Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 144: 109290, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104695

RESUMEN

Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1ß, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.


Asunto(s)
Enfermedades de los Peces , Carpa Dorada , Animales , Mananos/farmacología , Citocinas/genética , Macrófagos/metabolismo , Fagocitosis
2.
Fish Shellfish Immunol ; 139: 108904, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37353062

RESUMEN

CD8+ cytotoxic T cells (CTLs) are a main cellular component of adaptive immunity. Our previous research has shown that CD8+ cells demonstrate spontaneous cytotoxic activity against the parasite Ichthyophthirius multifiliis in ginbuna crucian carp, suggesting that CD8+ cells play an important role in innate immunity. Herein, we investigated the molecules and cellular signal pathways involved in the cytotoxic response of ginbuna crucian carp. We considered non-specific cytotoxic receptor protein-1 (NCCRP-1) as candidate molecule for parasite recognition. We detected NCCRP-1 protein in CD8+ cells and the thymus as well as in other cells and tissues. CD8+ cells expressed mRNA for NCCRP-1, Jak2, and T cell-related molecules. In addition, treatment with a peptide containing the presumed antigen recognition site of ginbuna NCCRP-1 significantly inhibited the cytotoxic activity of CD8+ cells against the parasites. The cytotoxic activity of CD8+ cells was significantly inhibited by treatment with the JAK1/2 inhibitor baricitinib. These results suggest that teleost CTLs recognize I. multifiliis through NCCRP-1 and are activated by JAK/STAT signaling.


Asunto(s)
Carpas , Parásitos , Animales , Carpas/genética , Receptores de Antígenos/química , Linfocitos T CD8-positivos
3.
J Fish Dis ; 46(4): 357-367, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36606558

RESUMEN

Ichthyophthiriasis, caused by the parasitic ciliate Ichthyophthirius multifiliis (Ich), is considered one of the most harmful diseases affecting freshwater fish globally. It can cause mass mortalities of fish in intensive farming systems. In such systems, it is thus necessary to detect and quantify the number of Ich in the water so that control measures can be implemented before Ichthyophthiriasis breaks out. In recent years, molecular diagnostic methods have become increasingly important in aquaculture. Real-time quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) have become robust assays for detecting pathogens. In this study, a set of specific primers and a TaqMan-minor groove binder probe targeting the small-subunit rDNA (SSU rDNA) of Ich were developed. They were used in qPCR and ddPCR assays to compare the performance of these two different methods in quantitatively detecting Ich. After optimizing the reaction conditions, both qPCR and ddPCR assays were found to have high linearity and quantitative correlations for standard plasmid DNA. When used for the detection of Ich eDNA in water samples, the qPCR assay had a wider detection range, making it a suitable method to screen for the prevalence of Ichthyophthiriasis. However, the ddPCR approach had higher sensitivity, which would help provide advance notice of the disease in complex water environmental samples.


Asunto(s)
Enfermedades de los Peces , Hymenostomatida , Animales , Enfermedades de los Peces/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Agua Dulce , Agua , ADN Ribosómico
4.
Fish Shellfish Immunol ; 126: 1-11, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35595060

RESUMEN

METHODS: of supporting mucosal immune barrier integrity and prevention of some pathogenic infections in aquatic species, are key areas of active study, often focusing on feed additives. The objectives of this study were to explore the effects of feeding cMOS (concentrated mannan oligosaccharide) on the gill and skin mucosal barriers of goldfish (Carassius auratus Linnaeus) and evaluate health status during Ichthyophthirius multifiliis infection. After feeding the cMOS-containing diet for 60 days, Hematoxylin and eosin (H&E) staining showed greater length of gill lamella and thicker dermal dense layer, while Alcian Blue and Periodic acid-Schiff (AB-PAS) staining showed higher numbers of mucin cells in cMOS fed fish. Chemical analysis showed that fish fed cMOS had greater enzyme activity of lysozyme (LZM) and alkaline phosphatase (AKP) in gill and skin tissues, while qRT-PCR revealed higher expression of Muc-2 and IL-1ß, as well as lower expression of IL-10. After Ichthyophthirius multifiliis challenge, goldfish fed the cMOS diet had lower mortality and infection rates, as well as fewer visible white spots on the body surfaces. Histologically, the gill and skin of these fish presented less tissue damage and fewer parasites, and had a greater number of mucus cells. In addition, the expression of Muc-2 and IL-10 were notably higher while the expression of IL-1ß was significantly lower in cMOS fed goldfish than control fed fish. In this study, cMOS fed goldfish had stronger immune barrier function of skin and gill mucous, and better survival following Ichthyophthirius multifiliis infection.


Asunto(s)
Enfermedades de los Peces , Hymenostomatida , Animales , Branquias , Carpa Dorada , Inmunidad , Interleucina-10
5.
Fish Shellfish Immunol ; 121: 305-315, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35031476

RESUMEN

Ichthyophthirius multifiliis is a protozoan ciliate that causes white spot disease (also known as ichthyophthiriasis) in freshwater fish. Holland's spinibarbel (Spinibarbus hollandi) was less susceptible to white spot disease than grass carp (Ctenopharyngodon Idella). In this study, grass carp and Holland's spinibarbel are infected by I. multifiliis and the amount of infection is 10,000 theronts per fish. All grass carp died within 12 days after infection, and the survival rate of Holland's spinibarbel was more than 80%. In order to study the difference in sensitivity of these two fish species to I. multifiliis, transcriptome analysis was conducted using gill, skin, liver, spleen and head kidney of Holland's spinibarbel and grass carp at 48 h post-infection with I. multifiliis. A total of 489,296,696 clean reads were obtained by sequencing. A total of 105 significantly up-regulated immune-related genes were obtained by Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in grass carp. Cluster of differentiation 40 (CD40), cluster of differentiation 80 (CD 80), tumor necrosis factor-alpha (TNF-α), toll-like receptor 4 (TLR-4), interleukin 1 beta (IL-1ß) and other inflammatory-related genes in grass carp were enriched in the cytokine-cytokine receptor interaction pathway and toll-like receptor pathway. In Holland's spinibarbel, a total of 46 significantly up-regulated immune-related genes were obtained by GO classification and KEGG pathway enrichment analysis. Immune-related genes, such as Immunoglobin heavy chain (IgH), cathepsin S (CTSS), complement C1q A chain (C1qA), complement component 3 (C3) and complement component (C9) were enriched in phagosome pathway, lysosome pathway and complement and coagulation concatenation pathway. C3 was significantly up-regulated in gill and head kidney. Fluorescence in situ hybridization (FISH) showed that the C3 gene was highly expressed in gill tissue of Holland's spinibarbel infected with I. multifiliis. A small amount of C3 gene was expressed in the gill arch of grass carp after infected with I. multifiliis. In conclusion, the severe inflammatory response in vivo after infecting grass carp with I. multifiliis might be the main cause of the death of grass carp. The extrahepatic expression of the gene of Holland's spinibarbel might play an important role in the immune defense against I. multifiliis.


Asunto(s)
Carpas , Infecciones por Cilióforos , Cyprinidae , Enfermedades de los Peces , Hymenostomatida , Animales , Carpas/genética , Carpas/parasitología , Infecciones por Cilióforos/genética , Infecciones por Cilióforos/veterinaria , Cyprinidae/genética , Cyprinidae/parasitología , Enfermedades de los Peces/parasitología , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Hymenostomatida/patogenicidad , Países Bajos
6.
Fish Shellfish Immunol ; 118: 385-395, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34563671

RESUMEN

CD79a and CD79b heterodimers are important components that consist of B cell receptor compound, which play a crucial role in transduction activation signal of the antigen binding BCR, and B cell development and antibody production. In order to investigate the characters and potential functions of CD79a and CD79b in rainbow trout (Oncorhynchus mykiss), we firstly cloned and analyzed the expression of CD79a and CD79b and found that the cDNA sequences of CD79a and CD79b both contained open reading frame of 711 and 645 bp in length for encoding the protein of 237 and 215 amino acid residues, respectively. The predicted amino acid sequences from trout were highly conserved with those of other teleost fishes in structure. Phylogenetic tree was constructed to analyze the evolutionary relationship between the trout and other known species, the result indicated that CD79a and CD79b of trout clustered at high bootstrap values with Salmo salar. Moreover, three trout infection models with F. columnare G4, I. multifiliis and infectious hematopoietic necrosis virus (IHNV) were constructed, which resulted in morphological changes and serious lesions in skin and gills. Importantly, the high expression of CD79a and CD79b occurred in skin, gills, and followed by head kidney in response to bacterial, parasitic, and viral infection, as its expression was closely related to that of Igs. Our findings indicated that CD79a and CD79b play vital roles in both systemic and mucosal immune responses of rainbow trout during bacterial, parasitic, and viral infection, which will contribute to explore the roles of CD79 subunits in B cell signaling during ontogeny and disease.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Parásitos , Virosis , Animales , Bacterias , Clonación Molecular , Oncorhynchus mykiss/genética , Filogenia
7.
J Fish Dis ; 44(7): 881-892, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33560558

RESUMEN

Target identification is important for drug discovery. Unfortunately, no drug targets have been found in Ichthyophthirius multifiliis until now and further limited development of the novel drug for Ichthyophthiriasis. In this study, an iTRAQ-based quantitative proteomic analysis was used to find the target of malachite green (MG), exhibiting greater efficacy than the existing drugs, against I. multifiliis trophonts in situ. We also verified the proteomic results by RT-qPCR, TEM and cell apoptosis assay. Our results showed that major variations in protein abundance were found among many of the ribosome proteins, indicating ribosome might be a candidate target. Furthermore, GO and KEGG pathway analyses of differentially expressed proteins (DEPs) revealed that ribosome and PI3K-Akt signalling pathway were remarkably enriched. Taken together, the above DEPs were also verified by RT-qPCR and morphological observations. This study provides insights into the key proteins enriched in PI3K-Akt signal pathway and ribosome pathway as potential targets of MG killing I. multifiliis, which could be served as targets for other less toxic drugs and be tested as potential treatments for I. multifiliis.


Asunto(s)
Antiinfecciosos Locales/uso terapéutico , Carpas , Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/tratamiento farmacológico , Hymenostomatida/efectos de los fármacos , Colorantes de Rosanilina/uso terapéutico , Animales , Antiinfecciosos Locales/farmacología , Infecciones por Cilióforos/tratamiento farmacológico , Infecciones por Cilióforos/parasitología , Enfermedades de los Peces/parasitología , Proteómica , Colorantes de Rosanilina/farmacología
8.
Fish Shellfish Immunol ; 101: 176-185, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32244029

RESUMEN

Emerging evidence suggests that bitter and sweet Taste receptors (TRs) in the airway are important sentinels of innate immunity. TRs are G protein-coupled receptors that trigger downstream signaling cascades in response to activation of specific ligands. Among them, the T1R family consists of three genes: T1R1, T1R2, and T1R3, which function as heterodimers for sweet tastants and umami tastants. While the other TRs family components T2Rs function as bitter tastants. To understand the relationship between TRs and mucosal immunity in teleost, here, we firstly identified and analyzed the molecular characteristics of three TRs (T1R1, T1R3, and T2R4) in rainbow trout (Oncorhynchus mykiss). Secondly, by quantitative real-time PCR (qPCR), we detected the mRNA expression levels of T1R1, T1R3 and T2R4 and found that the three genes could be tested in all detected tissues (pharynx, buccal cavity, tongue, nose, gill, eye, gut, fin, skin) and the expression levels of T1R3 and T2R4 were higher in buccal mucosa (BM) and pharyngeal mucosa (PM) compare to other tissues. It may suggest that T1R3 and T2R4 play important roles in BM and PM. Then, to analyses the changes of expression levels of the three genes in rainbow trout infected with pathogens, we established three infection models Flavobacterium columnare (F. cloumnare), infectious hematopoietic necrosis virus (IHNV) and Ichthyophthirius multifiliis (Ich). Subsequently, by qPCR, we detected the expression profiles of TRs in the gustatory tissues (BM, PM and skin) of rainbow trout after infection with F. cloumnare, IHNV, and Ich, respectively. We found that under three different infection models, the expression of the T1R1, T1R3 and T2R4 showed their own changes in mRNA levels. And the expression levels of the T1R1, T1R3 and T2R4 changed significantly at different time points in response to three infection models, respectively, suggesting that TRs may be associated with mucosal immunity.


Asunto(s)
Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Inmunidad Mucosa/genética , Oncorhynchus mykiss/genética , Secuencia de Aminoácidos , Animales , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/virología , Proteínas de Peces/inmunología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/microbiología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium/fisiología , Perfilación de la Expresión Génica/veterinaria , Hymenostomatida/fisiología , Virus de la Necrosis Hematopoyética Infecciosa/fisiología , Oncorhynchus mykiss/inmunología , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Alineación de Secuencia/veterinaria
9.
Fish Shellfish Immunol ; 86: 486-496, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30513380

RESUMEN

The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.


Asunto(s)
Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Oncorhynchus mykiss , Transcriptoma/inmunología , Inmunidad Adaptativa/genética , Animales , Infecciones por Cilióforos/genética , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Perfilación de la Expresión Génica/veterinaria , Branquias/inmunología , Hymenostomatida/fisiología , Inmunidad Innata/genética , Transcriptoma/genética
10.
Fish Shellfish Immunol ; 86: 1139-1150, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30599252

RESUMEN

Teleost fish are the most primitive bony vertebrates that contain immunoglobulin (Ig). Although teleost Ig is known to be important during tetrapod evolution and comparative immunology, little is known about the genomic organization of the immunoglobulin heavy-chain (IgH) locus. Here, three Ig isotype classes, IgM, IgD and IgT, were firstly identified in dojo loach (Misgurnus anguillicaudatus), and the IgH locus covering τ, µ and δ genes was also illustrated. Variable (V) gene segments lie upstream of two tandem diversity (D), joining (J) and constant (C) clusters and the genomic organization of the IgH locus presented as Vn-Dn-Jn-Cτ-Dn-Jn-Cµ-Cδ, similar to some other teleost fish. However, unlike some other teleost fish, ten VH, ten D and nine J genes were observed in this locus, which suggest teleost Igs might be conserved and diverse. Thus, it would be interesting to determine how Igs divide among themselves in immune response to different antigens. To address this hypothesis, we have developed three models by bath infection with parasitic, bacterial and fungal pathogens, respectively. We found that IgM, IgD and IgT were highly upregulated in the head kidney and spleen after infection with Ichthyophthirius multifiliis (Ich), suggesting that the three Igs might participate in the systemic immune responses to Ich. Moreover, the high expression of IgT in mucosal tissue, such as skin or gills, appeared after being infected with three different pathogens infection, respectively, in which the expression of IgT increased more rapidly in response to Ich infection. Interestingly, the expression of IgD showed a higher increase in spleen and head kidney being challenged with fungi, suggesting that IgD might play an important role in antifungal infection.


Asunto(s)
Cipriniformes/genética , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/parasitología , Cadenas Pesadas de Inmunoglobulina/genética , Secuencia de Aminoácidos , Animales , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/veterinaria , Enfermedades de los Peces/inmunología , Infecciones por Flavobacteriaceae/inmunología , Infecciones por Flavobacteriaceae/veterinaria , Flavobacterium , Hymenostomatida , Isotipos de Inmunoglobulinas/genética , Infecciones/inmunología , Infecciones/veterinaria , Saprolegnia , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA