Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 909
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 36: 359-381, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29400985

RESUMEN

IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Factores de Edad , Animales , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Mucosa Intestinal/metabolismo , Unión Proteica
2.
Cell ; 184(19): 5015-5030.e16, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34407392

RESUMEN

Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.


Asunto(s)
Neoplasias del Colon/inmunología , Neoplasias del Colon/terapia , Progresión de la Enfermedad , Inmunidad Innata , Inmunoterapia , Linfocitos/inmunología , Animales , Comunicación Celular/efectos de los fármacos , Plasticidad de la Célula/efectos de los fármacos , Neoplasias del Colon/microbiología , Heces/microbiología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Innata/efectos de los fármacos , Inflamación/inmunología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Intestinos/patología , Linfocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Microbiota/efectos de los fármacos , Invasividad Neoplásica , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Donantes de Tejidos
3.
Cell ; 171(1): 201-216.e18, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28844693

RESUMEN

An emerging family of innate lymphoid cells (termed ILCs) has an essential role in the initiation and regulation of inflammation. However, it is still unclear how ILCs are regulated in the duration of intestinal inflammation. Here, we identify a regulatory subpopulation of ILCs (called ILCregs) that exists in the gut and harbors a unique gene identity that is distinct from that of ILCs or regulatory T cells (Tregs). During inflammatory stimulation, ILCregs can be induced in the intestine and suppress the activation of ILC1s and ILC3s via secretion of IL-10, leading to protection against innate intestinal inflammation. Moreover, TGF-ß1 is induced by ILCregs during the innate intestinal inflammation, and autocrine TGF-ß1 sustains the maintenance and expansion of ILCregs. Therefore, ILCregs play an inhibitory role in the innate immune response, favoring the resolution of intestinal inflammation.


Asunto(s)
Colitis/inmunología , Inmunidad Innata , Linfocitos/citología , Linfocitos/inmunología , Membrana Mucosa/citología , Membrana Mucosa/inmunología , Animales , Linfocitos B/inmunología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/inmunología
4.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051146

RESUMEN

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Asunto(s)
Colitis/inmunología , Disbiosis/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/inmunología , Células Mieloides/inmunología , Ubiquitinación/inmunología , Animales , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/inmunología , Intestinos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología
5.
Immunity ; 51(2): 367-380.e4, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31350179

RESUMEN

Epithelial barrier defects are implicated in the pathogenesis of inflammatory bowel disease (IBD); however, the role of microbiome dysbiosis and the cytokine networks orchestrating chronic intestinal inflammation in response to barrier impairment remain poorly understood. Here, we showed that altered Schaedler flora (ASF), a benign minimal microbiota, was sufficient to trigger colitis in a mouse model of intestinal barrier impairment. Colitis development required myeloid-cell-specific adaptor protein MyD88 signaling and was orchestrated by the cytokines IL-12, IL-23, and IFN-γ. Colon inflammation was driven by IL-12 during the early stages of the disease, but as the mice aged, the pathology shifted toward an IL-23-dependent inflammatory response driving disease chronicity. These findings reveal that IL-12 and IL-23 act in a temporally distinct, biphasic manner to induce microbiota-driven chronic intestinal inflammation. Similar mechanisms might contribute to the pathogenesis of IBD particularly in patients with underlying intestinal barrier defects.


Asunto(s)
Colitis/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Mucosa Intestinal/patología , Microbiota/inmunología , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Humanos , Inflamación , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-12/genética , Interleucina-23/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Quimera por Trasplante
6.
Immunity ; 49(6): 1132-1147.e7, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30552022

RESUMEN

Serrated adenocarcinoma, an alternative pathway for colorectal cancer (CRC) development, accounts for 15%-30% of all CRCs and is aggressive and treatment resistant. We show that the expression of atypical protein kinase C ζ (PKCζ) and PKCλ/ι was reduced in human serrated tumors. Simultaneous inactivation of the encoding genes in the mouse intestinal epithelium resulted in spontaneous serrated tumorigenesis that progressed to advanced cancer with a strongly reactive and immunosuppressive stroma. Whereas epithelial PKCλ/ι deficiency led to immunogenic cell death and the infiltration of CD8+ T cells, which repressed tumor initiation, PKCζ loss impaired interferon and CD8+ T cell responses, which resulted in tumorigenesis. Combined treatment with a TGF-ß receptor inhibitor plus anti-PD-L1 checkpoint blockade showed synergistic curative activity. Analysis of human samples supported the relevance of these kinases in the immunosurveillance defects of human serrated CRC. These findings provide insight into avenues for the detection and treatment of this poor-prognosis subtype of CRC.


Asunto(s)
Mucosa Intestinal/inmunología , Neoplasias Intestinales/inmunología , Isoenzimas/inmunología , Proteína Quinasa C/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Femenino , Humanos , Vigilancia Inmunológica/genética , Vigilancia Inmunológica/inmunología , Mucosa Intestinal/enzimología , Mucosa Intestinal/patología , Neoplasias Intestinales/enzimología , Neoplasias Intestinales/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
7.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36975381

RESUMEN

Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.


Asunto(s)
Metionina Adenosiltransferasa , S-Adenosilmetionina , Ratones , Animales , S-Adenosilmetionina/metabolismo , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Mucosa Intestinal/metabolismo , Metionina , Suplementos Dietéticos
8.
Eur J Immunol ; 54(2): e2350434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37971166

RESUMEN

The initiation of tissue remodeling following damage is a critical step in preventing the development of immune-mediated diseases. Several factors contribute to mucosal healing, leading to innovative therapeutic approaches for managing intestinal disorders. However, uncovering alternative targets and gaining mechanistic insights are imperative to enhance therapy efficacy and broaden its applicability across different intestinal diseases. Here we demonstrate that Nmes1, encoding for Normal Mucosa of Esophagus-Specific gene 1, also known as Aa467197, is a novel regulator of mucosal healing. Nmes1 influences the macrophage response to the tissue remodeling cytokine IL-4 in vitro. In addition, using two murine models of intestinal damage, each characterized by a type 2-dominated environment with contrasting functions, the ablation of Nmes1 results in decreased intestinal regeneration during the recovery phase of colitis, while enhancing parasitic egg clearance and reducing fibrosis during the advanced stages of Schistosoma mansoni infection. These outcomes are associated with alterations in CX3CR1+ macrophages, cells known for their wound-healing potential in the inflamed colon, hence promising candidates for cell therapies. All in all, our data indicate Nmes1 as a novel contributor to mucosal healing, setting the basis for further investigation into its potential as a new target for the treatment of colon-associated inflammation.


Asunto(s)
Colitis , Mucosa Intestinal , Animales , Ratones , Colitis/tratamiento farmacológico , Citocinas , Intestinos , Cicatrización de Heridas
9.
J Allergy Clin Immunol ; 153(5): 1169-1180, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38369030

RESUMEN

The epithelial lining of the respiratory tract and intestine provides a critical physical barrier to protect host tissues against environmental insults, including dietary antigens, allergens, chemicals, and microorganisms. In addition, specialized epithelial cells communicate directly with hematopoietic and neuronal cells. These epithelial-immune and epithelial-neuronal interactions control host immune responses and have important implications for inflammatory conditions associated with defects in the epithelial barrier, including asthma, allergy, and inflammatory bowel diseases. In this review, we discuss emerging research that identifies the mechanisms and impact of epithelial-immune and epithelial-neuronal cross talk in regulating immunity, inflammation, and tissue homeostasis at mucosal barrier surfaces. Understanding the regulation and impact of these pathways could provide new therapeutic targets for inflammatory diseases at mucosal sites.


Asunto(s)
Células Epiteliales , Homeostasis , Inflamación , Neuronas , Humanos , Homeostasis/inmunología , Animales , Inflamación/inmunología , Células Epiteliales/inmunología , Neuronas/inmunología , Comunicación Celular/inmunología , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Membrana Mucosa/inmunología
10.
J Infect Dis ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126324

RESUMEN

BACKGROUND: Clostridioides difficile is a major cause of nosocomial post-antibiotic infections, often resulting in severe inflammation and watery diarrhea. Previous studies have highlighted the role of C. difficile flagellin FliC in activating the TLR5 receptor and triggering NF-κB cell signaling, leading to the release of pro-inflammatory cytokines. However, the microRNAs (miRNAs) mediated regulatory mechanisms underlying the FliC-induced inflammatory response remain unclear. METHODS: miRNA expression levels were analyzed in Caco-2 intestinal epithelial cells following FliC stimulation, infection with the epidemic C. difficile R20291 strain, or its unflagellated mutant by RT-qPCR. Chemical inhibitors were used to block NF-κB signaling, and their impact on miR-27a-5p expression was assessed. Knockdown and overexpression experiments with miRNA inhibitor and mimic were conducted to elucidate miR-27a-5p's functional role in FliC-induced inflammatory responses. Additionally, a mouse model of C. difficile infection was treated with miR-27a-5p to evaluate its therapeutic potential in vivo. RESULTS: miR-27a-5p showed significant FliC-dependent overexpression in Caco-2 cells. Inhibition of NF-κB signaling suppressed miR-27a-5p overexpression. Knockdown of miR-27a-5p increased NF-κB activation and TNF-α and IL-8 cytokine production, while its overexpression had the opposite effect. Moreover, miR-27a-5p was overexpressed in the caeca of C. difficile-infected mice, correlating with intestinal IL-8 levels. Treatment of infected mice with miR-27a-5p mimic reduced disease severity and intestinal inflammation. CONCLUSION: miR-27a-5p plays a crucial role in regulating C. difficile-induced inflammation, suggesting its potential as a therapeutic target for controlling severe infection. These findings offer valuable insights into potential therapeutic strategies for managing C. difficile infection and associated inflammatory complications.

11.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G659-G675, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591132

RESUMEN

Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.


Asunto(s)
Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Leche , Probióticos , Animales , Femenino , Probióticos/farmacología , Masculino , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Ratones , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Colon/metabolismo , Colon/microbiología , Factores Sexuales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
12.
Gastroenterology ; 164(1): 89-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113570

RESUMEN

BACKGROUND & AIMS: Intestinal fibrosis is a significant complication of Crohn's disease (CD). Gut microbiota reactive Th17 cells are crucial in the pathogenesis of CD; however, how Th17 cells induce intestinal fibrosis is still not completely understood. METHODS: In this study, T-cell transfer model with wild-type (WT) and Areg-/- Th17 cells and dextran sulfate sodium (DSS)-induced chronic colitis model in WT and Areg-/- mice were used. CD4+ T-cell expression of AREG was determined by quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay. The effect of AREG on proliferation/migration/collagen expression in human intestinal myofibroblasts was determined. AREG expression was assessed in healthy controls and patients with CD with or without intestinal fibrosis. RESULTS: Although Th1 and Th17 cells induced intestinal inflammation at similar levels when transferred into Tcrßxδ-/- mice, Th17 cells induced more severe intestinal fibrosis. Th17 cells expressed higher levels of AREG than Th1 cells. Areg-/- mice developed less severe intestinal fibrosis compared with WT mice on DSS insults. Transfer of Areg-/- Th17 cells induced less severe fibrosis in Tcrßxδ-/- mice compared with WT Th17 cells. Interleukin (IL)6 and IL21 promoted AREG expression in Th17 cells by activating Stat3. Stat3 inhibitor suppressed Th17-induced intestinal fibrosis. AREG promoted human intestinal myofibroblast proliferation, motility, and collagen I expression, which was mediated by activating mammalian target of rapamycin and MEK. AREG expression was increased in intestinal CD4+ T cells in fibrotic sites compared with nonfibrotic sites from patients with CD. CONCLUSIONS: These findings reveal that Th17-derived AREG promotes intestinal fibrotic responses in experimental colitis and human patients with CD. Thereby, AREG might serve as a potential therapeutic target for fibrosis in CD.


Asunto(s)
Colitis , Enfermedad de Crohn , Animales , Humanos , Ratones , Anfirregulina/genética , Anfirregulina/metabolismo , Colitis/metabolismo , Colágeno/metabolismo , Enfermedad de Crohn/patología , Sulfato de Dextran/efectos adversos , Fibrosis , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Miofibroblastos/patología , Células Th17/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
J Neuroinflammation ; 21(1): 124, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730498

RESUMEN

Traumatic brain injury (TBI) is a chronic and debilitating disease, associated with a high risk of psychiatric and neurodegenerative diseases. Despite significant advancements in improving outcomes, the lack of effective treatments underscore the urgent need for innovative therapeutic strategies. The brain-gut axis has emerged as a crucial bidirectional pathway connecting the brain and the gastrointestinal (GI) system through an intricate network of neuronal, hormonal, and immunological pathways. Four main pathways are primarily implicated in this crosstalk, including the systemic immune system, autonomic and enteric nervous systems, neuroendocrine system, and microbiome. TBI induces profound changes in the gut, initiating an unrestrained vicious cycle that exacerbates brain injury through the brain-gut axis. Alterations in the gut include mucosal damage associated with the malabsorption of nutrients/electrolytes, disintegration of the intestinal barrier, increased infiltration of systemic immune cells, dysmotility, dysbiosis, enteroendocrine cell (EEC) dysfunction and disruption in the enteric nervous system (ENS) and autonomic nervous system (ANS). Collectively, these changes further contribute to brain neuroinflammation and neurodegeneration via the gut-brain axis. In this review article, we elucidate the roles of various anti-inflammatory pharmacotherapies capable of attenuating the dysregulated inflammatory response along the brain-gut axis in TBI. These agents include hormones such as serotonin, ghrelin, and progesterone, ANS regulators such as beta-blockers, lipid-lowering drugs like statins, and intestinal flora modulators such as probiotics and antibiotics. They attenuate neuroinflammation by targeting distinct inflammatory pathways in both the brain and the gut post-TBI. These therapeutic agents exhibit promising potential in mitigating inflammation along the brain-gut axis and enhancing neurocognitive outcomes for TBI patients.


Asunto(s)
Antiinflamatorios , Lesiones Traumáticas del Encéfalo , Eje Cerebro-Intestino , Humanos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/metabolismo , Eje Cerebro-Intestino/fisiología , Eje Cerebro-Intestino/efectos de los fármacos , Animales , Antiinflamatorios/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología
14.
Expert Rev Mol Med ; 26: e16, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557638

RESUMEN

Epigenetic modifications, such as DNA methylation, are enzymatically regulated processes that directly impact gene expression patterns. In early life, they are central to developmental programming and have also been implicated in regulating inflammatory responses. Research into the role of epigenetics in neonatal health is limited, but there is a growing body of literature related to the role of DNA methylation patterns and diseases of prematurity, such as the intestinal disease necrotizing enterocolitis (NEC). NEC is a severe intestinal inflammatory disease, but the key factors that precede disease development remain to be determined. This knowledge gap has led to a failure to design effective targeted therapies and identify specific biomarkers of disease. Recent literature has identified altered DNA methylation patterns in the stool and intestinal tissue of neonates with NEC. These findings provide the foundation for a new avenue in NEC research. In this review, we will provide a general overview of DNA methylation and then specifically discuss the recent literature related to methylation patterns in neonates with NEC. We will also discuss how DNA methylation is used as a biomarker for other disease states and how, with further research, methylation patterns may serve as potential biomarkers for NEC.


Asunto(s)
Metilación de ADN , Enterocolitis Necrotizante , Animales , Humanos , Biomarcadores , Enterocolitis Necrotizante/genética , Enterocolitis Necrotizante/metabolismo , Epigénesis Genética
15.
J Pediatr ; 265: 113800, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37866678

RESUMEN

OBJECTIVES: To test the utility of various biomarkers as indicators of gut dysfunction in cystic fibrosis (CF) and determine whether intraindividual variations in these measures are repeatable over short intervals and whether interindividual variations correlate with clinical outcomes. STUDY DESIGN: We performed a cross-sectional, limited longitudinal study of children with CF aged 1-21 years who provided blood and stool samples at 2 or 3 visits, 2 weeks and 3 months apart, which were assayed for markers of intestinal inflammation (fecal calprotectin [fCal], lipocalin-2 [fLcn2], neopterin), and permeability (plasma lipopolysaccharide [LPS] antibodies, LPS-binding protein) by enzyme immunoassays. Control specimens were obtained from children without CF who had undergone esophagogastroduodenoscopy and had no evidence of gut inflammation. RESULTS: Twenty-six of 29 participants with CF completed the study. Sixty-nine stools (57 case/12 control) and 76 plasmas (60 case/16 control) were analyzed. LPS antibody had reliable intraindividual stability. fCal, fLcn2, and neopterin were significantly greater in CF than in control samples. fCal was negatively correlated with 3-month interval change (Δ) in weight-for-age z-score, body mass index/weight-for-length z-score, and forced expiratory volume in 1 second. fLcn2 was negatively correlated with FEV1 but not with anthropometrics. No marker correlated with Δbody mass index/weight-for-length z-score or ΔFEV1. CONCLUSIONS: fLcn2 is elevated in people with CF and might predict worse interval pulmonary function. Expanded studies are warranted to test if fLcn2 correlates with changes in additional outcomes.


Asunto(s)
Fibrosis Quística , Niño , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/metabolismo , Estudios Longitudinales , Neopterin , Estudios Transversales , Lipopolisacáridos , Inflamación/metabolismo , Anticuerpos
16.
BMC Microbiol ; 24(1): 98, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528458

RESUMEN

OBJECTIVE: The association between heart failure (HF) and intestinal inflammation caused by a disturbed intestinal microbiota in infants with congenital heart disease (CHD) was investigated. METHODS: Twenty infants with HF and CHD who were admitted to our hospital between October 2021 and March 2022 were included in this study. Twenty age- and sex-matched infants without HF at our hospital were selected as the control group. Faecal samples were obtained from each participant and analysed by enzyme-linked immunoassay and 16 S rDNA sequencing to assess intestinal inflammatory factors and the microbiota. RESULTS: The levels of intestinal inflammatory factors, including IL-1ß, IL-4, IL-6, IL-17 A and TNF-α, were greatly increased, while the levels of IL-10 were significantly decreased in the HF group compared to the control group (p < 0.05). The intestinal microbial diversity of patients in the HF group was markedly lower than that in the control group (p < 0.05). The abundance of Enterococcus was significantly increased in the HF group compared to the control group (p < 0.05), but the abundance of Bifidobacterium was significantly decreased in the HF group compared to the control group (p < 0.05). The diversity of the intestinal microbiota was negatively correlated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was positively correlated with that of IL-10. The abundance of Enterococcus was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the intestinal tract but was negatively correlated with that of IL-10. NT-proBNP was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. The heart function score was positively associated with the levels of IL-1ß, IL-4, IL-6 and TNF-α in the HF group but was negatively correlated with that of IL-10. CONCLUSIONS: Infants with CHD-related HF had a disordered intestinal microbiota, decreased diversity of intestinal microbes, increased levels of pathogenic bacteria and decreased levels of beneficial bacteria. The increased abundance of Enterococcus and the significant decrease in the diversity of the intestinal microbiota may exacerbate the intestinal inflammatory response, which may be associated with the progression of HF.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , Lactante , Humanos , Interleucina-10 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-4 , Insuficiencia Cardíaca/complicaciones , Cardiopatías Congénitas/complicaciones , Enterococcus/genética , Inflamación
17.
FASEB J ; 37(12): e23285, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37933950

RESUMEN

Although certain progress has been made in treating canine inflammatory bowel disease (IBD), a large proportion of dogs have a poor prognosis and may develop resistance and side effects. Therefore, it is of great significance to prevent or alleviate canine IBD through nutritional intervention. Plant polyphenol can interact with intestinal bacteria and has important prospects in the intestinal health improvement. This study evaluated the effect of grape seed proanthocyanidin (GSP), a plant-derived natural polyphenol, on Labrador Retrievers with mild IBD. In Experiment 1 of this study, GSP alleviated persistent intestinal inflammation in canines by improving inflammatory indexes and reducing intestinal permeability. Moreover, GSP treatment increased the abundance of bacteria with potential anti-inflammatory properties and engaging bile acid metabolism, including Ruminococcaceae, Faecalibacterium, Ruminococcus_torques_group, and Lachnospiraceae_NK4A136_group. Notably, targeted metabolomic analysis identified elevated productions of fecal chenodeoxycholic acid and its microbial transformation product lithocholic acid, which might contribute to relieving canine intestinal inflammation. Further, in Experiment 2, fecal microbiota transplantation was used to determine whether gut microbiota is a potential mechanism for GSP efficacy. Dogs with mild IBD received the fecal microbiota from the group administered GSP and mirrored the improvement effects of GSP, which results verified that gut microbial alteration could be an underlying mechanism for GSP efficiency on canine IBD. Our findings highlight that the mechanism of the GSP function on canine IBD is mediated by altering gut microbial composition and improving bile acid metabolism. This study proposes a natural polyphenol-based dietary strategy for improving canine intestinal health.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Perros , Animales , Ácidos y Sales Biliares , Enfermedades Inflamatorias del Intestino/microbiología , Inflamación , Polifenoles/farmacología
18.
Arch Microbiol ; 206(4): 140, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441642

RESUMEN

Limosilactobacillus reuteri is an indigenous inhabitant of the animal gut known for its probiotic effects on the host. In our previous study, a large number of L. reuteri strains were isolated from the gastrointestinal tract of mice recovering from ulcerative colitis, from which we randomly selected L. reuteri RE225 for whole genome sequencing to explore its probiotic properties. The results of next-generation sequencing and third-generation single molecule sequencing showed that L. reuteri RE225 contained many genes encoding functional proteins associated with adhesion, anti-inflammatory and pathogen inhibition. And compared to other L. reuteri strains in NCBI, L. reuteri RE225 has unique gene families with probiotic functions. In order to further explore the probiotic effect of the L. reuteri RE225, the derived peptides were identified by LC-MS/MS, and the peptides with tumor necrosis factor-α binding ability were screened by reverse molecular docking and microscale thermophoresis. Finally, cell experiments demonstrated the anti-inflammatory ability of the peptides. Western blotting and qPCR analyses confirmed that the selected peptides might alleviate LPS-induced inflammation in NCM460 cells by inhibiting JAK2/STAT3 pathway activation.


Asunto(s)
Colitis Ulcerosa , Limosilactobacillus reuteri , Animales , Ratones , Limosilactobacillus reuteri/genética , Colitis Ulcerosa/tratamiento farmacológico , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Péptidos/genética , Péptidos/farmacología , Secuenciación Completa del Genoma
19.
Fish Shellfish Immunol ; 153: 109852, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173982

RESUMEN

Cottonseed meal (CSM) and cottonseed protein concentrate (CPC) serve as protein alternatives to fish meal and soybean meal in the feed industry. However, the presence of gossypol residue in CSM and CPC can potentially trigger severe intestinal inflammation, thereby restricting the widespread utilization of these two protein sources. Probiotics are widely used to prevent or alleviate intestinal inflammation, but their efficacy in protecting fish against gossypol-induced enteritis remains uncertain. Here, the protective effect of Pediococcus pentosaceus, a strain isolated from the gut of Nile tilapia (Oreochromis niloticus), was evaluated. Three diets, control diet (CON), gossypol diet (GOS) and GOS supplemented with P. pentosaceus YC diet (GP), were used to feed Nile tilapia for 10 weeks. After the feeding trial, P. pentosaceus YC reduced the activity of myeloperoxidase (MPO) in the proximal intestine (PI) and distal intestine (DI). Following a 7-day exposure to Aeromonas hydrophila, the addition of P. pentosaceus YC was found to increase the survival rate of the fish. P. pentosaceus YC significantly inhibited the oxidative stress caused by gossypol, which was evidenced by lower reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in PI and DI. Addition of P. pentosaceus YC significantly inhibited enteritis, with the lower expression of pro-inflammatory cytokines (il-1ß, il-6, il-8) and higher expression of anti-inflammatory cytokines tgf-ß. RNA-seq analysis indicated that P. pentosaceus YC supplementation significantly inhibited nlrc3 and promoted nf-κb expression in PI and DI, and the siRNA interference experiment in vivo demonstrated that intestinal inflammation was mediated by NLRC3/NF-κB/IL-1ß signaling pathway. Fecal bacteria transplantation experiment demonstrated that gut microbiota mediated the protective effect of P. pentosaceus YC. These findings offer valuable insights into the application of P. pentosaceus YC for alleviating gossypol-induced intestinal inflammation in fish.

20.
Fish Shellfish Immunol ; 153: 109808, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39102968

RESUMEN

Selenium (Se), a trace element, is vital for the maintenance of cellular redox balance, thyroid hormone metabolism, inflammation, and immunity. Aeromonas hydrophila (A. hydrophila) is a common Gram-negative conditional pathogenic bacterium in fish culture, posing a serious threat to intensive aquaculture. Our study investigated the influence of dietary Se on the intestinal immune function of grass carp (Ctenopharyngodon idella) and the related regulatory mechanisms. The 2160 healthy juvenile grass carp (9.76 ± 0.005 g) were randomly assigned to 6 test groups of 6 replicates each, and fed graded selenomethionine (0.05, 0.20, 0.40, 0.61, 0.77, 0.98 mg Se/kg diet) for 70 days and then injected with A. hydrophila for a 6-day attack test. The results indicated that appropriate Se levels (0.40 mg/kg diet) alleviated intestinal damage caused by A. hydrophila and increased intestinal immune substances C3 and C4 levels as well as the activity of acid phosphatase (ACP) and lysozyme (LZ) (P > 0.05). Appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) decreased intestinal pro-inflammatory cytokines (IFN-γ2, IL-6, IL-12p35, IL-17 A F and IL-17D) mRNA levels (P > 0.05) and increased intestinal anti-inflammatory factors (TGF-ß1, IL-4/13A, IL-4/13B, IL-10 and IL-22) mRNA levels (P > 0.05) in juvenile grass carp. Further studies revealed that Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal endoplasmic reticulum stress (ERS)-related signaling pathway. Furthermore, we found that appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal autophagy in juvenile grass carp, which may be related to ULK1, Beclin 1, ATG5, ATG12, LC3, and P62. In conclusion, appropriate levels of Se can alleviate intestinal inflammation and inhibit ERS and autophagy in juvenile grass carp. A quadratic regression analysis of intestinal ACP and LZ also indicated that the Se requirements of juvenile grass carp were 0.59 and 0.51 mg/kg, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA