Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Toxicol Environ Health A ; 87(20): 811-823, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-38967335

RESUMEN

During the key event 1 of skin sensitization defined as covalent binding or haptenization of sensitizer to either thiol or amino group of skin proteins, a sensitizer not only covalently binds with skin proteins but also interacts with nucleophilic small molecules such as glutathione (GSH). Although GSH would not be directly associated with skin sensitization, this interaction may be applied for developing an alternative test method simulating key event 1, haptenization. Thus, the aim of the present study was to examine whether N-acetyl-L-cysteine methyl ester (NACME), a thiol-containing compound, was selected as an electron donor to determine whether NACME reacted with sensitizers. Following a reaction of NACME with a sensitizer in a 96-well plate, the remaining NACME was measured spectrophotometrically using 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB). Following the optimization of test conditions with two different vehicles, such as acetonitrile (ACN) and dimethyl sulfoxide (DMSO), 64 test chemicals were tested to determine the predictive capacity of current NACME test method. The results obtained showed, the predictive capacity of 94.6% sensitivity, 88.9% specificity, and 92.2% accuracy utilizing DMSO as a vehicle with a cutoff NACME depletion of 5.85%. The three parameters were also over 85% in case of ACN. These values were comparable to or better than other OECD-approved test methods. Data demonstrated that a simple thiol-containing compound NACME might constitute as a reliable candidate for identifying reactive skin sensitizers, and that this method be considered as practical method as a screening tool for assessing a chemical's tendency to initiate skin sensitization.


Asunto(s)
Acetilcisteína , Acetilcisteína/análogos & derivados , Espectrofotometría , Humanos , Piel/efectos de los fármacos , Ácido Ditionitrobenzoico/química , Haptenos/toxicidad , Haptenos/química , Alternativas a las Pruebas en Animales/métodos , Animales
2.
Arch Toxicol ; 97(9): 2453-2461, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37414884

RESUMEN

The in chemico direct peptide reactivity assay (DPRA) is validated to assess protein reactivity of chemical compounds, relating to the molecular initiating event of skin sensitization induction. According to OECD TG 442C, the DPRA is technically applicable to test multi-constituent substances and mixtures of known composition, even though limited experimental data are publicly available. First, we assessed the DPRA's predictive capability for individual substances, but at concentrations other than the recommended 100 mM, i.e., based on the LLNA EC3 concentration (Experiment A). Next, the applicability of the DPRA to test unknown mixtures was assessed (Experiment B). Here, the complexity of unknown mixtures was reduced to mixtures containing either two known skin sensitizers with varying potencies, or a combination of a skin sensitizer with a non-skin sensitizer, or multiple non-sensitizers. Experiments A and B revealed that one extremely potent sensitizer (oxazolone) was incorrectly classified as a non-sensitizer when tested at its low EC3 concentration of 0.4 mM instead of the suggested molar excess conditions of 100 mM (Experiments A). For binary mixtures tested in experiments B, the DPRA was able to distinguish all skin sensitizers and the strongest skin sensitizer in the mixture was determinant for the overall peptide depletion of a sensitizer. In conclusion, we confirmed that the DPRA test method can be used efficiently for well-known characterized mixtures. However, when deviating from the recommended testing concentration of 100 mM, caution should be taken in case of negative results, limiting the DPRA's applicability for mixtures of unknown composition.


Asunto(s)
Alternativas a las Pruebas en Animales , Péptidos , Animales , Péptidos/química , Alternativas a las Pruebas en Animales/métodos
3.
Arch Toxicol ; 97(9): 2441-2451, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37466788

RESUMEN

It is well established that chemical-peptide conjugation represents the molecular initiating event (MIE) in skin sensitization. This MIE has been successfully exploited in the development of in chemico peptide reactivity assays, with the Direct Peptide Reactivity Assay (DPRA) being validated as a screening tool for skin sensitization hazard as well as an OECD test guideline. This test relies on the use of a high-performance liquid chromatography/ultraviolet detection method to quantify chemical-peptide conjugation through measurement of the depletion of two synthetic peptides containing lysine or cysteine residues, which is labor-intensive and time-consuming. To improve assay throughput, sensitivity, and accuracy, we have developed a spectrophotometric assay for skin sensitization potential based on MIE measurement-the ProtReact assay. ProtReact is also a cheaper, faster, simpler, and more accessible alternative for the DPRA, giving comparable results. A set of 106 chemicals was tested with ProtReact and the peptide depletion values compared with those reported for the DPRA. The predictive capacity of both assays was evaluated with human reference data. ProtReact and DPRA assays show similar predictive capacities for hazard identification (75% and 74%, respectively), although ProtReact showed a higher specificity (86% versus 74%, respectively) and lower sensitivity (69% versus 73%). Overall, the results show that ProtReact assay described here represents an efficient, economic, and accurate assay for the prediction of skin sensitization potential of chemical haptens.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Piel , Humanos , Animales , Péptidos/química , Cisteína/química , Cromatografía Líquida de Alta Presión/métodos , Alternativas a las Pruebas en Animales/métodos
4.
J Appl Toxicol ; 42(7): 1159-1167, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34993977

RESUMEN

The amino acid derivative reactivity assay (ADRA) is an alternative method for evaluating key event 1 (KE-1) in the skin sensitization mechanism included in OECD TG442C (OECD, 2021). Recently, we found that ADRA with a 4-mM test chemical solution had a higher accuracy than the original ADRA (1 mM). However, ADRA (4 mM) has yet to be evaluated using integrated approaches to testing and assessment (IATA), a combination of alternative methods for evaluating KE. In this study, the sensitization potency of three defined approaches (DAs) using ADRA (4 mM) as KE-1 was predicted and compared with those of two additional ADRAs or direct peptide reactivity assay (DPRA): (i) "2 out of 3" approach, (ii) "3 out of 3" approach, and (iii) integrated testing strategy (ITS). In the hazard identification of chemical sensitizers, the accuracy of human data and local lymph node assay (LLNA) remained almost unchanged among the three approaches evaluated. Potency classifications for sensitization were predicted with the LLNA and human data sets using ITS. The potency classifications for the sensitization potency prediction accuracy of LLNA data using any alternative method were almost unchanged, at approximately 70%, and those with ITS were not significantly different. When ITS was performed using DPRA, the prediction accuracy was approximately 73% for human data, which was similar to that of the LLNA data; however, the accuracy tended to increase for all ADRA methods. In particular, when ITS was performed using ADRA (4 mM), the prediction accuracy was approximately 78%, which proved to be a practical level.


Asunto(s)
Alternativas a las Pruebas en Animales , Dermatitis Alérgica por Contacto , Aminoácidos/química , Alternativas a las Pruebas en Animales/métodos , Animales , Bioensayo/métodos , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/metabolismo , Humanos , Ensayo del Nódulo Linfático Local , Compuestos Orgánicos , Péptidos/química , Piel/metabolismo
5.
J Toxicol Environ Health A ; 84(19): 783-799, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34196263

RESUMEN

A convenient fluorometrical test method to identify skin sensitizers in chemico was developed using reactivity with glutathione (GSH), a low molecular weight endogenous substance. Following incubation of test chemicals with GSH, the remaining GSH was quantitated fluorometrically by using monobromobimane (mBBr), a thiol-detecting agent, for determining % depletion of this endogenous substance by test chemicals. The experimental conditions optimized were: (1) reactivity of thiol compounds including GSH with mBBr, (2) effects of vehicles on reactivity, (3) molar ratios of GSH to test chemicals, and (4) reactivity of endogenous substance with test substances under different incubation times. When an optimized condition with DMSO as a vehicle for test chemicals and in 1:60 ratio for 24 hr at 4°C was applied to classify 48 well-known skin sensitizers and non-sensitizers, the predictive capacity was as follows: 88.2% sensitivity, 78.6% specificity, and 85.4% accuracy with 95.8% consistency of three trials when 10.3% depletion of GSH was used as a cutoff value. Because the present method employed relatively simple GSH as an acceptor for sensitizers and/or a relatively convenient fluorometric detection system in 96-well plates for a high throughput test, it would be a useful test tool for screening skin sensitization potential of test chemicals.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Compuestos Bicíclicos con Puentes/química , Fluorometría/métodos , Glutatión/análisis , Piel/efectos de los fármacos , Piel/fisiopatología
6.
J Appl Toxicol ; 41(2): 303-329, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124715

RESUMEN

The Amino acid Derivative Reactivity Assay (ADRA) is a convenient and effective in chemico test method for assessing covalent binding of test chemicals with protein-derived nucleophilic reagents as a means of predicting skin sensitization potential. Although the original molar-concentration approach to ADRA testing was not suitable for testing multiconstituent substances of an unknown composition, a weight-concentration approach that is suitable for such substances was developed, which also led to the realization that test chemical solutions prepared to molar concentrations higher than the original 1 mM would reduce false negative results as well as enhance predictive capacity. The present study determined an optimal molar-concentration that achieves even higher predictive capacity than the original ADRA. Eight chemicals that were false negatives when tested with 1 mM test chemical solutions were retested with test chemical solutions between 2 and 5 mM, which showed 4 mM to be the optimal molar-concentration for ADRA testing. When 82 chemicals used in the original development were retested with 4 mM test chemical solutions, false negative results were reduced by four. When an additional 85 chemicals used to evaluate the weight-concentration approach to ADRA were retested, the results essentially replicated those obtained with 0.5 mg/ml test chemical solutions and gave 10 fewer false negatives than original ADRA with 1 mM solutions. A comparison of these results for 136 chemicals showed that ADRA testing with 4 mM solutions achieved a four percentage point improvement in accuracy over original ADRA and a two percentage point improvement over DPRA testing.


Asunto(s)
Alérgenos/química , Alérgenos/toxicidad , Aminoácidos/análisis , Alternativas a las Pruebas en Animales , Bioensayo/métodos , Dermatitis Alérgica por Contacto/diagnóstico , Piel/efectos de los fármacos , Animales , Humanos , Valor Predictivo de las Pruebas
7.
J Appl Toxicol ; 41(10): 1634-1648, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33636015

RESUMEN

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing that focuses on protein binding. The ADRA is a skin sensitization test that solves problems associated with the direct peptide reactivity assay. However, when utilizing the ADRA to evaluate highly hydrophobic substances with octanol/water partition coefficients (logKow) of >6, the test substances may not dissolve in the reaction solution, which can prevent the accurate assessment of skin sensitization. Therefore, we developed the ADRA-organic solvent (ADRA-OS) reaction system, which is a novel skin sensitization test that enables the assessment of highly hydrophobic substances with a logKow of >6. We discovered that the organic solvent ratio, the triethylamine concentration, and the ethylenediaminetetraacetic acid disodium salt dihydrate concentration participate in reactions with the nucleophile N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and sensitizers that are used in ADRA and in stabilizing NAC. Thus, we determined the optimal reaction composition of the ADRA-OS according to L9 (33 ) orthogonal array experiments. Using this test, we assessed 14 types of highly hydrophobic substances. When we compared the results with ADRA, we found that ADRA-OS reaction system has high solubility for highly hydrophobic substances and that it has a high predictive capacity (sensitivity: 63%, specificity: 100%, accuracy: 79%). The implication of the results is that the novel ADRA-OS reaction system should provide a useful method for assessing the skin sensitization of highly hydrophobic substances with a logKow of >6.


Asunto(s)
Aminoácidos/metabolismo , Dermatitis por Contacto/diagnóstico , Interacciones Hidrofóbicas e Hidrofílicas , Nitrobencenos/metabolismo , Nitrobencenos/toxicidad , Piel/efectos de los fármacos , Piel/metabolismo , Alternativas a las Pruebas en Animales/métodos , Animales , Bioensayo/métodos , Solventes/química
8.
J Appl Toxicol ; 40(6): 843-854, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32052484

RESUMEN

The amino acid derivative reactivity assay (ADRA), which is an in chemico alternative to the use of animals in testing for skin sensitization potential, offers significant advantages over the direct peptide reactivity assay (DPRA) in that it utilizes nucleophilic reagents that are sensitive enough to be used with test chemical solutions prepared to concentrations of 1 mm, which is one-hundredth that of DPRA. ADRA testing of hydrophobic or other poorly soluble compounds requires that they be dissolved in a solvent consisting of dimethyl sulfoxide (DMSO) and acetonitrile. DMSO is known to promote dimerization by oxidizing thiols, which then form disulfide bonds. We investigated the extent to which DMSO oxidizes the cysteine-derived nucleophilic reagents used in both DPRA and ADRA and found that oxidation of both N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and cysteine peptide increases as the concentration of DMSO increases, thereby lowering the concentration of the nucleophilic reagent. We also found that use of a solvent consisting of 5% DMSO in acetonitrile consistently lowered NAC concentrations by about 0.4 µm relative to the use of solvents containing no DMSO. We also tested nine sensitizers and four nonsensitizers having different sensitization potencies to compare NAC depletion with and without 5% DMSO and found that reactivity was about the same with either solvent. Based on the above, we conclude that the use of a solvent containing 5% DMSO has no effect on the accuracy of ADRA test results. We plan to review and propose revisions to OECD Test Guideline 442C based on the above investigation.


Asunto(s)
Alternativas a las Pruebas en Animales , Cisteína/química , Dimetilsulfóxido/química , Irritantes/toxicidad , Pruebas de Irritación de la Piel , Solventes/química , Acetonitrilos/química , Cisteína/análogos & derivados , Irritantes/química , Oxidación-Reducción , Medición de Riesgo
9.
J Appl Toxicol ; 39(2): 191-208, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30221369

RESUMEN

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing for skin sensitization that solves certain problems found in the use of the direct peptide reactivity assay (DPRA). During a recent validation study conducted at multiple laboratories as part of the process to include ADRA in an existing OECD test guideline, one of the nucleophilic reagents used in ADRA-N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC)-was found to be susceptible to oxidation in much the same manner that the cysteine peptide used in DPRA was. Owing to this, we undertook a study to clarify the cause of the promotion of NAC oxidation. In general, cysteine and other chemicals that have thiol groups are known to oxidize in the presence of even minute quantities of metal ions. When metal ions were added to the ADRA reaction solution, Cu2+ promoted NAC oxidation significantly. When 0.25 µm of EDTA was added in the presence of Cu2+ , NAC oxidation was suppressed. Based on this, we predicted that the addition of EDTA to the NAC stock solution would suppress NAC oxidation. Next, we tested 82 chemicals used in developing ADRA to determine whether EDTA affects ADRA's ability to predict sensitization. The results showed that the addition of EDTA has virtually no effect on the reactivity of NAC with a test chemical, yielding an accuracy of 87% for predictions of skin sensitization, which was roughly the same as ADRA.


Asunto(s)
Acetilcisteína/química , Alternativas a las Pruebas en Animales/métodos , Bioensayo/métodos , Ácido Edético/química , Alérgenos/administración & dosificación , Alérgenos/química , Alérgenos/toxicidad , Animales , Cobre/química , Compuestos Férricos/química , Modelos Químicos , Oxidación-Reducción , Piel/efectos de los fármacos , Piel/metabolismo
10.
Crit Rev Toxicol ; 48(5): 344-358, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29474128

RESUMEN

Cosmetics Europe, the European Trade Association for the cosmetics and personal care industry, is conducting a multi-phase program to develop regulatory accepted, animal-free testing strategies enabling the cosmetics industry to conduct safety assessments. Based on a systematic evaluation of test methods for skin sensitization, five non-animal test methods (DPRA (Direct Peptide Reactivity Assay), KeratinoSensTM, h-CLAT (human cell line activation test), U-SENSTM, SENS-IS) were selected for inclusion in a comprehensive database of 128 substances. Existing data were compiled and completed with newly generated data, the latter amounting to one-third of all data. The database was complemented with human and local lymph node assay (LLNA) reference data, physicochemical properties and use categories, and thoroughly curated. Focused on the availability of human data, the substance selection resulted nevertheless resulted in a high diversity of chemistries in terms of physico-chemical property ranges and use categories. Predictivities of skin sensitization potential and potency, where applicable, were calculated for the LLNA as compared to human data and for the individual test methods compared to both human and LLNA reference data. In addition, various aspects of applicability of the test methods were analyzed. Due to its high level of curation, comprehensiveness, and completeness, we propose our database as a point of reference for the evaluation and development of testing strategies, as done for example in the associated work of Kleinstreuer et al. We encourage the community to use it to meet the challenge of conducting skin sensitization safety assessment without generating new animal data.


Asunto(s)
Cosméticos/efectos adversos , Bases de Datos Factuales , Dermatitis Alérgica por Contacto/inmunología , Piel/inmunología , Alternativas a las Pruebas en Animales/métodos , Cosméticos/farmacología , Dermatitis Alérgica por Contacto/etiología , Humanos , Piel/efectos de los fármacos
11.
Regul Toxicol Pharmacol ; 98: 209-214, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30056248

RESUMEN

In the context of a larger testing programme that aimed at assessing the skin sensitisation potential of functional polysiloxanes and silanes, this investigation complements the available in vitro and in vivo data with data in the SENS-IS assay, a human in vitro 3D skin-based model. The SENS-IS assay allowed testing of all functional polysiloxanes and silanes without any solubility issues or limitations related to the multiconstituent nature of the commercial grade test substances. It appeared to encompass skin metabolism, a factor which we considered important for the skin sensitisation hazard assessment particularly of aminofunctionalised siloxanes and silanes. These three technical aspects posed significant challenges in the first part of the in vitro programme with the OECD-validated in vitro assays. The SENS-IS assay delivered promising results for this group of substances. On its own, it was the best performing model, as it did not pose any technical issues with the assay and it matched all in vivo outcomes. Considering its performance and avoidance of any limitations due to lack of solubility or chemical composition aspects, we concluded that the SENS-IS assay to be a suitable starting point for an integrated testing strategy for skin sensitisation for the group of functional polysiloxanes and silanes.


Asunto(s)
Alérgenos/toxicidad , Bioensayo , Haptenos/toxicidad , Irritantes/toxicidad , Silanos/toxicidad , Siloxanos/toxicidad , Dermatitis Alérgica por Contacto , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo
12.
J Appl Toxicol ; 38(7): 1047-1053, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29572967

RESUMEN

Skin sensitization risk assessment of botanical ingredients is necessary for consumers' protection and occupational hazard identification. There are currently very few available alternative methods that can assist in the evaluation of complex mixtures. Chemical methods can provide essential information in a timely manner and thus help to reduce the need for in vivo testing, and they can complement and facilitate targeted in vitro assays. In the present work, the applicability of the high-throughput screening with dansyl cysteamine (DCYA) method for the systematic evaluation of skin sensitization of complex botanicals was explored. Botanical ingredients of four unrelated plant species were obtained and tested with the high-throughput fluorescence method at three concentrations. To illustrate the minimal matrix effects of the tested extracts on the developed method, the least DCYA-reactive extract (Rosa canina) was spiked with known sensitizers at different concentrations. The data obtained from the four plant extracts and the spiking experiments with known sensitizers, suggest that the high-throughput screening-DCYA method can be successfully applied for estimating the skin sensitization potential of complex botanical matrices. This is the first report of an attempt to develop a versatile in chemico method for the rapid detection of reactive skin sensitizers in complex botanical extracts, which could complement the battery of existing validated, non-animal methods.


Asunto(s)
Alternativas a las Pruebas en Animales/métodos , Dermatitis Alérgica por Contacto/etiología , Ensayos Analíticos de Alto Rendimiento , Extractos Vegetales/toxicidad , Pruebas de Irritación de la Piel/métodos , Alternativas a las Pruebas en Animales/normas , Calendula , Calibración , Cinnamomum zeylanicum , Cisteamina/análogos & derivados , Cisteamina/química , Compuestos de Dansilo/química , Relación Dosis-Respuesta a Droga , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Magnolia , Extractos Vegetales/química , Estándares de Referencia , Medición de Riesgo , Rosa , Pruebas de Irritación de la Piel/normas , Espectrometría de Fluorescencia
13.
Toxicol Appl Pharmacol ; 318: 16-22, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28109818

RESUMEN

German chamomile is one of the most popular herbal ingredients used in cosmetics and personal care products. Allergic skin reactions following topical application of German chamomile have been occasionally reported, although it is not fully understood which of the chemical constituents is responsible for this adverse effect. In the present work, three candidate sensitizers were isolated from German chamomile based on activity-guided fractionation of chamomile extracts tested using the in vitro KeratinoSens™ assay. The compounds were identified as the polyacetylene tonghaosu (1), and both trans- and cis-glucomethoxycinnamic acids (2 and 3). These three compounds were classified as non- to weakly reactive using in chemico methods; however, aged tonghaosu was found to be more reactive when compared to freshly isolated tonghaosu. The polyacetylene (1) constituent was determined to be chemically unstable, generating a small electrophilic spirolactone, 1,6-dioxaspiro[4.4]non-3-en-2-one (4), upon aging. This small lactone (4) was strongly reactive in both in chemico HTS- and NMR-DCYA methods and further confirmed as a potential skin sensitizer by Local Lymph Node Assay (LLNA).


Asunto(s)
Flores , Matricaria/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/toxicidad , Piel/efectos de los fármacos , Administración Cutánea , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Manzanilla/toxicidad , Femenino , Ratones , Extractos Vegetales/química , Piel/metabolismo , Pruebas Cutáneas/métodos
14.
Toxicol Appl Pharmacol ; 289(2): 177-84, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26455772

RESUMEN

Skin sensitization is an important toxicological end-point in the risk assessment of chemical allergens. Because of the complexity of the biological mechanisms associated with skin sensitization, integrated approaches combining different chemical, biological and in silico methods are recommended to replace conventional animal tests. Chemical methods are intended to characterize the potential of a sensitizer to induce earlier molecular initiating events. The presence of an electrophilic mechanistic domain is considered one of the essential chemical features to covalently bind to the biological target and induce further haptenation processes. Current in chemico assays rely on the quantification of unreacted model nucleophiles after incubation with the candidate sensitizer. In the current study, a new fluorescence-based method, 'HTS-DCYA assay', is proposed. The assay aims at the identification of reactive electrophiles based on their chemical reactivity toward a model fluorescent thiol. The reaction workflow enabled the development of a High Throughput Screening (HTS) method to directly quantify the reaction adducts. The reaction conditions have been optimized to minimize solubility issues, oxidative side reactions and increase the throughput of the assay while minimizing the reaction time, which are common issues with existing methods. Thirty-six chemicals previously classified with LLNA, DPRA or KeratinoSens™ were tested as a proof of concept. Preliminary results gave an estimated 82% accuracy, 78% sensitivity, 90% specificity, comparable to other in chemico methods such as Cys-DPRA. In addition to validated chemicals, six natural products were analyzed and a prediction of their sensitization potential is presented for the first time.


Asunto(s)
Alérgenos/química , Alérgenos/toxicidad , Alternativas a las Pruebas en Animales , Cisteamina/química , Compuestos de Dansilo/química , Dermatitis Alérgica por Contacto/etiología , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento , Pruebas de Irritación de la Piel/métodos , Animales , Calibración , Cisteamina/análogos & derivados , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Ensayo del Nódulo Linfático Local , Estándares de Referencia , Reproducibilidad de los Resultados , Medición de Riesgo , Pruebas de Irritación de la Piel/normas , Espectrometría de Fluorescencia , Factores de Tiempo , Flujo de Trabajo
15.
Toxicol Res ; 40(2): 203-213, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525138

RESUMEN

To initiate skin sensitization, haptens react with endogenous proteins. During this process, skin sensitizers react with small endogenous molecules containing thiol or amino groups. In this study, a simple spectrophotometric method to identify skin sensitizers in chemico was developed using the reactivity of glutathione (GSH) with test chemicals in a 96-well plate. To quantitate the remaining GSH following the reaction with a skin sensitizer, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) was employed. The optimized experimental conditions included the pH- and time-dependent stability of GSH, stability of derivatized products of GSH with optimal concentration and incubation time of DTNB, incubation time of GSH with the test chemicals, and molar ratios of GSH to the test chemicals. With the optimized conditions with both acetonitrile and DMSO as vehicles and incubation of GSH with test chemicals in 1:10 and 1:15 ratios for 24 h at 4 °C, 23 skin sensitizers and 23 non-sensitizers, based on the local lymph node assay, were tested to determine the predictive capacity of individual conditions. The best result showed a predictive capacity of 95.2% sensitivity, 91.3% specificity, and 93.2% accuracy, with 93.2% consistency in three trials, when 5.8% depletion was used as a cut-off value in 1:10 of GSH:test chemicals in DMSO. It would be an economic and useful screening tool for determining the skin sensitization potential of small molecules, because the present method employs simple endogenous GSH as an electron donor for sensitizers with a spectrophotometric detection system in 96-well plates, and because the method requires neither experimental animals nor cell cultures. Supplementary Information: The online version contains supplementary material available at 10.1007/s43188-023-00218-9.

16.
NanoImpact ; 35: 100523, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059749

RESUMEN

This manuscript discusses the challenges of applying New Approach Methodologies (NAMs) for safe by design and regulatory risk assessment of advanced nanomaterials (AdNMs). The authors propose a framework for Next Generation Risk Assessment of AdNMs involving NAMs that is aligned to the conventional risk assessment paradigm. This framework is exposure-driven, endpoint-specific, makes best use of pre-existing information, and can be implemented in tiers of increasing specificity and complexity of the adopted NAMs. The tiered structure of the approach, which effectively combines the use of existing data with targeted testing will allow safety to be assessed cost-effectively and as far as possible with even more limited use of vertebrates. The regulatory readiness of state-of-the-art emerging NAMs is assessed in terms of Transparency, Reliability, Accessibility, Applicability, Relevance and Completeness, and their appropriateness for AdNMs is discussed in relation to each step of the risk assessment paradigm along with providing perspectives for future developments in the respective scientific and regulatory areas.

17.
ALTEX ; 40(4): 606-618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37314401

RESUMEN

The assessment of skin sensitizing properties of chemicals has moved away from animal methods to new approach methodologies (NAM), guided by qualitative mechanistic understanding operationalized in an adverse outcome pathway (AOP). As with any AOP, the molecular initiating event (MIE) of covalent binding of a chemical to skin proteins is particularly important. This MIE has been modelled by several test methods by measuring the reaction of a test chemical with model peptides in chemico. To better understand the similarities and differences, a data repository with publicly available data for the direct peptide reactivity assay (DPRA), amino acid derivative reactivity assay (ADRA) and kinetic DPRA (kDPRA), as well as the peroxidase peptide reactivity assay (PPRA) was assembled. The repository comprises 260 chemicals with animal and human reference data, data on four relevant physicochemical properties, and between 161 to 242 test chemical results per test method. First, an overview of the experimental conditions of the four test methods was compiled allowing to readily compare them. Second, data analyses demonstrated that the test methods' predictivity was consistently reduced for poorly watersoluble chemicals and that the DPRA and ADRA can be used interchangeably. It also revealed new categorization thresholds for the DPRA and ADRA that are potentially relevant for strategic uses. In summary, a detailed assessment of reactivity test methods is provided, highlighting their potential and limitations. The results presented are intended to stimulate scientific discussion around test methods modelling the MIE of the skin sensitization AOP.


Asunto(s)
Alternativas a las Pruebas en Animales , Piel , Animales , Humanos , Alternativas a las Pruebas en Animales/métodos , Péptidos/química , Bioensayo/métodos
18.
Toxicol In Vitro ; 90: 105591, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37011770

RESUMEN

Consumer products containing botanicals or natural substances (BNS) are often preferred because there is a perception that 'natural' is safe. As with any product ingredient, a thorough safety assessment must be conducted, including a determination of skin sensitization potential. A modification of the Peroxidase Peptide Reactivity Assay (PPRA) was explored for screening BNS (B-PPRA) for their reactivity to a model cysteine peptide. The PPRA incorporates a horseradish peroxidase­hydrogen peroxide (+HRP/P) oxidation system for the activation of potential pre- and pro-haptens. BNS test materials contained <2% botanical constituent in either glycerin/water or propylene glycol/water. Stock solutions prepared in acetonitrile were diluted to 8 working concentrations. Direct reactivity was determined in reaction mixtures containing peptide and deferoxamine in potassium phosphate buffer. Enzyme-mediated reactivity determinations were performed with addition of +HRP/P. Initial studies demonstrated that results were reproducible and impact of carrier low. To determine the sensitivity of the assay, experiments were conducted with chamomile extract spiked with three sensitizers. Peptide depletion was observed in the +HRP/P reaction mixtures with isoeugenol spikes as low as 0.05%. The B-PPRA shows promise as a screening method for skin sensitization potential and could become part of a framework for the skin sensitization safety assessment of BNS.


Asunto(s)
Péptidos , Extractos Vegetales , Prueba de Estudio Conceptual , Extractos Vegetales/toxicidad , Piel , Peroxidasa
19.
Toxicol Res ; 38(4): 531-544, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36277359

RESUMEN

Skin sensitization is induced when certain chemicals bind to skin proteins. Direct peptide reactivity assay (DPRA) has been adopted by the OECD as an alternative method to evaluate skin sensitization by assessing a substance's reaction to two model peptides. A modified spectrophotometric method, Spectro-DPRA, can evaluate skin sensitization, in a high throughput fashion, to obviate some limitations of DPRA. Pre-validation studies for Spectro-DPRA were conducted to determine transferability and proficiency, within- and between-laboratory reproducibility, and predictive ability based on GLP principles at three laboratories (AP, KTR, and KCL). All laboratories confirmed high (> 90%) concordance for evaluating the sensitivity induced by ten chemical substances. The concordance among the three tests performed by each laboratory was 90% for AP, 100% for KTR, and 100% for KCL. The mean accuracy of the laboratories was 93.3% [compared to the standard operating procedure (SOP)]. The reproducibility among the three laboratories was as high as 86.7%; the accuracy was 86.7% for AP, 100% for KTR, and 86.7% for KCL (compared to the SOP). An additional 54 substances were assessed in 3 separate labs to verify the prediction rate. Based on the result, 29 out of 33 substances were classified as sensitizers, and 19 out of 21 identified as non-sensitizers; the corresponding sensitivity, specificity, and accuracy values were 87.9%, 90.5%, and 88.9%, respectively. These findings indicate that the Spectro-DPRA can address the molecular initiating event with improved predictability and reproducibility, while saving time and cost compared to DPRA or ADRA.

20.
J Toxicol Sci ; 47(3): 109-116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35236802

RESUMEN

A reactive oxygen species (ROS) assay is an in chemico photoreactivity test listed in ICH S10 guideline and OECD Test Guideline No. 495. We currently utilize the ROS assay to assess the photosafety of cosmetic ingredients. We have recently confronted a problem that there was an absorbance increase of blank assessing superoxide anion generation after irradiation, whereas this did not occur in the negative control (sulisobenzone), leading to a dissatisfaction of the acceptance criteria. Therefore, we aimed to investigate the causes and find countermeasures. No significant effects of impurities and manufacturer differences of sodium phosphate and DMSO on blank absorbance increases were observed. In contrast, when Cu2+ was added to the buffer, the increase of blank absorbance after irradiation did not occur. We then confirmed the dose-response relationship and found that adding 0.1 µM of Cu2+ (corresponding to 6 ppb of Cu2+) was sufficient in suppressing the blank absorbance increase, suggesting the need of Cu2+ supplementation to the buffer. Finally, we confirmed that the ROS assay using the buffer supplemented with 0.1 µM of Cu2+ obtained stable test results by using 17 proficiency chemicals listed in TG 495. Our results suggest that the modified ROS assay protocol would be useful for obtaining stable test results.


Asunto(s)
Bioensayo , Cosméticos , Cobre/toxicidad , Cosméticos/toxicidad , Especies Reactivas de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA