RESUMEN
Uveal melanoma (UM) is a type of intraocular tumor with a propensity to disseminate to the liver. Despite the identification of the early driver mutations during the development of the pathology, the process of UM metastasis is still not fully comprehended. A better understanding of the genetic, molecular, and environmental factors participating to its spread and metastatic outgrowth could provide additional approaches for UM treatment. In this review, we will discuss the advances made towards the understanding of the pathogenesis of metastatic UM, summarize the current and prospective treatments, and introduce some of the ongoing research in this field.
Asunto(s)
Neoplasias Hepáticas/secundario , Melanoma/patología , Neoplasias de la Úvea/patología , Animales , Humanos , Factores de RiesgoRESUMEN
BACKGROUND: Cerebral palsy (CP) is a clinical diagnosis and was long categorized as an acquired disorder, but more and more genetic etiologies are being identified. This review aims to identify the clinical characteristics that are associated with genetic CP to aid clinicians in selecting candidates for genetic testing. METHODS: The PubMed database was systematically searched to identify genes associated with CP. The clinical characteristics accompanying these genetic forms of CP were compared with published data of large CP populations resulting in the identification of potential indicators of genetic CP. RESULLTS: Of 1930 articles retrieved, 134 were included. In these, 55 CP genes (described in two or more cases, n = 272) and 79 candidate genes (described in only one case) were reported. The most frequently CP-associated genes were PLP1 (21 cases), ARG1 (17 cases), and CTNNB1 (13 cases). Dyskinesia and the absence of spasticity were identified as strong potential indicators of genetic CP. Presence of intellectual disability, no preterm birth, and no unilateral distribution of symptoms were classified as moderate genetic indicators. CONCLUSIONS: Genetic causes of CP are increasingly identified. The clinical characteristics associated with genetic CP can aid clinicians regarding to which individual with CP to offer genetic testing. The identified potential genetic indicators need to be validated in large CP cohorts but can provide the first step toward a diagnostic algorithm for genetic CP.
Asunto(s)
Parálisis Cerebral , Discinesias , Discapacidad Intelectual , Nacimiento Prematuro , Femenino , Humanos , Parálisis Cerebral/complicaciones , Espasticidad MuscularRESUMEN
Astrocytes are critical components of neural circuits positioned in close proximity to the synapse, allowing them to rapidly sense and respond to neuronal activity. One repeatedly observed biomarker of astroglial activation is an increase in intracellular Ca2+ levels. These astroglial Ca2+ signals are often observed spreading throughout various cellular compartments from perisynaptic astroglial processes, to major astrocytic branches and on to the soma or cell body. Here we review recent evidence demonstrating that astrocytic Ca2+ events are remarkably heterogeneous in both form and function, propagate through the astroglial syncytia, and are directly linked to the ability of astroglia to influence local neuronal activity. As many of the cellular functions of astroglia can be linked to intracellular Ca2+ signaling, and the diversity and heterogeneity of these events becomes more apparent, there is an increasing need for novel experimental strategies designed to better understand the how these signals evolve in parallel with neuronal activity. Here we review the recent advances that enable the characterization of both subcellular and population-wide astrocytic Ca2+ dynamics. Additionally, we also outline the experimental design required for simultaneous in vivo Ca2+ imaging in the context of neuronal or astroglial manipulation, highlighting new experimental strategies made possible by recent advances in viral vector, imaging, and quantification technologies. Through combined usage of these reagents and methodologies, we provide a conceptual framework to study how astrocytes functionally integrate into neural circuits and to what extent they influence and direct the synaptic activity underlying behavioral responses.
RESUMEN
Fluctuations of the cytosolic calcium ion (Ca2+) concentration regulate a variety of cellular functions in all eukaryotes. Cells express a sophisticated set of mechanisms to balance the cytosolic Ca2+ levels and the signals that elevate Ca2+ in the cytosol are compensated by mechanisms that reduce it. Alterations in Ca2+-dependent homeostatic mechanisms are the cause of many prominent diseases in humans, such as heart failure or neuronal death.The genetic tractability of Toxoplasma gondii and the availability of genetic tools enabled the use of Genetically Encoded Calcium Indicators (GECIs) expressed in the cytoplasm, which started a new era in the studies of Toxoplasma calcium signaling. It was finally possible to see Ca2+ oscillations prior to exit of the parasite from host cells. Years after Endo et al showed that ionophores triggered egress, the assumption that oscillations occur prior to egress from host cells has been validated by experiments using GECIs. GECIs allowed the visualization of specific Ca2+ signals in live intracellular parasites and to distinguish these signals from host cell calcium fluctuations. In this chapter we present an overview describing "tried and true" methods of our lab who pioneered the first use of GECI's in Toxoplasma, including GECI choice, methodology for transfection and selection of ideal clones, their characterization, and the use of GECI-expressing parasites for fluorometric and microscopic analysis.
Asunto(s)
Toxoplasma/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Citoplasma/metabolismo , Citosol/metabolismo , Interacciones Huésped-Parásitos , Humanos , Ionóforos/metabolismo , Proteínas Protozoarias/metabolismoRESUMEN
Massive DNA sequencing has significantly increased the amount of data available for population genetics and molecular ecology studies. However, the parallel computation of simple statistics within and between populations from large panels of polymorphic sites is not yet available, making the exploratory analyses of a set or subset of data a very laborious task. Here, we present 4P (parallel processing of polymorphism panels), a stand-alone software program for the rapid computation of genetic variation statistics (including the joint frequency spectrum) from millions of DNA variants in multiple individuals and multiple populations. It handles a standard input file format commonly used to store DNA variation from empirical or simulation experiments. The computational performance of 4P was evaluated using large SNP (single nucleotide polymorphism) datasets from human genomes or obtained by simulations. 4P was faster or much faster than other comparable programs, and the impact of parallel computing using multicore computers or servers was evident. 4P is a useful tool for biologists who need a simple and rapid computer program to run exploratory population genetics analyses in large panels of genomic data. It is also particularly suitable to analyze multiple data sets produced in simulation studies. Unix, Windows, and MacOs versions are provided, as well as the source code for easier pipeline implementations.