Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.008
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(16): 4150-4175, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121846

RESUMEN

Cellular senescence is a cell fate triggered in response to stress and is characterized by stable cell-cycle arrest and a hypersecretory state. It has diverse biological roles, ranging from tissue repair to chronic disease. The development of new tools to study senescence in vivo has paved the way for uncovering its physiological and pathological roles and testing senescent cells as a therapeutic target. However, the lack of specific and broadly applicable markers makes it difficult to identify and characterize senescent cells in tissues and living organisms. To address this, we provide practical guidelines called "minimum information for cellular senescence experimentation in vivo" (MICSE). It presents an overview of senescence markers in rodent tissues, transgenic models, non-mammalian systems, human tissues, and tumors and their use in the identification and specification of senescent cells. These guidelines provide a uniform, state-of-the-art, and accessible toolset to improve our understanding of cellular senescence in vivo.


Asunto(s)
Senescencia Celular , Humanos , Animales , Biomarcadores/metabolismo , Guías como Asunto , Neoplasias/patología
2.
Cell ; 184(14): 3829-3841.e21, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171307

RESUMEN

Past human genetic diversity and migration between southern China and Southeast Asia have not been well characterized, in part due to poor preservation of ancient DNA in hot and humid regions. We sequenced 31 ancient genomes from southern China (Guangxi and Fujian), including two ∼12,000- to 10,000-year-old individuals representing the oldest humans sequenced from southern China. We discovered a deeply diverged East Asian ancestry in the Guangxi region that persisted until at least 6,000 years ago. We found that ∼9,000- to 6,000-year-old Guangxi populations were a mixture of local ancestry, southern ancestry previously sampled in Fujian, and deep Asian ancestry related to Southeast Asian Hòabìnhian hunter-gatherers, showing broad admixture in the region predating the appearance of farming. Historical Guangxi populations dating to ∼1,500 to 500 years ago are closely related to Tai-Kadai and Hmong-Mien speakers. Our results show heavy interactions among three distinct ancestries at the crossroads of East and Southeast Asia.


Asunto(s)
Genética de Población , Asia Sudoriental , Asia Oriental , Geografía , Humanos
3.
Cell ; 183(1): 228-243.e21, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946810

RESUMEN

Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.


Asunto(s)
Toma de Decisiones/fisiología , Red Nerviosa/fisiología , Pensamiento/fisiología , Animales , Encéfalo/fisiología , Femenino , Hipocampo/metabolismo , Hipocampo/fisiología , Humanos , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/fisiología , Estudios Prospectivos , Adulto Joven
4.
Cell ; 178(6): 1299-1312.e29, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31474368

RESUMEN

Metformin is the first-line therapy for treating type 2 diabetes and a promising anti-aging drug. We set out to address the fundamental question of how gut microbes and nutrition, key regulators of host physiology, affect the effects of metformin. Combining two tractable genetic models, the bacterium E. coli and the nematode C. elegans, we developed a high-throughput four-way screen to define the underlying host-microbe-drug-nutrient interactions. We show that microbes integrate cues from metformin and the diet through the phosphotransferase signaling pathway that converges on the transcriptional regulator Crp. A detailed experimental characterization of metformin effects downstream of Crp in combination with metabolic modeling of the microbiota in metformin-treated type 2 diabetic patients predicts the production of microbial agmatine, a regulator of metformin effects on host lipid metabolism and lifespan. Our high-throughput screening platform paves the way for identifying exploitable drug-nutrient-microbiome interactions to improve host health and longevity through targeted microbiome therapies. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Hipoglucemiantes/uso terapéutico , Metformina/uso terapéutico , Agmatina/metabolismo , Animales , Caenorhabditis elegans/microbiología , Proteína Receptora de AMP Cíclico , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Humanos , Hipoglucemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Longevidad/efectos de los fármacos , Metformina/farmacología , Nutrientes/metabolismo
5.
CA Cancer J Clin ; 74(1): 50-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37909877

RESUMEN

Lung cancer is the leading cause of mortality and person-years of life lost from cancer among US men and women. Early detection has been shown to be associated with reduced lung cancer mortality. Our objective was to update the American Cancer Society (ACS) 2013 lung cancer screening (LCS) guideline for adults at high risk for lung cancer. The guideline is intended to provide guidance for screening to health care providers and their patients who are at high risk for lung cancer due to a history of smoking. The ACS Guideline Development Group (GDG) utilized a systematic review of the LCS literature commissioned for the US Preventive Services Task Force 2021 LCS recommendation update; a second systematic review of lung cancer risk associated with years since quitting smoking (YSQ); literature published since 2021; two Cancer Intervention and Surveillance Modeling Network-validated lung cancer models to assess the benefits and harms of screening; an epidemiologic and modeling analysis examining the effect of YSQ and aging on lung cancer risk; and an updated analysis of benefit-to-radiation-risk ratios from LCS and follow-up examinations. The GDG also examined disease burden data from the National Cancer Institute's Surveillance, Epidemiology, and End Results program. Formulation of recommendations was based on the quality of the evidence and judgment (incorporating values and preferences) about the balance of benefits and harms. The GDG judged that the overall evidence was moderate and sufficient to support a strong recommendation for screening individuals who meet the eligibility criteria. LCS in men and women aged 50-80 years is associated with a reduction in lung cancer deaths across a range of study designs, and inferential evidence supports LCS for men and women older than 80 years who are in good health. The ACS recommends annual LCS with low-dose computed tomography for asymptomatic individuals aged 50-80 years who currently smoke or formerly smoked and have a ≥20 pack-year smoking history (strong recommendation, moderate quality of evidence). Before the decision is made to initiate LCS, individuals should engage in a shared decision-making discussion with a qualified health professional. For individuals who formerly smoked, the number of YSQ is not an eligibility criterion to begin or to stop screening. Individuals who currently smoke should receive counseling to quit and be connected to cessation resources. Individuals with comorbid conditions that substantially limit life expectancy should not be screened. These recommendations should be considered by health care providers and adults at high risk for lung cancer in discussions about LCS. If fully implemented, these recommendations have a high likelihood of significantly reducing death and suffering from lung cancer in the United States.


Asunto(s)
Neoplasias Pulmonares , Fumar , Femenino , Humanos , Masculino , American Cancer Society , Detección Precoz del Cáncer/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Tamizaje Masivo/métodos , Medición de Riesgo , Estados Unidos/epidemiología , Fumar/efectos adversos , Fumar/epidemiología , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Revisiones Sistemáticas como Asunto
6.
EMBO J ; 41(18): e110815, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35912849

RESUMEN

In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.


Asunto(s)
Meiosis , Oogénesis , Animales , Femenino , Humanos , Macaca fascicularis , Ratones , Oocitos , Oogénesis/fisiología , Ovario
7.
Trends Immunol ; 44(8): 613-627, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423882

RESUMEN

The innate cytokine system is involved in the response to excessive food intake. In this review, we highlight recent advances in our understanding of the physiological role of three prominent cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF), in mammalian metabolic regulation. This recent research highlights the pleiotropic and context-dependent functions in the immune-metabolic interplay. IL-1ß is activated in response to overloaded mitochondrial metabolism, stimulates insulin secretion, and allocates energy to immune cells. IL-6 is released by contracting skeletal muscle and adipose tissue and directs energy from storing tissues to consuming tissues. TNF induces insulin resistance and prevents ketogenesis. Additionally, the therapeutic potential of modulating the activity of each cytokine is discussed.


Asunto(s)
Citocinas , Resistencia a la Insulina , Animales , Humanos , Citocinas/metabolismo , Interleucina-6/metabolismo , Tejido Adiposo , Factor de Necrosis Tumoral alfa/metabolismo , Resistencia a la Insulina/fisiología , Mamíferos
8.
Circ Res ; 134(4): 445-458, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359092

RESUMEN

Cardiovascular disease has been the leading cause of mortality and morbidity worldwide in the past 3 decades. Multiple cell lineages undergo dynamic alternations in gene expression, cell state determination, and cell fate conversion to contribute, adapt, and even modulate the pathophysiological processes during disease progression. There is an urgent need to understand the intricate cellular and molecular underpinnings of cardiovascular cell development in homeostasis and pathogenesis. Recent strides in lineage tracing methodologies have revolutionized our understanding of cardiovascular biology with the identification of new cellular origins, fates, plasticity, and heterogeneity within the cardiomyocyte, endothelial, and mesenchymal cell populations. In this review, we introduce the new technologies for lineage tracing of cardiovascular cells and summarize their applications in studying cardiovascular development, diseases, repair, and regeneration.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Diferenciación Celular , Linaje de la Célula , Enfermedades Cardiovasculares/genética , Miocitos Cardíacos
9.
Proc Natl Acad Sci U S A ; 120(4): e2209475119, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649433

RESUMEN

Nearly 20 y ago, Jared Diamond and Peter Bellwood reviewed the evidence for the associated spread of farming and large language families by the demographic expansions of farmers. Since then, advances in obtaining and analyzing genomic data from modern and ancient populations have transformed our knowledge of human dispersals during the Holocene. Here, we provide an overview of Holocene dispersals in the light of genomic evidence and conclude that they have a complex history. Even when there is a demonstrated connection between a demographic expansion of people, the spread of agriculture, and the spread of a particular language family, the outcome in the results of contact between expanding and resident groups is highly variable. Further research is needed to identify the factors and social circumstances that have influenced this variation and complex history.


Asunto(s)
Agricultura , Genómica , Humanos , Historia Antigua , Granjas , Migración Humana
10.
Proc Natl Acad Sci U S A ; 120(21): e2218308120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192163

RESUMEN

Humans coexisted and interbred with other hominins which later became extinct. These archaic hominins are known to us only through fossil records and for two cases, genome sequences. Here, we engineer Neanderthal and Denisovan sequences into thousands of artificial genes to reconstruct the pre-mRNA processing patterns of these extinct populations. Of the 5,169 alleles tested in this massively parallel splicing reporter assay (MaPSy), we report 962 exonic splicing mutations that correspond to differences in exon recognition between extant and extinct hominins. Using MaPSy splicing variants, predicted splicing variants, and splicing quantitative trait loci, we show that splice-disrupting variants experienced greater purifying selection in anatomically modern humans than that in Neanderthals. Adaptively introgressed variants were enriched for moderate-effect splicing variants, consistent with positive selection for alternative spliced alleles following introgression. As particularly compelling examples, we characterized a unique tissue-specific alternative splicing variant at the adaptively introgressed innate immunity gene TLR1, as well as a unique Neanderthal introgressed alternative splicing variant in the gene HSPG2 that encodes perlecan. We further identified potentially pathogenic splicing variants found only in Neanderthals and Denisovans in genes related to sperm maturation and immunity. Finally, we found splicing variants that may contribute to variation among modern humans in total bilirubin, balding, hemoglobin levels, and lung capacity. Our findings provide unique insights into natural selection acting on splicing in human evolution and demonstrate how functional assays can be used to identify candidate causal variants underlying differences in gene regulation and phenotype.


Asunto(s)
Hominidae , Hombre de Neandertal , Masculino , Animales , Humanos , Hombre de Neandertal/genética , Semen , Hominidae/genética , Alelos , Regulación de la Expresión Génica , Genoma Humano
11.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38670804

RESUMEN

The 40 Hz auditory steady-state response (ASSR), an oscillatory brain response to periodically modulated auditory stimuli, is a promising, noninvasive physiological biomarker for schizophrenia and related neuropsychiatric disorders. The 40 Hz ASSR might be amplified by synaptic interactions in cortical circuits, which are, in turn, disturbed in neuropsychiatric disorders. Here, we tested whether the 40 Hz ASSR in the human auditory cortex depends on two key synaptic components of neuronal interactions within cortical circuits: excitation via N-methyl-aspartate glutamate (NMDA) receptors and inhibition via gamma-amino-butyric acid (GABA) receptors. We combined magnetoencephalography (MEG) recordings with placebo-controlled, low-dose pharmacological interventions in the same healthy human participants (13 males, 7 females). All participants exhibited a robust 40 Hz ASSR in auditory cortices, especially in the right hemisphere, under a placebo. The GABAA receptor-agonist lorazepam increased the amplitude of the 40 Hz ASSR, while no effect was detectable under the NMDA blocker memantine. Our findings indicate that the 40 Hz ASSR in the auditory cortex involves synaptic (and likely intracortical) inhibition via the GABAA receptor, thus highlighting its utility as a mechanistic signature of cortical circuit dysfunctions involving GABAergic inhibition.


Asunto(s)
Corteza Auditiva , Potenciales Evocados Auditivos , Neuronas GABAérgicas , Magnetoencefalografía , Humanos , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/fisiología , Masculino , Femenino , Adulto , Potenciales Evocados Auditivos/efectos de los fármacos , Potenciales Evocados Auditivos/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Adulto Joven , Inhibición Neural/fisiología , Inhibición Neural/efectos de los fármacos , Estimulación Acústica
12.
Gastroenterology ; 166(4): 620-630, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38176661

RESUMEN

BACKGROUND & AIMS: Current international guidelines recommend duodenal biopsies to confirm the diagnosis of celiac disease in adult patients. However, growing evidence suggests that immunoglobulin A (IgA) anti-tissue transglutaminase (tTg) antibody levels ≥10 times the upper limit of normal (ULN) can accurately predict celiac disease, eliminating the need for biopsy. We performed a systematic review and meta-analysis to evaluate the accuracy of the no-biopsy approach to confirm the diagnosis of celiac disease in adults. METHODS: We systematically searched MEDLINE, EMBASE, Cochrane Library, and Web of Science from January 1998 to October 2023 for studies reporting the sensitivity and specificity of IgA-tTG ≥10×ULN against duodenal biopsies (Marsh grade ≥2) in adults with suspected celiac disease. We used a bivariate random effects model to calculate the summary estimates of sensitivity, specificity, and positive and negative likelihood ratios. The positive and negative likelihood ratios were used to calculate the positive predictive value of the no-biopsy approach across different pretest probabilities of celiac disease. The methodological quality of the included studies was evaluated using the QUADAS-2 tool. This study was registered with PROSPERO, number CRD42023398812. RESULTS: A total of 18 studies comprising 12,103 participants from 15 countries were included. The pooled prevalence of biopsy-proven celiac disease in the included studies was 62% (95% confidence interval [CI], 40%-83%). The proportion of patients with IgA-tTG ≥10×ULN was 32% (95% CI, 24%-40%). The summary sensitivity of IgA-tTG ≥10×ULN was 51% (95% CI, 42%-60%), and the summary specificity was 100% (95% CI, 98%-100%). The area under the summary receiver operating characteristic curve was 0.83 (95% CI, 0.77 - 0.89). The positive predictive value of the no-biopsy approach to identify patients with celiac disease was 65%, 88%, 95%, and 99% if celiac disease prevalence was 1%, 4%, 10%, and 40%, respectively. Between-study heterogeneity was moderate (I2 =30.3%), and additional sensitivity analyses did not significantly alter our findings. Only 1 study had a low risk of bias across all domains. CONCLUSION: The results of this meta-analysis suggest that selected adult patients with IgA-tTG ≥10×ULN and a moderate to high pretest probability of celiac disease could be diagnosed without undergoing invasive endoscopy and duodenal biopsy.


Asunto(s)
Enfermedad Celíaca , Adulto , Humanos , Enfermedad Celíaca/diagnóstico , Enfermedad Celíaca/epidemiología , Transglutaminasas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Inmunoglobulina A , Proteínas de Unión al GTP , Biopsia , Sensibilidad y Especificidad , Autoanticuerpos
13.
Circ Res ; 132(12): 1674-1691, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37289901

RESUMEN

Cardiometabolic disease comprises cardiovascular and metabolic dysfunction and underlies the leading causes of morbidity and mortality, both within the United States and worldwide. Commensal microbiota are implicated in the development of cardiometabolic disease. Evidence suggests that the microbiome is relatively variable during infancy and early childhood, becoming more fixed in later childhood and adulthood. Effects of microbiota, both during early development, and in later life, may induce changes in host metabolism that modulate risk mechanisms and predispose toward the development of cardiometabolic disease. In this review, we summarize the factors that influence gut microbiome composition and function during early life and explore how changes in microbiota and microbial metabolism influence host metabolism and cardiometabolic risk throughout life. We highlight limitations in current methodology and approaches and outline state-of-the-art advances, which are improving research and building toward refined diagnosis and treatment options in microbiome-targeted therapies.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Microbiota , Preescolar , Humanos , Enfermedades Cardiovasculares/terapia
14.
Circ Res ; 133(8): 687-703, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37681309

RESUMEN

BACKGROUND: Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition. METHODS: To investigate the role of 3 histone modifications (H3K27ac, H3K27me3, and H3K4me1) in the metabolic remodeling occurring in the aging heart, we cross-compared epigenomic, transcriptomic, and metabolomic data from mice of different ages. In addition, the role of the transcriptional coactivator p300 (E1A-associated binding protein p300)/CBP (CREB binding protein) in cardiac aging was investigated using a specific inhibitor of this histone acetyltransferase enzyme. RESULTS: We report a set of species-conserved enhancers associated with transcriptional changes underlying age-related metabolic remodeling in cardiomyocytes. Activation of the enhancer region of Hk2-a key glycolysis pathway gene-was fostered in old age-onset mouse heart by pseudohypoxia, wherein hypoxia-related genes are expressed under normal O2 levels, via increased activity of P300/CBP. Pharmacological inhibition of this transcriptional coactivator before the onset of cardiac aging led to a more aerobic, less glycolytic, metabolic state, improved heart contractility, and overall blunting of cardiac decline. CONCLUSIONS: Taken together, our results suggest how epigenetic dysregulation of glycolysis pathway enhancers could potentially be targeted to treat heart failure in the elderly.


Asunto(s)
Insuficiencia Cardíaca , Factores de Transcripción , Humanos , Ratones , Animales , Anciano , Histona Acetiltransferasas , Secuencias Reguladoras de Ácidos Nucleicos , Transcriptoma , Activación Transcripcional
15.
Circ Res ; 133(2): 158-176, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37325935

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS: AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS: PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS: These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.


Asunto(s)
Enfermedades Musculares , Enfermedad Arterial Periférica , Insuficiencia Renal Crónica , Animales , Humanos , Ratones , Isquemia/metabolismo , Ratones Noqueados , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/metabolismo , Receptores de Hidrocarburo de Aril/genética , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo
16.
Circ Res ; 133(4): 298-312, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37435729

RESUMEN

BACKGROUND: Giant cell arteritis (GCA) causes severe inflammation of the aorta and its branches and is characterized by intense effector T-cell infiltration. The roles that immune checkpoints play in the pathogenesis of GCA are still unclear. Our aim was to study the immune checkpoint interplay in GCA. METHODS: First, we used VigiBase, the World Health Organization international pharmacovigilance database, to evaluate the relationship between GCA occurrence and immune checkpoint inhibitors treatments. We then further dissected the role of immune checkpoint inhibitors in the pathogenesis of GCA, using immunohistochemistry, immunofluorescence, transcriptomics, and flow cytometry on peripheral blood mononuclear cells and aortic tissues of GCA patients and appropriated controls. RESULTS: Using VigiBase, we identified GCA as a significant immune-related adverse event associated with anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein-4) but not anti-PD-1 (anti-programmed death-1) nor anti-PD-L1 (anti-programmed death-ligand 1) treatment. We further dissected a critical role for the CTLA-4 pathway in GCA by identification of the dysregulation of CTLA-4-derived gene pathways and proteins in CD4+ (cluster of differentiation 4) T cells (and specifically regulatory T cells) present in blood and aorta of GCA patients versus controls. While regulatory T cells were less abundant and activated/suppressive in blood and aorta of GCA versus controls, they still specifically upregulated CTLA-4. Activated and proliferating CTLA-4+ Ki-67+ regulatory T cells from GCA were more sensitive to anti-CTLA-4 (ipilimumab)-mediated in vitro depletion versus controls. CONCLUSIONS: We highlighted the instrumental role of CTLA-4 immune checkpoint in GCA, which provides a strong rationale for targeting this pathway.


Asunto(s)
Antígeno CTLA-4 , Arteritis de Células Gigantes , Humanos , Aorta , Inhibidores de Puntos de Control Inmunológico , Leucocitos Mononucleares , Linfocitos T Reguladores , Antígeno CTLA-4/metabolismo
17.
Circ Res ; 133(10): 810-825, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37800334

RESUMEN

BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.


Asunto(s)
Cardiomiopatía Dilatada , Insuficiencia Cardíaca , Humanos , Cardiomiopatía Dilatada/metabolismo , Volumen Sistólico , Estudio de Asociación del Genoma Completo , Función Ventricular Izquierda , Fibrosis , Antígenos de Neoplasias/uso terapéutico , Moléculas de Adhesión Celular/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 44(9): 2038-2052, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39087349

RESUMEN

BACKGROUND: Clotting, leading to thrombosis, requires interactions of coagulation factors with the membrane aminophospholipids (aPLs) phosphatidylserine and phosphatidylethanolamine. Atherosclerotic cardiovascular disease (ASCVD) is associated with elevated thrombotic risk, which is not fully preventable using current therapies. Currently, the contribution of aPL to thrombotic risk in ASCVD is not known. Here, the aPL composition of circulating membranes in ASCVD of varying severity will be characterized along with the contribution of external facing aPL to plasma thrombin generation in patient samples. METHODS: Thrombin generation was measured using a purified factor assay on platelet, leukocyte, and extracellular vesicles (EVs) from patients with acute coronary syndrome (n=24), stable coronary artery disease (n=18), and positive risk factor (n=23) and compared with healthy controls (n=24). aPL composition of resting/activated platelet and leukocytes and EV membranes was determined using lipidomics. RESULTS: External facing aPLs were detected on EVs, platelets, and leukocytes, elevating significantly following cell activation. Thrombin generation was higher on the surface of EVs from patients with acute coronary syndrome than healthy controls, along with increased circulating EV counts. Thrombin generation correlated significantly with externalized EV phosphatidylserine, plasma EV counts, and total EV membrane surface area. In contrast, aPL levels and thrombin generation from leukocytes and platelets were not impacted by disease, although circulating leukocyte counts were higher in patients. CONCLUSIONS: The aPL membrane of EV supports an elevated level of thrombin generation in patient plasma in ASCVD. Leukocytes may also play a role although the platelet membrane did not seem to contribute. Targeting EV formation/clearance and developing strategies to prevent the aPL surface of EV interacting with coagulation factors represents a novel antithrombotic target in ASCVD.


Asunto(s)
Plaquetas , Enfermedad de la Arteria Coronaria , Vesículas Extracelulares , Leucocitos , Trombina , Humanos , Trombina/metabolismo , Vesículas Extracelulares/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Anciano , Plaquetas/metabolismo , Leucocitos/metabolismo , Enfermedad de la Arteria Coronaria/sangre , Estudios de Casos y Controles , Aterosclerosis/sangre , Lípidos de la Membrana/sangre , Lípidos de la Membrana/metabolismo , Fosfatidilserinas/sangre , Síndrome Coronario Agudo/sangre , Coagulación Sanguínea , Lipidómica
19.
Arterioscler Thromb Vasc Biol ; 44(7): 1502-1511, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38813700

RESUMEN

Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.


Asunto(s)
Inmunidad Adaptativa , Aterosclerosis , Linfocitos B , Comunicación Celular , Linfocitos T , Humanos , Aterosclerosis/inmunología , Aterosclerosis/patología , Aterosclerosis/metabolismo , Animales , Linfocitos T/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Transducción de Señal
20.
Arterioscler Thromb Vasc Biol ; 44(5): 1031-1041, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38511324

RESUMEN

Colchicine-an anti-inflammatory alkaloid-has assumed an important role in the management of cardiovascular inflammation ≈3500 years after its first medicinal use in ancient Egypt. Primarily used in high doses for the treatment of acute gout flares during the 20th century, research in the early 21st century demonstrated that low-dose colchicine effectively treats acute gout attacks, lowers the risk of recurrent pericarditis, and can add to secondary prevention of major adverse cardiovascular events. As the first Food and Drug Administration-approved targeted anti-inflammatory cardiovascular therapy, colchicine currently has a unique role in the management of atherosclerotic cardiovascular disease. The safe use of colchicine requires careful monitoring for drug-drug interactions, changes in kidney and liver function, and counseling regarding gastrointestinal upset. Future research should elucidate the mechanisms of anti-inflammatory effects of colchicine relevant to atherosclerosis, the potential role of colchicine in primary prevention, in other cardiometabolic conditions, colchicine's safety in cardiovascular patients, and opportunities for individualizing colchicine therapy using clinical and molecular diagnostics.


Asunto(s)
Enfermedades Cardiovasculares , Colchicina , Humanos , Antiinflamatorios/uso terapéutico , Antiinflamatorios/efectos adversos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Colchicina/uso terapéutico , Colchicina/efectos adversos , Interacciones Farmacológicas , Supresores de la Gota/uso terapéutico , Supresores de la Gota/efectos adversos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA