Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 214, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280063

RESUMEN

The Golgi complex is a highly dynamic and tightly regulated cellular organelle with essential roles in the processing as well as the sorting of proteins and lipids. Its structure undergoes rapid disassembly and reassembly during normal physiological processes, including cell division, migration, polarization, differentiation, and cell death. Golgi dispersal or fragmentation also occurs in pathological conditions, such as neurodegenerative diseases, infectious diseases, congenital disorders of glycosylation diseases, and cancer. In this review, current knowledge about both structural organization and morphological alterations in the Golgi in physiological and pathological conditions is summarized together with the methodologies that help to reveal its structure.


Asunto(s)
Aparato de Golgi , Enfermedades Neurodegenerativas , Humanos , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , División Celular , Transporte de Proteínas , Enfermedades Neurodegenerativas/metabolismo
2.
Am J Hum Genet ; 107(4): 763-777, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32937143

RESUMEN

Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/genética , Factores de Intercambio de Guanina Nucleótido/genética , Debilidad Muscular/genética , Atrofia Muscular Espinal/genética , Anomalías Musculoesqueléticas/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Axones/patología , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/patología , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Heterocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Debilidad Muscular/diagnóstico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Anomalías Musculoesqueléticas/diagnóstico , Anomalías Musculoesqueléticas/metabolismo , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Cultivo Primario de Células , Médula Espinal/anomalías , Médula Espinal/metabolismo
3.
IUBMB Life ; 74(4): 361-370, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35274438

RESUMEN

Organelles can easily be disrupted by intracellular and extracellular factors. Studies on ER and mitochondria indicate that a wide range of responses are elicited upon organelle disruption. One response thought to be of particular importance is autophagy. Cells can target entire organelles into autophagosomes for removal. This wholesale nature makes autophagy a robust means for eliminating compromised organelles. Recently, it was demonstrated that the Golgi apparatus is a substrate of autophagy. On the other hand, various reports have shown that components traffic away from the Golgi for elimination in an autophagosome-independent manner when the Golgi apparatus is stressed. Future studies will reveal how these different pieces of machinery coordinate to drive Golgi degradation. Quantitative measurements will be needed to determine how much autophagy contributes to the maintenance of the Golgi apparatus.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Autofagosomas/metabolismo , Autofagia/fisiología , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Control de Calidad
4.
Biol Cell ; 112(12): 439-451, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32885474

RESUMEN

BACKGROUND INFORMATION: Aberrant production of amyloid beta (Aß) causes disruption of intracellular calcium homeostasis, a crucial factor in the pathogenesis of Alzheimer's disease. Calcium is required for the fusion and trafficking of vesicles. Previously, we demonstrated that Sec31A, a main component for coat protein complex II (COPII) vesicles at ER exit sites (ERES), is modulated by O-GlcNAcylation. O-GlcNAcylation, a unique and dynamic protein glycosylation process, modulates the formation of COPII vesicles. RESULTS: In this study, we observed that disrupted calcium levels affected the formation of COPII vesicles in ERES through calcium-triggered O-GlcNAcylation of Sec31A. Additionally, we found that Aß impaired ERES through Aß-disturbed calcium homeostasis and O-GlcNAcylation of Sec31A in neuronal cells. Furthermore, we identified that Aß disrupted the ribbon-like structure of Golgi. Golgi fragmentation by Aß was rescued by up-regulation of O-GlcNAcylaion levels using Thiamet G (ThiG), an O-GlcNAcase inhibitor. Additionally, we observed that the Golgi reassembly stacking proteins having a function in Golgi stacking showed attenuation at COPII vesicles following Aß treatment. CONCLUSIONS: This study demonstrated that Aß impaired Sec31A targeting to ERES through altered Sec31A O-GlcNAcylation triggered by disruption of intracellular calcium homeostasis. SIGNIFICANCE: The findings of this study suggested that protection of ERES or Sec31 O-GlcNAcylation may offer a promising novel avenue for development of AD therapeutics.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
5.
Cell Mol Life Sci ; 77(19): 3859-3873, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31802140

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative diseases that are related genetically and pathologically. Mutations in the UBQLN2 gene, encoding the ubiquitin-like protein ubiquilin2, are associated with familial ALS/FTD, but the pathophysiological mechanisms remain unclear. Here, we demonstrate that ALS/FTD UBQLN2 mutants P497H and P506T inhibit protein transport from the endoplasmic reticulum (ER) to the Golgi apparatus in neuronal cells. In addition, we observed that Sec31-positive ER exit sites are clustered in UBQLN2T487I patient spinal cord tissues. Both the ER-Golgi intermediate (ERGIC) compartment and the Golgi become disorganised and fragmented. This activates ER stress and inhibits ER-associated degradation. Hence, this study highlights perturbations in secretory protein trafficking and ER homeostasis as pathogenic mechanisms associated with ALS/FTD-associated forms of UBQLN2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteínas Relacionadas con la Autofagia/genética , Células Cultivadas , Estrés del Retículo Endoplásmico , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Ratones , Mutagénesis Sitio-Dirigida , Neuronas/citología , Neuronas/metabolismo , Transporte de Proteínas
6.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34769517

RESUMEN

Parkinson's disease (PD) is the second most frequent neurodegenerative disease. It is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of large aggregates in the survival neurons called Lewy bodies, which mainly contain α-synuclein (α-syn). The cause of cell death is not known but could be due to mitochondrial dysfunction, protein homeostasis failure, and alterations in the secretory/endolysosomal/autophagic pathways. Survival nigral neurons overexpress the small GTPase Rab1. This protein is considered a housekeeping Rab that is necessary to support the secretory pathway, the maintenance of the Golgi complex structure, and the regulation of macroautophagy from yeast to humans. It is also involved in signaling, carcinogenesis, and infection for some pathogens. It has been shown that it is directly linked to the pathogenesis of PD and other neurodegenerative diseases. It has a protective effect against α-σψν toxicity and has recently been shown to be a substrate of LRRK2, which is the most common cause of familial PD and the risk of sporadic disease. In this review, we analyze the key aspects of Rab1 function in dopamine neurons and its implications in PD neurodegeneration/restauration. The results of the current and former research support the notion that this GTPase is a good candidate for therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson/patología , Proteínas de Unión al GTP rab1/metabolismo , Animales , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas de Unión al GTP rab1/genética
7.
J Cell Sci ; 131(3)2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29361552

RESUMEN

In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Autofagia , Aparato de Golgi/metabolismo , Mamíferos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Aparato de Golgi/ultraestructura , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neuroblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Proteínas tau/metabolismo , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
8.
Proc Natl Acad Sci U S A ; 114(17): E3462-E3471, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28389568

RESUMEN

Positive-stranded RNA viruses, such as hepatitis C virus (HCV), assemble their viral replication complexes by remodeling host intracellular membranes to a membranous web. The precise composition of these replication complexes and the detailed mechanisms by which they are formed are incompletely understood. Here we show that the human immunity-related GTPase M (IRGM), known to contribute to autophagy, plays a previously unrecognized role in this process. We show that IRGM is localized at the Golgi apparatus and regulates the fragmentation of Golgi membranes in response to HCV infection, leading to colocalization of Golgi vesicles with replicating HCV. Our results show that IRGM controls phosphorylation of GBF1, a guanine nucleotide exchange factor for Arf-GTPases, which normally operates in Golgi membrane dynamics and vesicle coating in resting cells. We also find that HCV triggers IRGM-mediated phosphorylation of the early autophagy initiator ULK1, thereby providing mechanistic insight into the role of IRGM in HCV-mediated autophagy. Collectively, our results identify IRGM as a key Golgi-situated regulator that links intracellular membrane remodeling by autophagy and Golgi fragmentation with viral replication.


Asunto(s)
Autofagia , Proteínas de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Hepacivirus/fisiología , Membranas Intracelulares/metabolismo , Replicación Viral/fisiología , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Proteínas de Unión al GTP/genética , Aparato de Golgi/genética , Aparato de Golgi/virología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Membranas Intracelulares/virología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación/genética
9.
Nano Lett ; 19(12): 8476-8487, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711283

RESUMEN

In contrast to the booming production and application of nanomaterials, research on the toxicological impacts and possible hazards of nanoparticles to tissues and organs is still in its infancy. Golgi apparatus is one of the most important organelles in cells and plays a key role in intracellular protein processing. The structural integrity of Golgi is vital for its normal function, and Golgi disturbance could result in a wide range of diseases and disorders. In this study, for the first time we found gold nanoparticles (Au NPs) induced size-dependent cytoplasmic calcium increase and Golgi fragmentation, which hampers normal Golgi functions, leads to abnormal protein processing, and causes cellular adhesion decrease, while cell viability was not significantly compromised. Additionally, early renal pathological changes were induced in vivo. This work is significant to nanoparticle research because it illustrates the important role of size on Au NP-induced changes in Golgi morphology and their consequences in vitro and in vivo, which has important implications for the biological applications of nanomaterials.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Oro , Aparato de Golgi , Riñón , Nanopartículas del Metal/química , Animales , Adhesión Celular/efectos de los fármacos , Evaluación de Medicamentos , Femenino , Oro/química , Oro/farmacocinética , Oro/farmacología , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos BALB C
10.
Int J Mol Sci ; 21(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443559

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common and devastating motor neuron (MN) disease. Its pathophysiological cascade is still enigmatic. More than 90% of ALS patients suffer from sporadic ALS, which makes it specifically demanding to generate appropriate model systems. One interesting aspect considering the seeding, spreading and further disease development of ALS is the cerebrospinal fluid (CSF). We therefore asked whether CSF from sporadic ALS patients is capable of causing disease typical changes in human patient-derived spinal MN cultures and thus could represent a novel model system for sporadic ALS. By using induced pluripotent stem cell (iPSC)-derived MNs from healthy controls and monogenetic forms of ALS we could demonstrate a harmful effect of ALS-CSF on healthy donor-derived human MNs. Golgi fragmentation-a typical finding in lower organism models and human postmortem tissue-was induced solely by addition of ALS-CSF, but not control-CSF. No other neurodegenerative hallmarks-including pathological protein aggregation-were found, underpinning Golgi fragmentation as early event in the neurodegenerative cascade. Of note, these changes occurred predominantly in MNs, the cell type primarily affected in ALS. We thus present a novel way to model early features of sporadic ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Aparato de Golgi/patología , Neuronas Motoras/patología , Agregación Patológica de Proteínas , Médula Espinal/fisiopatología , Adulto , Esclerosis Amiotrófica Lateral/metabolismo , Líquido Cefalorraquídeo , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Masculino , Persona de Mediana Edad , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA