR analysis separately. The copy numbers of LTB-VP6 inserted into the rice genome are between 1 and 2. The expression level of LTB-VP6 in rice calli was 0.0005-0.0019%, an average of 0.0011% of the TSP(total soluble proteins). LTB-VP6 was folded and assembled into a pentameric form of approximately 305 kDa capable of binding monosialoganglioside (GM1). The suitable concentration of LTB-VP6 in TSP was 0.4 µg/µl. LTB-VP6 is stable and highly active at room temperature. LTB-VP6 binding to GM1 is affected with different affinities under different temperatures. LTB-VP6 had a strong binding affinity at 25 °C and pH 8.4. Our results showed that LTB-VP6 is capable of forming an active pentameric form protein. It provides an ideal alternative to plant-based vaccines against GCRV in aquaculture.


Asunto(s)
Carpas , Enfermedades de los Peces , Oryza , Reoviridae , Animales , Anticuerpos Antivirales , Carpas/genética , Enterotoxinas/genética , Escherichia coli/metabolismo , Gangliósido G(M1)/metabolismo , Calor , Oryza/genética , Reoviridae/genética
15.
Fish Shellfish Immunol ; 128: 148-156, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35921937

RESUMEN

Autophagy impacts the replication cycle of many viruses. Grass Carp Reovirus (GCRV) is an agent that seriously affects the development of the grass carp aquaculture industry. The role of autophagy in GCRV infection is not clearly understood. In this study, we identified that GCRV infection triggered autophagy in CIK cells, which was demonstrated by transmission electron microscopy, the conversion of LC3B I to LC3B II and the level of autophagy substrate p62. Furthermore, we found that GCRV infection activated Akt-mTOR signaling pathway, and the conversion of LC3B I to LC3B II was increased by inhibiting mTOR with rapamycin (Rap) but decreased by activating Akt with insulin. We then assessed the effects of autophagy on GCRV replication. We found that inducing autophagy with Rap promoted GCRV proliferation but inhibiting autophagy with 3 MA or CQ inhibited GCRV replication in CIK cells. Moreover, it was found that enhancing Akt-mTOR activity by insulin, GCRV VP7 protein and viral titers of GCRV were decreased. Collectively, these results indicated that GCRV infection induced autophagy involved in GCRV replication via the Akt-mTOR signal pathway. Thus, new insights into GCRV pathogenesis and antiviral treatment strategies are provided.


Asunto(s)
Carpas , Enfermedades de los Peces , Insulinas , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Antivirales/farmacología , Autofagia , Insulinas/farmacología , Insulinas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Infecciones por Reoviridae/metabolismo , Infecciones por Reoviridae/veterinaria , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/genética , Replicación Viral
16.
Fish Shellfish Immunol ; 127: 572-584, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35798246

RESUMEN

Combination of antimicrobial proteins and nanomaterials provides a platform for the development of immunopotentiators. Oral administration of immunopotentiators can significantly enhance the immunity of organisms, which provides ideas for disease prevention. In this study, we confirmed that nanoparticles CMCS-20a can efficiently prevent grass carp reovirus (GCRV) infection. Firstly, we verified that CiCXCL20a is involved in the immune responses post GCRV challenge in vivo and alleviates the cell death post GCRV challenge in CIK cells. Then, we prepared nanoparticles CMCS-20a using carboxymethyl chitosan (CMCS) loaded with grass carp (Ctenopharyngodon idella) CXCL20a (CiCXCL20a). Meanwhile, we confirmed nanoparticles CMCS-20a can alleviate the degradation in intestine. Subsequently, we added it to the feed by low temperature vacuum drying method and high temperature spray drying method, respectively. Grass carp were oral administration for 28 days and challenged by GCRV. Low temperature vacuum drying group (LD-CMCS-20a) significantly improve grass carp survival rate, but not high temperature spray drying group (HD-CMCS-20a). To reveal the mechanisms, we investigated the serum biochemical indexes, intestinal mucus barrier, immune gene regulation and tissue damage. The complement component 3 content, lysozyme and total superoxide dismutase activities are highest in LD-CMCS-20a group. LD-CMCS-20a effectively attenuates the damage of GCRV to the number of intestinal villous goblet cells and mucin thickness. LD-CMCS-20a effectively regulates mRNA expressions of immune genes (IFN1, Mx2, Gig1 and IgM) in spleen and head kidney tissues. In addition, LD-CMCS-20a obviously alleviate tissue lesions and viral load in spleen. These results indicated that the nanoparticles CMCS-20a can enhance the disease resistance of fish by improving their immunity, which provides a new perspective for fish to prevent viral infections.


Asunto(s)
Carpas , Quitosano , Enfermedades de los Peces , Nanopartículas , Infecciones por Reoviridae , Reoviridae , Adyuvantes Inmunológicos , Animales , Carpas/metabolismo , Suplementos Dietéticos , Proteínas de Peces/genética , Reoviridae/fisiología
17.
Fish Shellfish Immunol ; 131: 1118-1124, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36400369

RESUMEN

Krüppel-like factor 2a (KLF2A), a transcription factor of the krüppel-like family, is involved in regulating the immune molecules and is associated with viral infection. However, the function of KLF2A during viral infections in fish remains unclear. In this study, grass carp (Ctenopharyngodon idellus) was used to predict the target genes regulated by KLF2A. The results showed that the candidate target genes included four members of the serpin gene family (serpinb1l2, serpinc1, serpinh1a, and serpinh1b). Dual-luciferase experiments showed that klf2a positively regulates serpinc1 expression. Dose-dependent klf2a overexpression in C. idellus kidney (CIK) cells significantly upregulated the expression of serpinc1. Overexpressing klf2a or serpinc1 in CIK cells activated interferon responses and suppressed grass carp reovirus (GCRV) replication. Klf2a and serpinc1 co-expression inhibited GCRV replication. These results show that klf2a upregulates serpinc1 mRNA expression, promotes type 1 interferon responses, and suppresses GCRV infection. This study provides insights into the regulatory role and biological functions of KLF2A in host-virus interactions in fish.


Asunto(s)
Carpas , Enfermedades de los Peces , Interferón Tipo I , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Carpas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Peces , Reoviridae/fisiología , Interferón Tipo I/genética , Riñón/metabolismo
18.
Fish Shellfish Immunol ; 120: 451-457, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34902502

RESUMEN

N-ethyl-N-nitrosourea (ENU) selection is a useful technique to generate new mutations that may cause some functional changes in the gene. Through our previous genomic bulked segregant analysis (BSA), one single nucleotide polymorphism (SNP) at the 3' UTR of Toll interacting protein gene (TOLLIP982T>C) was identified in grass carp (Ctenopharyngodon idella) subjected to ENU-induced mutagenesis. We found that the overexpression of cid-miR-nov-1043 mimics significantly suppressed the luciferase activity of the TOLLIP 3' UTR, but TOLLIP982T>C mutation at the target site can decrease the binding affinity between the miRNA cid-miR-nov-1043 and TOLLIP 3' UTR, reducing the inhibition of TOLLIP mRNA transcription in grass carp subjected to ENU-induced mutagenesis. More importantly, we demonstrated that TOLLIP mRNA transcription levels in the gills, liver, kidney and the isolate white cells of the mutant grass carp were significantly (p < 0.01) higher than those in the corresponding tissues from the wild-type grass carp following infection with Grass Carp Reovirus (GCRV) for seven days, while the downstream gene of TOLLIP transforming growth factor ß-activated kinase 1 (TAK1) and TAK1-binding protein 1 (TAB1), were higher expressed in wild-type grass carp. As a negative regulator in the pro-inflammatory pathway of NF-κB, TOLLIP inhibits the excessive inflammation in ENU grass carp after GCRV infection. Consistent with the TOLLIP expression, histopathological results demonstrated more severe inflammation in wild-type grass carp, compared to the TOLLIP982T>C mutant grass carp on the seventh day. Severe inflammation will lead to thoroughly infiltration of chloride and inflammatory cells in the gill filaments. This seriously hindered the exchange of oxygen, which ultimately disrupted blood circulation. Meanwhile, the survival rate of the mutant grass carp was significantly (p < 0.01) higher than that of the wild-type grass carp, indicating that the TOLLIP982T>C mutants showed strong anti-viral abilities. Our results revealed that an SNP in the TOLLIP 3' UTR may contribute to the suppression of serve inflammation subjected to ENU-induced mutagenesis following GCRV infection, which may be helpful for future resistant breeding development of grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces , Péptidos y Proteínas de Señalización Intracelular/genética , MicroARNs , Polimorfismo de Nucleótido Simple , Infecciones por Reoviridae , Regiones no Traducidas 3' , Animales , Carpas/genética , Carpas/virología , Etilnitrosourea , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Proteínas de Peces/genética , Inflamación , MicroARNs/genética , Mutagénesis , Reoviridae , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/veterinaria
19.
Fish Shellfish Immunol ; 127: 681-689, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35738488

RESUMEN

A novel GCRV strain isolated from healthy grass carp was named as grass carp reovirus - HH196 (GCRV-HH196), and its infection mechanism remains unclear. In this study, the grass carp ovary cell line (GCO cells) was used to investigate the cell death involved in GCRV-HH196 infection. The results showed that DNA damage, cells volume reduction and cytoplasm shrinkage happened during GCRV-HH196 infection. The mRNA expression levels of pro-apoptotic genes were up-regulated during infection. Two initiators of apoptosis, caspase 8 and caspase 9, and the executioner of apoptosis, caspase 3, were all significantly activated in GCRV-HH196-infected cells. Flow cytometry analysis showed that the number of apoptotic cells in infected cells was significantly higher than that in control cells as the infection progress. Meanwhile, autophagy was also involved in the regulation of GCRV - HH196 infection. We observed that LC3 puncta existed in cytoplasm in GCRV-HH196-infected cells. Furthermore, the protein level of LC3-Ⅱ and Beclin-1 increased, while that of p-Akt decreased in GCRV-HH196-infected cells. These results demonstrated that GCRV-HH196 may regulate apoptosis and autophagy for the virus proliferation and spread, which set a foundation for further research on the interaction between GCRV-HH196 and host.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Apoptosis , Autofagia , Carpas/genética , Línea Celular , Enfermedades de los Peces/genética , Reoviridae/fisiología , Infecciones por Reoviridae/genética
20.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743279

RESUMEN

Ferritin possesses an immune function to defend against pathogen infection. To elucidate the immunity-protecting roles of ferritin from Ctenopharyngodon idellus (Ciferritin) against virus infection, the cDNA and promoter sequences of Ciferritin were determined, and the correlations between Ciferrtin expressions and promoter methylation levels were analyzed. In addition, the functional role of Ciferrtin on GCRV (grass carp reovirus) infection was assessed. The full-length cDNA of Ciferritin is 1053 bp, consists of a 531 bp open-reading frame, and encodes 176 amino acids. Ciferritin showed the highest sequence identity with the ferritin middle subunit of Mylopharyngodon piceus (93.56%), followed by the subunits of Megalobrama amblycephala and Sinocyclocheilus rhinocerous. Ciferritin contains a conserved ferritin domain (interval: 10−94 aa), and the caspase recruitment domain (CARD) and Rubrerythrin domain were also predicted. In the spleen and kidney, significantly higher Ciferritin expressions were observed at 6, 12, 24, or 168 h post GCRV infection than those in the PBS injection group (p < 0.05). The Ciferrtin expression level in the progeny of maternal-immunized grass carp was significantly higher than that in the progeny of common grass carp (p < 0.05). Ciferritin promoter methylation level in the progeny from common grass carp was 1.27 ± 0.15, and in the progeny of the maternal-immunized group was 1.00 ± 0.14. In addition, methylation levels of "CpG9" and "CpG10" loci were significantly lower in the progeny of maternal-immunized fish than those in the common group. Except for the "CpG5", methylation levels of all other detected "CpG" loci negatively correlated with Ciferritin expression levels. Furthermore, the total methylation level of "CpG1−10" negatively correlated with the Ciferritin expressions. The Ciferritin expression level was significantly up-regulated, and the VP7 protein levels were significantly reduced, at 24 h post GCRV infection in the Ciferritin over-expression cells (p < 0.05). The results from the present study provide sequence, epigenetic modification and expression, and anti-GCRV functional information of Ciferritin, which provide a basis for achieving resistance to GCRV in grass carp breeding.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Secuencia de Aminoácidos , Animales , Carpas/genética , Carpas/metabolismo , ADN Complementario/genética , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Peces/metabolismo , Filogenia , Reoviridae/genética , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA