Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.635
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2404830121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042689

RESUMEN

Rigorous comparisons between single site- and nanoparticle (NP)-dispersed catalysts featuring the same composition, in terms of activity, selectivity, and reaction mechanism, are limited. This limitation is partly due to the tendency of single metal atoms to sinter into aggregated NPs at high loadings and elevated temperatures, driven by a decrease in metal surface free energy. Here, we have developed a unique two-step method for the synthesis of single Cu sites on ZSM-5 (termed CuS/ZSM-5) with high thermal stability. The atomic-level dispersion of single Cu sites was confirmed through scanning transmission electron microscopy, X-ray absorption fine structure (XAFS), and electron paramagnetic resonance spectroscopy. The CuS/ZSM-5 catalyst was compared to a CuO NP-based catalyst (termed CuN/ZSM-5) in the oxidation of NH3 to N2, with the former exhibiting superior activity and selectivity. Furthermore, operando XAFS and diffuse reflectance infrared Fourier transform spectroscopy studies were conducted to simultaneously assess the fate of the Cu and the surface adsorbates, providing a comprehensive understanding of the mechanism of the two catalysts. The study shows that the facile redox behavior exhibited by single Cu sites correlates with the enhanced activity observed for the CuS/ZSM-5 catalyst.

2.
Proc Natl Acad Sci U S A ; 120(16): e2301206120, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036968

RESUMEN

Water (H2O) microdroplets are sprayed onto a magnetic iron oxide (Fe3O4) and Nafion-coated graphite mesh using compressed N2 or air as the nebulizing gas. The resulting splash of microdroplets enters a mass spectrometer and is found to contain ammonia (NH3). This gas-liquid-solid heterogeneous catalytic system synthesizes ammonia in 0.2 ms. The conversion rate reaches 32.9 ± 1.38 nmol s-1 cm-2 at room temperature without application of an external electric potential and without irradiation. Water microdroplets are the hydrogen source for N2 in contact with Fe3O4. Hydrazine (H2NNH2) is also observed as a by-product and is suspected to be an intermediate in the formation of ammonia. This one-step nitrogen-fixation strategy to produce ammonia is eco-friendly and low cost, which converts widely available starting materials into a value-added product.

3.
Proc Natl Acad Sci U S A ; 120(1): e2210211120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574649

RESUMEN

Controllable in situ formation of nanoclusters with discrete active sites is highly desirable in heterogeneous catalysis. Herein, a titanium oxide-based Fenton-like catalyst is constructed using exfoliated Ti3C2 MXene as a template. Theoretical calculations reveal that a redox reaction between the surface Ti-deficit vacancies of the exfoliated Ti3C2 MXene and H2O2 molecules facilitates the in situ conversion of surface defects into titanium oxide nanoclusters anchoring on amorphous carbon (TiOx@C). The presence of mixed-valence Tiδ+ (δ = 0, 2, 3, and 4) within TiOx@C is confirmed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) characterizations. The abundant surface defects within TiOx@C effectively promote the generation of reactive oxygen species (ROS) leading to superior and stable Fenton-like catalytic degradation of atrazine, a typical agricultural herbicide. Such an in situ construction of Fenton-like catalysts through defect engineering also applies to other MXene family materials, such as V2C and Nb2C.


Asunto(s)
Peróxido de Hidrógeno , Titanio , Peróxido de Hidrógeno/química , Titanio/química , Dominio Catalítico , Catálisis
4.
Proc Natl Acad Sci U S A ; 120(50): e2313023120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38060558

RESUMEN

Dynamics has long been recognized to play an important role in heterogeneous catalytic processes. However, until recently, it has been impossible to study their dynamical behavior at industry-relevant temperatures. Using a combination of machine learning potentials and advanced simulation techniques, we investigate the cleavage of the N[Formula: see text] triple bond on the Fe(111) surface. We find that at low temperatures our results agree with the well-established picture. However, if we increase the temperature to reach operando conditions, the surface undergoes a global dynamical change and the step structure of the Fe(111) surface is destabilized. The catalytic sites, traditionally associated with this surface, appear and disappear continuously. Our simulations illuminate the danger of extrapolating low-temperature results to operando conditions and indicate that the catalytic activity can only be inferred from calculations that take dynamics fully into account. More than that, they show that it is the transition to this highly fluctuating interfacial environment that drives the catalytic process.

5.
Proc Natl Acad Sci U S A ; 119(37): e2121848119, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36067324

RESUMEN

Refractory carbides are attractive candidates for support materials in heterogeneous catalysis because of their high thermal, chemical, and mechanical stability. However, the industrial applications of refractory carbides, especially silicon carbide (SiC), are greatly hampered by their low surface area and harsh synthetic conditions, typically have a very limited surface area (<200 m2 g-1), and are prepared in a high-temperature environment (>1,400 °C) that lasts for several or even tens of hours. Based on Le Chatelier's principle, we theoretically proposed and experimentally verified that a low-pressure carbothermal reduction (CR) strategy was capable of synthesizing high-surface area SiC (569.9 m2 g-1) at a lower temperature and a faster rate (∼1,300 °C, 50 Pa, 30 s). Such high-surface area SiC possesses excellent thermal stability and antioxidant capacity since it maintained stability under a water-saturated airflow at 650 °C for 100 h. Furthermore, we demonstrated the feasibility of our strategy for scale-up production of high-surface area SiC (460.6 m2 g-1), with a yield larger than 12 g in one experiment, by virtue of an industrial viable vacuum sintering furnace. Importantly, our strategy is  also applicable to the rapid synthesis of refractory metal carbides (NbC, Mo2C, TaC, WC) and even their emerging high-entropy carbides (VNbMoTaWC5, TiVNbTaWC5). Therefore, our low-pressure CR method provides an alternative strategy, not merely limited to temperature and time items, to regulate the synthesis and facilitate the upcoming industrial applications of carbide-based advanced functional materials.

6.
Proc Natl Acad Sci U S A ; 119(18): e2201922119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486696

RESUMEN

SignificanceThe electroconversion of CO2 to value-added products is a promising path to sustainable fuels and chemicals. However, the microenvironment that is created during CO2 electroreduction near the surface of heterogeneous Cu electrocatalysts remains unknown. Its understanding can lead to the development of ways to improve activity and selectivity toward multicarbon products. This work introduces a method called on-stream substitution of reactant isotope that provides quantitative information of the CO intermediate species present on Cu surfaces during electrolysis. An intermediary CO reservoir that contains more CO molecules than typically expected in a surface adsorbed configuration was identified. Its size was shown to be a factor closely associated with the formation of multicarbon products.

7.
Proc Natl Acad Sci U S A ; 119(11): e2118278119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263220

RESUMEN

SignificanceThe photosensitizer is one of the important components in the photocatalytic system. Molecular photosensitizers have well-defined structures, which is beneficial in revealing the catalysis mechanism and helpful for further structural design and performance optimization. However, separation and recycling of the molecular photosensitizers is a great problem. Loading them into/on two/three-dimensional supports through covalent bonds, electrostatic interactions, and supramolecular interactions is a method that enhances their separation and recycling capability. Nonetheless, the structures of the resulting composites are unclear. Thus, the development of highly crystalline heterogeneity methods for molecular photosensitizers, albeit greatly challenging, is meaningful and desirable in photocatalysis, through which heterogeneous photosensitizers with well-defined structures, definite catalysis mechanisms, and good catalytic performance would be expected.


Asunto(s)
Fármacos Fotosensibilizantes , Catálisis , Estructura Molecular , Fármacos Fotosensibilizantes/química
8.
Nano Lett ; 24(17): 5165-5173, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38630980

RESUMEN

Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.

9.
Nano Lett ; 24(40): 12666-12675, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39311622

RESUMEN

Chemoselective hydrogenation of quinoline and its derivatives is a significant strategy to achieve the corresponding 1,2,3,4-tetrahydroquinolines (py-THQ) for various potential applications. Here, we precisely constructed a titanium carbide supported atomically dispersed Pd catalyst (PdSA+NC/TiC) for quinoline hydrogenation, delivering above 99% py-THQ selectivity at complete conversion with an outstanding turnover frequency (TOF) of 463 h-1. AC-HAADF-STEM and XAFS demonstrate that the atomic dispersion of Pd includes Pd-Ti2C2 single atoms and Pd clusters with atomic-layer thickness. Theoretical calculation and experimental results revealed that H2 dissociation and subsequent hydrogenation rates were greatly promoted over Pd clusters. Although the adsorption of quinolines and intermediates are easier on Pd clusters than on Pd single atoms, the desorption of py-THQ is more favored over Pd single atoms than over Pd clusters. The desorption step may be the main reason for 5,6,7,8-tetrahydroquinoline (bz-THQ) and decahydroquinoline (DHQ) formation. Thus, a low reaction activity and py-THQ selectivity were received over PdSA/TiC and PdNP/TiC, respectively.

10.
J Comput Chem ; 45(9): 546-551, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38009447

RESUMEN

Kinetic models parameterized by ab-initio calculations have led to significant improvements in understanding chemical reactions in heterogeneous catalysis. These studies have been facilitated by implementations which determine steady-state coverages and rates of mean-field micro-kinetic models. As implemented in the open-source kinetic modeling program, CatMAP, the conventional solution strategy is to use a root-finding algorithm to determine the coverage of all intermediates through the steady-state expressions, constraining all coverages to be non-negative and to properly sum to unity. Though intuitive, this root-finding strategy causes issues with convergence to solution due to these imposed constraints. In this work, we avoid explicitly imposing these constraints, solving the mean-field steady-state micro-kinetic model in the space of number of sites instead of solving it in the space of coverages. We transform the constrained root-finding problem to an unconstrained least-squares minimization problem, leading to significantly improved convergence in solving micro-kinetic models and thus enabling the efficient study of more complex catalytic reactions.

11.
Small ; 20(42): e2403028, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860552

RESUMEN

Methane is a valuable resource and its valorization is an important challenge in heterogeneous catalysis. Here it is shown that CeO2/CuO composite prepared by ball milling activates methane at a temperature as low as 250 °C. In contrast to conventionally prepared catalysts, the formation of partial oxidation products such as methanol and formaldehyde is also observed. Through an in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and operando Near Edge X-Ray Absorption Fine Structure Spectroscopy (NEXAFS) approach, it can be established that this unusual reactivity can be attributed to the presence of Ce4+/Cu+ interfaces generated through a redox exchange between Ce3+ and Cu2+ atoms facilitated by the mechanical energy supplied during milling. DFT modeling of the electronic properties confirms the existence of a charge transfer mechanism. These results demonstrate the effectiveness and distinctiveness of the mechanical approach in creating unique and resilient interfaces thereby enabling the optimization and refining of CeO2/CuO catalysts in methane activation reactions.

12.
Small ; 20(9): e2305999, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37840400

RESUMEN

An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.

13.
Small ; 20(30): e2310665, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386292

RESUMEN

The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example.

14.
Small ; 20(6): e2305258, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37797179

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal-organic framework that have attracted considerable attention as potential functional materials due to their high chemical stability and ease of synthesis. ZIFs are usually composed of zinc ions coordinated with imidazole linkers, with some other transition metals, such as Cu(II) and Co(II), also showing potential as ZIF-forming cations. Despite the importance of nickel in catalysis, no Ni-based ZIF with permanent porosity is yet reported. It is found that the presence and arrangement of the carbonyl functional groups on the imidazole linker play a crucial role in completing the preferred octahedral coordination of nickel, revealing a promising platform for the rational design of Ni-based ZIFs for a wide range of catalytic applications. Herein, the synthesis of the first Ni-based ZIFs is reported and their high potential as heterogeneous catalysts for Suzuki-Miyaura cross-coupling C─C bond forming reactions is demonstrated.

15.
Small ; 20(37): e2401532, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38699945

RESUMEN

Borocarbonitride (BCN) catalysts, boasting multiple redox sites, have shown considerable potential in alkane oxidative dehydrogenation (ODH) to olefin molecules. However, their catalytic efficiency still lags behind that of leading commercial catalysts, primarily due to the limited reactivity of oxygen functional groups. In this study, a groundbreaking hybrid catalyst is developed, featuring BCN nanotubes (BCNNTs) encapsulated with manganese (Mn) clusters, crafted through a meticulous supramolecular self-assembly and postcalcination strategy. This novel catalyst demonstrates a remarkable enhancement in activity, achieving 30% conversion and ≈100% selectivity toward styrene in ethylbenzene ODH reactions. Notably, its performance surpasses both pure BCNNTs and those hosting Mn nanoparticles. Structural and kinetic analyses unveil a robust interaction between BCNNTs and the Mn component, substantially boosting the catalytic activity of BCNNTs. Furthermore, density functional theory (DFT) calculations elucidate that BCNNTs encapsulated with Mn clusters not only stabilize key intermediates (─B─O─O─B─) but also enhance the nucleophilicity of active sites through electron transfer from the Mn cluster to the BCNNTs. This electron transfer mechanism effectively lowers the energy barrier for ─C─H cleavage, resulting in a 13% improvement in catalytic activity compared to pure BCNNTs.

16.
Small ; 20(23): e2308393, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150648

RESUMEN

Metal-organic cages (MOCs) have garnered significant attention due to their unique discrete structures, intrinsic porosity, designability, and tailorability. However, weak inter-cage interactions, such as van der Waals forces and hydrogen bonding can cause solid-state MOCs to lose structural integrity during desolvation, leading to the loss of porosity. In this work, a novel strategy to retain the permanent porosity of Cu-paddlewheel-based MOCs, enabling their use as heterogeneous catalysts is presented. Post-synthetic solvothermal treatments in non-coordinating solvents, mesitylene, and p-xylene, effectively preserve the packing structures of solvent-evacuated MOCs while preventing cage agglomeration. The resulting MOCs exhibit an exceptional N2 sorption capacity, with a high surface area (SBET = 1934 m2 g-1 for MOP-23), which is among the highest reported for porous MOCs. Intriguingly, while the solvothermal treatment reduced Cu(II) to Cu(I) in the Cu-paddlewheel clusters, the MOCs with mixed-valenced Cu(I)/Cu(II) maintained their crystallinity and permanent porosity. The catalytic activities of these MOCs are successfully examined in copper(I)-catalyzed hydrative amide synthesis, highlighting the prospect of MOCs as versatile reaction platforms.

17.
Small ; : e2406319, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221550

RESUMEN

In the domain of heterogeneous catalytic activation of peroxymonosulfate (PMS), high-valent metal-oxo (HVMO) species are widely recognized as potent oxidants for the abatement of organic pollutants. However, the generation selectivity and efficiency of HVMO are often constrained by stringent requirements for catalyst adsorption sites and electron transfer efficiency. In this study, a single-atom catalyst, CuSA/CNP&S, is synthesized featuring multiple types (planar/axial) of heteroatom coordination via an H-bond-assisted self-assembly strategy. It is confirmed that CuN3 active centers with axial S coordination are uniformly distributed in a carbon matrix modified by planar P atoms. CuSA/CNP&S activated PMS to selectively generate Cu(III)═OH species as the primary reactive oxygen species (ROS). The pseudo-first-order kinetic rate for bisphenol A degradation reached 1.51 min-1, a 17.57-fold increase compared to the unmodified CuSA/CN catalyst. Additionally, the CuSA/CNP&S catalyst demonstrates high efficiency and durability in removing contaminants from various aqueous matrices. Theoretical calculations and experimental results indicate that the intrinsic electric field generated by distal planar P atoms enhances electron transfer efficiency within the carbon matrix. Meanwhile, axial S coordination elevates the d-band center and tunes the eg * band broadening of Cu, thereby enhancing the adsorption selectivity for the terminal oxygen of PMS. This multitype coordination synergistically mitigates the issues of low selectivity and yield of HVMO species.

18.
Small ; : e2405150, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39301975

RESUMEN

Zeolites with band-like charge transport properties have exhibited their potential activities in sensing, optics, and electronics. Herein, a precisely designed Cu@ZSM-5 catalyst is presented with an ultra-wide bandgap of 4.27 eV, showing excellent photocatalytic activity in hydroxylation of benzene with benzene conversion 27.9% and phenol selectivity 97.6%. The SXRD and Rietveld refinement results illustrate that Cu@ZSM-5 has an average of 0.8 Cu atoms per unit cell and the single Cu atoms located in the cross-section of the sinusoidal and straight channels. XANES and EXAFS further demonstrate that the Cu atoms have an oxidation state of +2, coordinated with three OMFI-framework atoms and one ─OH group. Detailed characterizations demonstrate that the Cu@ZSM-5 with tailored bandgap is able to enhance the photoinduced electron-hole separation and hence promote selective hydroxylation of benzene to phenol via the superoxide radical route. This work may open a new way for designing electrically conductive zeolite-supported photocatalysts.

19.
Small ; 20(37): e2310106, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38746966

RESUMEN

Metal-Organic Frameworks (MOFs) recently emerged as a new platform for the realization of integrated devices for artificial photosynthesis. However, there remain few demonstrations of rational tuning of such devices for improved performance. Here, a fast molecular water oxidation catalyst working via water nucleophilic attack is integrated into the MOF MIL-142, wherein Fe3O nodes absorb visible light, leading to charge separation. Materials are characterized by a range of structural and spectroscopic techniques. New, [Ru(tpy)(Qc)(H2O)]+ (tpy = 2,2':6',2″-terpyridine and Qc = 8-quinolinecarboxylate)-doped Fe MIL-142 achieved a high photocurrent (1.6 × 10-3 A·cm-2) in photo-electrocatalytic water splitting at pH = 1. Unassisted photocatalytic H2 evolution is also reported with Pt as the co-catalyst (4.8 µmol g-1 min-1). The high activity of this new system enables hydrogen gas capture from an easy-to-manufacture, scaled-up prototype utilizing MOF deposited on FTO glass as a photoanode. These findings provide insights for the development of MOF-based light-driven water-splitting assemblies utilizing a minimal amount of precious metals and Fe-based photosensitizers.

20.
Small ; : e2405715, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239996

RESUMEN

Improving control over active-site reactivity is a grand challenge in catalysis. Single-atom alloys (SAAs) consisting of a reactive component doped as single atoms into a more inert host metal feature localized and well-defined active sites, but fine tuning their properties is challenging. Here, a framework is developed for tuning single-atom site reactivity by alloying in an additional inert metal, which this work terms an alloy-host SAA. Specifically, this work creates about 5% Pd single-atom sites in a Pd33Ag67(111) single crystal surface, and then identifies Sn based on computational screening as a suitable third metal to introduce. Subsequent experimental studies show that introducing Sn indeed modifies the electronic structure and chemical reactivity (measured by CO desorption energies) of the Pd sites. The modifications to both the electronic structure and the CO adsorption energies are in close agreement with the calculations. These results indicate that the use of an alloy host environment to modify the reactivity of single-atom sites can allow fine-tuning of catalytic performance and boost resistance against strong-binding adsorbates such as CO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA