Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 107, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915103

RESUMEN

BACKGROUND: Treadmill gait training has been shown to improve gait performance in People with Parkinson's Disease (PwPD), and in combination with Virtual Reality, it can be an effective tool for gait rehabilitation. The addition of gamification elements can create a more stimulating and adherent intervention. However, implementation of new technologies in healthcare can be challenging. This study aimed to develop and evaluate the feasibility of a treadmill rehabilitation program in a Gamified Virtual Reality Environment (GVRE) for PwPD. METHODS: The GVRE was developed following a user-centered design approach, involving both PwPD and physiotherapists in the development and evaluation of the intervention. The intervention consisted of a walking simulation in three different environments (countryside, city, and park), which had a progressive increase in difficulty. To test its feasibility, three sessions were carried out with four PwPD and four physiotherapists. To assess the usability, the System Usability Scale (SUS), Assistive Technology Usability Questionnaire for people with Neurological diseases (NATU Quest) and Simulator Sickness Questionnaire (SSQ) were used. To assess the intervention's acceptability, feedback and in-game performance was collected from participants. RESULTS: Results showed the feasibility of the intervention, with a SUS score of 74.82 ± 12.62, and a NATU Quest score of 4.49 ± 0.62, and positive acceptability feedback. Participants showed clear preferences for naturalistic environments, and gamification elements were seen as positive. Difficulty settings worked as intended, but lowered enjoyment of the experience in some cases. CONCLUSIONS: This intervention was successfully shown as a feasible option for the training of gait under Dual Task conditions for PwPD. It offers a safe and replicable environment in which complex situations can be trained. However, further iterations of the intervention need to be improved in order to guarantee accurate tracking and a more realistic training progression. TRIAL REGISTRATION NUMBER: NCT05243394-01/20/2022.


Asunto(s)
Estudios de Factibilidad , Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Realidad Virtual , Humanos , Enfermedad de Parkinson/rehabilitación , Enfermedad de Parkinson/complicaciones , Masculino , Anciano , Femenino , Persona de Mediana Edad , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Juegos de Video , Terapia por Ejercicio/métodos , Terapia por Ejercicio/instrumentación , Marcha/fisiología
2.
J Neuroeng Rehabil ; 21(1): 83, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802939

RESUMEN

BACKGROUND: Gait deficits are very common after stroke and therefore an important aspect in poststroke rehabilitation. A currently little used method in gait rehabilitation after stroke is the activation of the flexor reflex (FR) by electrical stimulation of the sole of foot while walking. The aim of this study was to investigate the effect of FR stimulation on gait performance and gait parameters in participants with stroke within a single session of flexor reflex stimulation using Incedo™. METHODS: Twenty-five participants with subacute (n = 14) and chronic (n = 11) stroke were enrolled in the study. Motor functions were tested with a 10-m walk test (10mWT), a 2-min walk test (2minWT), and a gait analysis. These tests were performed with and without Incedo™ within a single session in randomized order. RESULTS: In the 10mWT, a significant difference was found between walking with Incedo™ (15.0 ± 8.5 s) versus without Incedo™ (17.0 ± 11.4 s, p = 0.01). Similarly, the 2minWT showed a significant improvement with Incedo™ use (90.0 ± 36.4 m) compared to without Incedo™ (86.3 ± 36.8 m, p = 0.03). These results indicate that while the improvements are statistically significant, they are modest and should be considered in the context of their clinical relevance. The gait parameters remained unchanged except for the step length. A subgroup analysis indicated that participants with subacute and chronic stroke responded similarly to the stimulation. There was a correlation between the degree of response to electrostimulation while walking and degree of improvement in 2minWT (r = 0.50, p = 0.01). CONCLUSIONS: This study is the first to examine FR activation effects in chronic stroke patients and suggests that stimulation effects are independent of the time since stroke. A larger controlled clinical trial is warranted that addresses issues as the necessary number of therapeutical sessions and for how long stimulation-induced improvements outlast the treatment period. TRIAL REGISTRATION: The trial was retrospectively registered in German Clinical Trials Register. CLINICAL TRIAL REGISTRATION NUMBER: DRKS00021457. Date of registration: 29 June 2020.


Asunto(s)
Terapia por Estimulación Eléctrica , Trastornos Neurológicos de la Marcha , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Masculino , Rehabilitación de Accidente Cerebrovascular/métodos , Femenino , Persona de Mediana Edad , Anciano , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/rehabilitación , Terapia por Estimulación Eléctrica/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Marcha/fisiología , Reflejo/fisiología , Adulto
3.
J Neuroeng Rehabil ; 21(1): 67, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689255

RESUMEN

BACKGROUND: Foot and ankle unloading is essential in various clinical contexts, including ulcers, tendon ruptures, and fractures. Choosing the right assistive device is crucial for functionality and recovery. Yet, research on the impact of devices beyond crutches, particularly ankle-foot orthoses (AFOs) designed to unload the ankle and foot, is limited. This study investigates the effects of three types of devices-forearm crutches, knee crutch, and AFO-on biomechanical, metabolic, and subjective parameters during walking with unilateral ankle-foot unloading. METHODS: Twenty healthy participants walked at a self-selected speed in four conditions: unassisted able-bodied gait, and using three unloading devices, namely forearm crutches, iWalk knee crutch, and ZeroG AFO. Comprehensive measurements, including motion capture, force plates, and metabolic system, were used to assess various spatiotemporal, kinematic, kinetic, and metabolic parameters. Additionally, participants provided subjective feedback through questionnaires. The conditions were compared using a within-subject crossover study design with repeated measures ANOVA. RESULTS: Significant differences were found between the three devices and able-bodied gait. Among the devices, ZeroG exhibited significantly faster walking speed and lower metabolic cost. For the weight-bearing leg, ZeroG exhibited the shortest stance phase, lowest braking forces, and hip and knee angles most similar to normal gait. However, ankle plantarflexion after push-off using ZeroG was most different from normal gait. IWalk and crutches caused significantly larger center-of-mass mediolateral and vertical fluctuations, respectively. Participants rated the ZeroG as the most stable, but more participants complained it caused excessive pressure and pain. Crutches were rated with the highest perceived exertion and lowest comfort, whereas no significant differences between ZeroG and iWalk were found for these parameters. CONCLUSIONS: Significant differences among the devices were identified across all measurements, aligning with previous studies for crutches and iWalk. ZeroG demonstrated favorable performance in most aspects, highlighting the potential of AFOs in enhancing gait rehabilitation when unloading is necessary. However, poor comfort and atypical sound-side ankle kinematics were evident with ZeroG. These findings can assist clinicians in making educated decisions about prescribing ankle-foot unloading devices and guide the design of improved devices that overcome the limitations of existing solutions.


Asunto(s)
Tobillo , Pie , Caminata , Humanos , Fenómenos Biomecánicos , Masculino , Caminata/fisiología , Femenino , Adulto , Tobillo/fisiología , Pie/fisiología , Ortesis del Pié , Dispositivos de Autoayuda , Adulto Joven , Muletas , Estudios Cruzados , Marcha/fisiología
4.
Sensors (Basel) ; 24(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39205037

RESUMEN

Gait disorders in neurological diseases are frequently associated with spasticity. Intramuscular injection of Botulinum Toxin Type A (BTX-A) can be used to treat spasticity. Providing optimal treatment with the highest possible benefit-risk ratio is a crucial consideration. This paper presents a novel approach for predicting knee and ankle kinematics after BTX-A treatment based on pre-treatment kinematics and treatment information. The proposed method is based on a Bidirectional Long Short-Term Memory (Bi-LSTM) deep learning architecture. Our study's objective is to investigate this approach's effectiveness in accurately predicting the kinematics of each phase of the gait cycle separately after BTX-A treatment. Two deep learning models are designed to incorporate categorical medical treatment data corresponding to the injected muscles: (1) within the hidden layers of the Bi-LSTM network, (2) through a gating mechanism. Since several muscles can be injected during the same session, the proposed architectures aim to model the interactions between the different treatment combinations. In this study, we conduct a comparative analysis of our prediction results with the current state of the art. The best results are obtained with the incorporation of the gating mechanism. The average prediction root mean squared error is 2.99° (R2 = 0.85) and 2.21° (R2 = 0.84) for the knee and the ankle kinematics, respectively. Our findings indicate that our approach outperforms the existing methods, yielding a significantly improved prediction accuracy.


Asunto(s)
Toxinas Botulínicas Tipo A , Aprendizaje Profundo , Marcha , Humanos , Marcha/efectos de los fármacos , Marcha/fisiología , Toxinas Botulínicas Tipo A/uso terapéutico , Fenómenos Biomecánicos , Espasticidad Muscular/tratamiento farmacológico , Espasticidad Muscular/fisiopatología , Inyecciones Intramusculares , Masculino , Femenino
5.
J Neuroeng Rehabil ; 20(1): 37, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004111

RESUMEN

BACKGROUND: Paretic propulsion [measured as anteriorly-directed ground reaction forces (AGRF)] and trailing limb angle (TLA) show robust inter-relationships, and represent two key modifiable post-stroke gait variables that have biomechanical and clinical relevance. Our recent work demonstrated that real-time biofeedback is a feasible paradigm for modulating AGRF and TLA in able-bodied participants. However, the effects of TLA biofeedback on gait biomechanics of post-stroke individuals are poorly understood. Thus, our objective was to investigate the effects of unilateral, real-time, audiovisual TLA versus AGRF biofeedback on gait biomechanics in post-stroke individuals. METHODS: Nine post-stroke individuals (6 males, age 63 ± 9.8 years, 44.9 months post-stroke) participated in a single session of gait analysis comprised of three types of walking trials: no biofeedback, AGRF biofeedback, and TLA biofeedback. Biofeedback unilaterally targeted deficits on the paretic limb. Dependent variables included peak AGRF, TLA, and ankle plantarflexor moment. One-way repeated measures ANOVA with Bonferroni-corrected post-hoc comparisons were conducted to detect the effect of biofeedback on gait biomechanics variables. RESULTS: Compared to no-biofeedback, both AGRF and TLA biofeedback induced unilateral increases in paretic AGRF. TLA biofeedback induced significantly larger increases in paretic TLA than AGRF biofeedback. AGRF biofeedback increased ankle moment, and both feedback conditions increased non-paretic step length. Both types of biofeedback specifically targeted the paretic limb without inducing changes in the non-paretic limb. CONCLUSIONS: By showing comparable increases in paretic limb gait biomechanics in response to both TLA and AGRF biofeedback, our novel findings provide the rationale and feasibility of paretic TLA as a gait biofeedback target for post-stroke individuals. Additionally, our results provide preliminary insights into divergent biomechanical mechanisms underlying improvements in post-stroke gait induced by these two biofeedback targets. We lay the groundwork for future investigations incorporating greater dosages and longer-term therapeutic effects of TLA biofeedback as a stroke gait rehabilitation strategy. Trial registration NCT03466372.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Anciano , Humanos , Masculino , Persona de Mediana Edad , Fenómenos Biomecánicos/fisiología , Marcha/fisiología , Accidente Cerebrovascular/complicaciones , Rehabilitación de Accidente Cerebrovascular/métodos , Caminata/fisiología
6.
J Neuroeng Rehabil ; 20(1): 164, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38062454

RESUMEN

BACKGROUND: Biofeedback is a promising noninvasive strategy to enhance gait training among individuals with cerebral palsy (CP). Commonly, biofeedback systems are designed to guide movement correction using audio, visual, or sensorimotor (i.e., tactile or proprioceptive) cues, each of which has demonstrated measurable success in CP. However, it is currently unclear how the modality of biofeedback may influence user response which has significant implications if systems are to be consistently adopted into clinical care. METHODS: In this study, we evaluated the extent to which adolescents with CP (7M/1F; 14 [12.5,15.5] years) adapted their gait patterns during treadmill walking (6 min/modality) with audiovisual (AV), sensorimotor (SM), and combined AV + SM biofeedback before and after four acclimation sessions (20 min/session) and at a two-week follow-up. Both biofeedback systems were designed to target plantarflexor activity on the more-affected limb, as these muscles are commonly impaired in CP and impact walking function. SM biofeedback was administered using a resistive ankle exoskeleton and AV biofeedback displayed soleus activity from electromyography recordings during gait. At every visit, we measured the time-course response to each biofeedback modality to understand how the rate and magnitude of gait adaptation differed between modalities and following acclimation. RESULTS: Participants significantly increased soleus activity from baseline using AV + SM (42.8% [15.1, 59.6]), AV (28.5% [19.2, 58.5]), and SM (10.3% [3.2, 15.2]) biofeedback, but the rate of soleus adaptation was faster using AV + SM biofeedback than either modality alone. Further, SM-only biofeedback produced small initial increases in plantarflexor activity, but these responses were transient within and across sessions (p > 0.11). Following multi-session acclimation and at the two-week follow-up, responses to AV and AV + SM biofeedback were maintained. CONCLUSIONS: This study demonstrated that AV biofeedback was critical to increase plantarflexor engagement during walking, but that combining AV and SM modalities further amplified the rate of gait adaptation. Beyond improving our understanding of how individuals may differentially prioritize distinct forms of afferent information, outcomes from this study may inform the design and selection of biofeedback systems for use in clinical care.


Asunto(s)
Parálisis Cerebral , Adolescente , Niño , Humanos , Biorretroalimentación Psicológica , Fenómenos Biomecánicos , Marcha/fisiología , Músculo Esquelético , Caminata/fisiología , Masculino , Femenino
7.
J Neuroeng Rehabil ; 20(1): 23, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36805777

RESUMEN

BACKGROUND: In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. METHODS: Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. RESULTS: (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. CONCLUSIONS: Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.


Asunto(s)
Lesiones Encefálicas , Dispositivo Exoesqueleto , Rehabilitación Neurológica , Robótica , Humanos , Resultado del Tratamiento
8.
Sensors (Basel) ; 23(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679424

RESUMEN

The restoration of gait and mobility after stroke is an important and challenging therapy goal due to the complexity of the potentially impaired functions. As a result, precise and clinically feasible assessment methods are required for personalized gait rehabilitation after stroke. The aim of this study is to investigate the reliability and validity of a sensor-based gait analysis system in stroke survivors with different severities of gait deficits. For this purpose, 28 chronic stroke survivors (9 women, ages: 62.04 ± 11.68 years) with mild to moderate walking impairments performed a set of ambulatory assessments (3× 10MWT, 1× 6MWT per session) twice while being equipped with a sensor suit. The derived gait reports provided information about speed, step length, step width, swing and stance phases, as well as joint angles of the hip, knee, and ankle, which we analyzed for test-retest reliability and hypothesis testing. Further, test-retest reliability resulted in a mean ICC of 0.78 (range: 0.46-0.88) for walking 10 m and a mean ICC of 0.90 (range: 0.63-0.99) for walking 6 min. Additionally, all gait parameters showed moderate-to-strong correlations with clinical scales reflecting lower limb function. These results support the applicability of this sensor-based gait analysis system for individuals with stroke-related walking impairments.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Dispositivos Electrónicos Vestibles , Humanos , Femenino , Persona de Mediana Edad , Anciano , Análisis de la Marcha , Reproducibilidad de los Resultados , Marcha , Caminata
9.
Sensors (Basel) ; 23(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112305

RESUMEN

Auditory feedback has earlier been explored as a tool to enhance patient awareness of gait kinematics during rehabilitation. In this study, we devised and tested a novel set of concurrent feedback paradigms on swing phase kinematics in hemiparetic gait training. We adopted a user-centered design approach, where kinematic data recorded from 15 hemiparetic patients was used to design three feedback algorithms (wading sounds, abstract, musical) based on filtered gyroscopic data from four inexpensive wireless inertial units. The algorithms were tested (hands-on) by a focus group of five physiotherapists. They recommended that the abstract and musical algorithms be discarded due to sound quality and informational ambiguity. After modifying the wading algorithm (as per their feedback), we conducted a feasibility test involving nine hemiparetic patients and seven physiotherapists, where variants of the algorithm were applied to a conventional overground training session. Most patients found the feedback meaningful, enjoyable to use, natural-sounding, and tolerable for the typical training duration. Three patients exhibited immediate improvements in gait quality when the feedback was applied. However, minor gait asymmetries were found to be difficult to perceive in the feedback, and there was variability in receptiveness and motor change among the patients. We believe that our findings can advance current research in inertial sensor-based auditory feedback for motor learning enhancement during neurorehabilitation.


Asunto(s)
Trastornos Neurológicos de la Marcha , Rehabilitación Neurológica , Paresia , Humanos , Fenómenos Biomecánicos , Retroalimentación , Marcha , Trastornos Neurológicos de la Marcha/rehabilitación , Extremidad Inferior , Paresia/rehabilitación , Rehabilitación Neurológica/métodos
10.
Sensors (Basel) ; 22(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408083

RESUMEN

In this work, we present the overground prototype gait-rehabilitation robot for using motion assistance and training for paralyzed patients. In contrast to the existing gait-rehabilitation robots, which focus on the sagittal plane motion of the hip and knee, we aim to develop a mobile-based pelvic support gait-rehabilitation system that includes a pelvic obliquity support mechanism and a lower-limb exoskeleton. To achieve this, a scissor mechanism is proposed to generate the paralyzed patient's pelvic obliquity motion and weight support. Moreover, the lower limb exoskeleton robot is integrated with the developed system to provide the patient's gait by correcting mechanical aids. We used computer-aided analysis to verify the performance of the prototype hardware itself. Through these methods, it was shown that our motor can sufficiently lift 100 kg of user weight through the scissor mechanism, and that the mobile driving wheel motor can operate at a speed of 1.6 m/s of human walking, showing that it can be used for gait rehabilitation of patients in need of a lower speed. In addition, we verified that the system drives the model by generating pelvic motion, and we verified the position controller of the integrated system, which supports the multi-degree motion by creating hip/knee/pelvic motion with a human dummy mannequin and systems. We believe that the proposed system can help address the complex rehabilitation motion assistance and training of paralyzed patients.


Asunto(s)
Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha , Robótica , Fenómenos Biomecánicos , Marcha , Hemiplejía , Humanos , Caminata
11.
Sensors (Basel) ; 22(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36236204

RESUMEN

Understanding how to seamlessly adapt the assistance of lower-limb wearable assistive devices (active orthosis (AOs) and exoskeletons) to human locomotion modes (LMs) is challenging. Several algorithms and sensors have been explored to recognize and predict the users' LMs. Nevertheless, it is not yet clear which are the most used and effective sensor and classifier configurations in AOs/exoskeletons and how these devices' control is adapted according to the decoded LMs. To explore these aspects, we performed a systematic review by electronic search in Scopus and Web of Science databases, including published studies from 1 January 2010 to 31 August 2022. Sixteen studies were included and scored with 84.7 ± 8.7% quality. Decoding focused on level-ground walking along with ascent/descent stairs tasks performed by healthy subjects. Time-domain raw data from inertial measurement unit sensors were the most used data. Different classifiers were employed considering the LMs to decode (accuracy above 90% for all tasks). Five studies have adapted the assistance of AOs/exoskeletons attending to the decoded LM, in which only one study predicted the new LM before its occurrence. Future research is encouraged to develop decoding tools considering data from people with lower-limb impairments walking at self-selected speeds while performing daily LMs with AOs/exoskeletons.


Asunto(s)
Dispositivo Exoesqueleto , Marcha , Humanos , Locomoción , Extremidad Inferior , Aparatos Ortopédicos , Caminata
12.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36298264

RESUMEN

Energy expenditure is a key rehabilitation outcome and is starting to be used in robotics-based rehabilitation through human-in-the-loop control to tailor robot assistance towards reducing patients' energy effort. However, it is usually assessed by indirect calorimetry which entails a certain degree of invasiveness and provides delayed data, which is not suitable for controlling robotic devices. This work proposes a deep learning-based tool for steady-state energy expenditure estimation based on more ergonomic sensors than indirect calorimetry. The study innovates by estimating the energy expenditure in assisted and non-assisted conditions and in slow gait speeds similarly to impaired subjects. This work explores and benchmarks the long short-term memory (LSTM) and convolutional neural network (CNN) as deep learning regressors. As inputs, we fused inertial data, electromyography, and heart rate signals measured by on-body sensors from eight healthy volunteers walking with and without assistance from an ankle-foot exoskeleton at 0.22, 0.33, and 0.44 m/s. LSTM and CNN were compared against indirect calorimetry using a leave-one-subject-out cross-validation technique. Results showed the suitability of this tool, especially CNN, that demonstrated root-mean-squared errors of 0.36 W/kg and high correlation (ρ > 0.85) between target and estimation (R¯2 = 0.79). CNN was able to discriminate the energy expenditure between assisted and non-assisted gait, basal, and walking energy expenditure, throughout three slow gait speeds. CNN regressor driven by kinematic and physiological data was shown to be a more ergonomic technique for estimating the energy expenditure, contributing to the clinical assessment in slow and robotic-assisted gait and future research concerning human-in-the-loop control.


Asunto(s)
Aprendizaje Profundo , Dispositivos Electrónicos Vestibles , Humanos , Frecuencia Cardíaca , Marcha/fisiología , Caminata/fisiología , Metabolismo Energético/fisiología
13.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366149

RESUMEN

We propose a framework for optimizing personalized treatment outcomes for patients with neurological diseases. A typical consequence of such diseases is gait disorders, partially explained by command and muscle tone problems associated with spasticity. Intramuscular injection of botulinum toxin type A is a common treatment for spasticity. According to the patient's profile, offering the optimal treatment combined with the highest possible benefit-risk ratio is important. For the prediction of knee and ankle kinematics after botulinum toxin type A (BTX-A) treatment, we propose: (1) a regression strategy based on a multi-task architecture composed of LSTM models; (2) to introduce medical treatment data (MTD) for context modeling; and (3) a gating mechanism to model treatment interaction more efficiently. The proposed models were compared with and without metadata describing treatments and with serial models. Multi-task learning (MTL) achieved the lowest root-mean-squared error (RMSE) (5.60°) for traumatic brain injury (TBI) patients on knee trajectories and the lowest RMSE (3.77°) for cerebral palsy (CP) patients on ankle trajectories, with only a difference of 5.60° between actual and predicted. Overall, the best RMSE ranged from 5.24° to 6.24° for the MTL models. To the best of our knowledge, this is the first time that MTL has been used for post-treatment gait trajectory prediction. The MTL models outperformed the serial models, particularly when introducing treatment metadata. The gating mechanism is efficient in modeling treatment interaction and improving trajectory prediction.


Asunto(s)
Toxinas Botulínicas Tipo A , Parálisis Cerebral , Fármacos Neuromusculares , Humanos , Toxinas Botulínicas Tipo A/uso terapéutico , Fármacos Neuromusculares/uso terapéutico , Espasticidad Muscular , Marcha , Parálisis Cerebral/rehabilitación , Resultado del Tratamiento
14.
Medicina (Kaunas) ; 58(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557007

RESUMEN

Background and objective: Duration of rehabilitation and active participation are crucial for gait rehabilitation in the early stage after stroke onset. Virtual reality (VR) is an innovative tool providing engaging and playful environments that could promote intrinsic motivation and higher active participation for non-ambulatory stroke patients when combined with robot-assisted gait training (RAGT). We have developed a new, fully immersive VR application for RAGT, which can be used with a head-mounted display and wearable sensors providing real-time gait motion in the virtual environment. The aim of this study was to validate the use of this new device and assess the onset of cybersickness in healthy participants before testing the device in stroke patients. Materials and Methods: Thirty-seven healthy participants were included and performed two sessions of RAGT using a fully immersive VR device. They physically walked with the Gait Trainer for 20 min in a virtual forest environment. The occurrence of cybersickness, sense of presence, and usability of the device were assessed with three questionnaires: the Simulator Sickness Questionnaire (SSQ), the Presence Questionnaire (PQ), and the System Usability Scale (SUS). Results: All of the participants completed both sessions. Most of the participants (78.4%) had no significant adverse effects (SSQ < 5). The sense of presence in the virtual environment was particularly high (106.42 ± 9.46). Participants reported good usability of the device (86.08 ± 7.54). Conclusions: This study demonstrated the usability of our fully immersive VR device for gait rehabilitation and did not lead to cybersickness. Future studies should evaluate the same parameters and the effectiveness of this device with non-ambulatory stroke patients.


Asunto(s)
Robótica , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Realidad Virtual , Humanos , Marcha
15.
Brain Topogr ; 34(3): 348-362, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33661430

RESUMEN

Patients with stroke can experience a drastic change in their body representation (BR), beyond the physical and psychological consequences of stroke itself. Noteworthy, the misperception of BR could affect patients' motor performance even more. Our study aimed at evaluating the usefulness of a robot-aided gait training (RAGT) equipped with augmented visuomotor feedback, expected to target BR (RAGT + VR) in improving lower limb sensorimotor function, gait performance (using Fugl-Meyer Assessment scale for lower extremities, FMA-LE), and BR (using the Body Esteem Scale-BES- and the Body Uneasiness Test-BUT), as compared to RAGT - VR. We also assessed the neurophysiologic basis putatively subtending the BR-based motor function recovery, using EEG recording during RAGT. Forty-five patients with stroke were enrolled in this study and randomized with a 1:2 ratio into either the RAGT + VR (n = 30) or the RAGT - VR (n = 15) group. The former group carried out rehabilitation training with the Lokomat©Pro; whereas, the latter used the Lokomat©Nanos. The rehabilitation protocol consisted of 40 one-hour training sessions. At the end of the training, the RAGT + VR improved in FMA-LE (p < 0.001) and BR (as per BES, (p < 0.001), and BUT, (p < 0.001)) more than the RAGT- did (p < 0.001). These differences in clinical outcomes were paralleled by a greater strengthening of visuomotor connectivity and corticomotor excitability (as detected at the EEG analyses) in the RAGT + VR than in the RAGT - VR (all comparisons p < 0.001), corresponding to an improved motor programming and execution in the former group.We may argue that BR recovery was important concerning functional motor improvement by its integration with the motor control system. This likely occurred through the activation of the Mirror Neuron System secondary to the visuomotor feedback provision, resembling virtual reality. Last, our data further confirm the important role of visuomotor feedback in post-stroke rehabilitation, which can achieve better patient-tailored improvement in functional gait by means of RAGT + VR targeting BR.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Accidente Cerebrovascular , Imagen Corporal , Electroencefalografía , Marcha , Humanos
16.
J Neuroeng Rehabil ; 18(1): 111, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217307

RESUMEN

BACKGROUND: Transfemoral amputation is a serious intervention that alters the locomotion pattern, leading to secondary disorders and reduced quality of life. The outcomes of current gait rehabilitation for TFAs seem to be highly dependent on factors such as the duration and intensity of the treatment and the age or etiology of the patient. Although the use of robotic assistance for prosthetic gait rehabilitation has been limited, robotic technologies have demonstrated positive rehabilitative effects for other mobility disorders and may thus offer a promising solution for the restoration of healthy gait in TFAs. This study therefore explored the feasibility of using a bilateral powered hip orthosis (APO) to train the gait of community-ambulating TFAs and the effects on their walking abilities. METHODS: Seven participants (46-71 years old with different mobility levels) were included in the study and assigned to one of two groups (namely Symmetry and Speed groups) according to their prosthesis type, mobility level, and prior experience with the exoskeleton. Each participant engaged in a maximum of 12 sessions, divided into one Enrollment session, one Tuning session, two Assessment sessions (conducted before and after the training program), and eight Training sessions, each consisting of 20 minutes of robotically assisted overground walking combined with additional tasks. The two groups were assisted by different torque-phase profiles, aiming at improving symmetry for the Symmetry group and at maximizing the net power transferred by the APO for the Speed group. During the Assessment sessions, participants performed two 6-min walking tests (6mWTs), one with (Exo) and one without (NoExo) the exoskeleton, at either maximal (Symmetry group) or self-selected (Speed group) speed. Spatio-temporal gait parameters were recorded by commercial measurement equipment as well as by the APO sensors, and metabolic efficiency was estimated via the Cost of Transport (CoT). Additionally, kinetic and kinematic data were recorded before and after treatment in the NoExo condition. RESULTS: The one-month training protocol was found to be a feasible strategy to train TFAs, as all participants smoothly completed the clinical protocol with no relevant mechanical failures of the APO. The walking performance of participants improved after the training. During the 6mWT in NoExo, participants in the Symmetry and Speed groups respectively walked 17.4% and 11.7% farther and increased walking speed by 13.7% and 17.9%, with improved temporal and spatial symmetry for the former group and decreased energetic expenditure for the latter. Gait analysis showed that ankle power, step width, and hip kinematics were modified towards healthy reference levels in both groups. In the Exo condition metabolic efficiency was reduced by 3% for the Symmetry group and more than 20% for the Speed group. CONCLUSIONS: This study presents the first pilot study to apply a wearable robotic orthosis (APO) to assist TFAs in an overground gait rehabilitation program. The proposed APO-assisted training program was demonstrated as a feasible strategy to train TFAs in a rehabilitation setting. Subjects improved their walking abilities, although further studies are required to evaluate the effectiveness of the APO compared to other gait interventions. Future protocols will include a lighter version of the APO along with optimized assistive strategies.


Asunto(s)
Amputados , Robótica , Anciano , Marcha , Humanos , Persona de Mediana Edad , Aparatos Ortopédicos , Proyectos Piloto , Calidad de Vida , Caminata
17.
J Neuroeng Rehabil ; 18(1): 96, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098979

RESUMEN

BACKGROUND: Emphasizing the active use of the arms and coordinating them with the stepping motion of the legs may promote walking recovery in patients with impaired lower limb function. Yet, most approaches use seated devices to allow coupled arm and leg movements. To provide an option during treadmill walking, we designed a rope-pulley system that physically links the arms and legs. This arm-leg pulley system was grounded to the floor and made of commercially available slotted square tubing, solid strut channels, and low-friction pulleys that allowed us to use a rope to connect the subject's wrist to the ipsilateral foot. This set-up was based on our idea that during walking the arm could generate an assistive force during arm swing retraction and, therefore, aid in leg swing. METHODS: To test this idea, we compared the mechanical, muscular, and metabolic effects between normal walking and walking with the arm-leg pulley system. We measured rope and ground reaction forces, electromyographic signals of key arm and leg muscles, and rates of metabolic energy consumption while healthy, young subjects walked at 1.25 m/s on a dual-belt instrumented treadmill (n = 8). RESULTS: With our arm-leg pulley system, we found that an assistive force could be generated, reaching peak values of 7% body weight on average. Contrary to our expectation, the force mainly coincided with the propulsive phase of walking and not leg swing. Our findings suggest that subjects actively used their arms to harness the energy from the moving treadmill belt, which helped to propel the whole body via the arm-leg rope linkage. This effectively decreased the muscular and mechanical demands placed on the legs, reducing the propulsive impulse by 43% (p < 0.001), which led to a 17% net reduction in the metabolic power required for walking (p = 0.001). CONCLUSIONS: These findings provide the biomechanical and energetic basis for how we might reimagine the use of the arms in gait rehabilitation, opening the opportunity to explore if such a method could help patients regain their walking ability. TRIAL REGISTRATION: Study registered on 09/29/2018 in ClinicalTrials.gov (ID-NCT03689647).


Asunto(s)
Pierna , Caminata , Brazo , Fenómenos Biomecánicos , Prueba de Esfuerzo , Marcha , Humanos
18.
J Neuroeng Rehabil ; 18(1): 22, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526065

RESUMEN

Gait disorders can reduce the quality of life for people with neuromuscular impairments. Therefore, walking recovery is one of the main priorities for counteracting sedentary lifestyle, reducing secondary health conditions and restoring legged mobility. At present, wearable powered lower-limb exoskeletons are emerging as a revolutionary technology for robotic gait rehabilitation. This systematic review provides a comprehensive overview on wearable lower-limb exoskeletons for people with neuromuscular impairments, addressing the following three questions: (1) what is the current technological status of wearable lower-limb exoskeletons for gait rehabilitation?, (2) what is the methodology used in the clinical validations of wearable lower-limb exoskeletons?, and (3) what are the benefits and current evidence on clinical efficacy of wearable lower-limb exoskeletons? We analyzed 87 clinical studies focusing on both device technology (e.g., actuators, sensors, structure) and clinical aspects (e.g., training protocol, outcome measures, patient impairments), and make available the database with all the compiled information. The results of the literature survey reveal that wearable exoskeletons have potential for a number of applications including early rehabilitation, promoting physical exercise, and carrying out daily living activities both at home and the community. Likewise, wearable exoskeletons may improve mobility and independence in non-ambulatory people, and may reduce secondary health conditions related to sedentariness, with all the advantages that this entails. However, the use of this technology is still limited by heavy and bulky devices, which require supervision and the use of walking aids. In addition, evidence supporting their benefits is still limited to short-intervention trials with few participants and diversity among their clinical protocols. Wearable lower-limb exoskeletons for gait rehabilitation are still in their early stages of development and randomized control trials are needed to demonstrate their clinical efficacy.


Asunto(s)
Dispositivo Exoesqueleto , Trastornos Neurológicos de la Marcha/rehabilitación , Actividades Cotidianas , Terapia por Ejercicio/instrumentación , Marcha , Humanos , Extremidad Inferior , Calidad de Vida , Proyectos de Investigación , Robótica/instrumentación , Resultado del Tratamiento
19.
Sensors (Basel) ; 21(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34640938

RESUMEN

This paper introduces a new device for gait rehabilitation, the gait propulsion trainer (GPT). It consists of two main components (a stationary device and a wearable system) that work together to apply periodic stance-phase resistance as the user walks overground. The stationary device provides the resistance forces via a cable that tethers the user's pelvis to a magnetic-particle brake. The wearable system detects gait events via foot switches to control the timing of the resistance forces. A hardware verification test confirmed that the GPT functions as intended. We conducted a pilot study in which one healthy adult and one stroke survivor walked with the GPT with increasing resistance levels. As hypothesized, the periodic stance-phase resistance caused the healthy participant to walk asymmetrically, with greatly reduced propulsion impulse symmetry; as GPT resistance increased, the walking speed also decreased, and the propulsion impulse appeared to increase for both legs. In contrast, the stroke participant responded to GPT resistance by walking faster and more symmetrically in terms of both propulsion impulse and step length. Thus, this paper shows promising results of short-term training with the GPT, and more studies will follow to explore its long-term effects on hemiparetic gait.


Asunto(s)
Trastornos Neurológicos de la Marcha , Rehabilitación de Accidente Cerebrovascular , Adulto , Marcha , Humanos , Proyectos Piloto , Caminata
20.
Sensors (Basel) ; 21(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34372285

RESUMEN

This paper discusses the stability of systems controlling patient body weight support systems which are used in gait re-education. These devices belong to the class of underactuated mechanical systems. This is due to the application of elastic shock-absorbing connections between the active part of the system and the passive part which impacts the patient. The model takes into account properties of the system, such as inertia, attenuation and susceptibility to the elements. Stability is an essential property of the system due to human-device interaction. In order to demonstrate stability, Lyapunov's theory of stability, which is based on the model of system dynamics, was applied. The stability of the control system based on a model that requires knowledge of the structure and parameters of the equations of motion was demonstrated. Due to inaccuracies in the modeling of the rope (one of the basic elements of the device), an adaptive control system was introduced and its stability was also proved. The authors conducted simulation and experimental tests that illustrate the functionality of the analyzed control systems.


Asunto(s)
Terapia por Ejercicio , Peso Corporal , Simulación por Computador , Humanos , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA