Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Small ; : e2311937, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529743

RESUMEN

Achieving reliable and quantifiable performance in large-area surface-enhanced Raman spectroscopy (SERS) substrates poses a formidable challenge, demanding signal enhancement while ensuring response uniformity and reproducibility. Conventional SERS substrates often made of inhomogeneous materials with random resonator geometries, resulting in multiple or broadened plasmonic resonances, undesired absorptive losses, and uneven field enhancement. These limitations hamper reproducibility, making it difficult to conduct comparative studies with high sensitivity. This study introduces an innovative approach that addresses these challenges by utilizing monocrystalline gold flakes to fabricate well-defined plasmonic double-wire resonators through focused ion-beam lithography. Inspired by biological strategy, the double-wire grating substrate (DWGS) geometry is evolutionarily optimized to maximize the SERS signal by enhancing both excitation and emission processes. The use of monocrystalline material minimizes absorption losses and ensures shape fidelity during nanofabrication. DWGS demonstrates notable reproducibility (RSD = 6.6%), repeatability (RSD = 5.6%), and large-area homogeneity > 104 µm2. It provides a SERS enhancement for sub-monolayer coverage detection of 4-Aminothiophenol analyte. Furthermore, DWGS demonstrates reusability, long-term stability on the shelf, and sustained analyte signal stability over time. Validation with diverse analytes, across different states of matter, including biological macromolecules, confirms the sensitive and reproducible nature of DWGSs, thereby establishing them as a promising platform for future sensing applications.

2.
Nanotechnology ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137800

RESUMEN

Line edge roughness (LER) has been an important issue in the nanofabrication research, especially in integrated circuits. Despite numerous research studies has made efforts on achieving smaller LER value, a strategy to achieve sub-nanometer level LER still remain challenging due to inability to deposit energy with a profile of sub-nanometer LER. In this work, we use scanning helium ion beam to expose hydrogen silsesquioxane (HSQ) resist on SiNx membrane and present the 0.16 nm spatial imaging resolution based on this suspended thin membrane geometric construction, which is characterized by scanning transmission electron microscope (STEM). The suspended membrane serves as an energy filter of helium ion beam and due to the elimination of backscattering induced secondary electrons, we can systematically study the factors that influences the LER of the fabricated nanostructures. Furthermore, we explore the parameters including step size, designed exposure linewidth (DEL), delivered dosage and resist thickness and choosing the high contrast developer, the process window allows to fabricate lines with 0.2nm LER is determined. AFM measurement and simulation work further reveal that at specific beam step size and DEL, the nanostructures with minimum LER can only be fabricated at specific resist thickness and dosage. .

3.
Nanotechnology ; 33(1)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34592729

RESUMEN

The most significant goal of nanophotonics is the development of high-speed quantum emitting devices operating at ambient temperature. In this regard, plasmonic nanoparticles-on-mirror are potential candidates for designing high-speed photon sources. We introduce a novel hybrid nanoantenna (HNA) with CdSe/CdS colloidal quantum dots (QDs) based on a silver nanocube in a metal cup that presents a nanoparticle-in-cavity coupled with an emitters system. We use focused ion beam nanolithography to fabricate an ordered array of cups, which were then filled with colloidal nanoparticles using the most simple drop-casting and spin coating methods. The spectral and time-resolved studies of the samples with one or more nanocubes in the cup reveal a significant change in the radiation characteristics of QDs inside the nanoantenna. The Purcell effect causes an increase in the fluorescence decay rate (≥30) and an increase in the fluorescence intensity (≥3) of emitters in the HNA. Using the finite element method simulations, we have discovered that the proximity of the cups wall affects the oscillation modes of the gap plasmon, which, in turn, leads to changes in the electric field enhancement inside the nanoantenna gap. Additionally, substantial variations in the behavior of the gap plasmons at different polarizations of the exciting radiation have been revealed. The proposed nanoantenna can be useful in the development of plasmonic sensors, display pixels, and single-photon sources.

4.
Adv Exp Med Biol ; 1309: 217-233, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33782874

RESUMEN

Micro and nanofabrication technologies are integral to the development of miniaturized systems. Lithography plays a key role in micro and nanofabrication techniques. Since high functional miniaturized systems are required in various fields, such as the development of a semiconductor, chemical and biological analysis, and biomedical researches, lithography techniques have been developed and applied for their appropriate purpose. Lithography can be classified into conventional and unconventional lithography, or top-down and bottom-up, or with mask and mask-less approaches. In this chapter, various lithography techniques are categorized and classified into conventional and unconventional lithography. In the first part, photolithography, electron beam, and focused-ion beam lithography are introduced as conventional lithography techniques. The second part introduces nanoimprint lithography, deformation lithography, and colloidal lithography as unconventional lithography techniques. In the last part, the pros and cons of each lithography are discussed for an appropriate design of fabrication processes.


Asunto(s)
Nanotecnología , Impresión , Semiconductores , Tecnología
5.
Nano Lett ; 19(9): 6043-6048, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31424217

RESUMEN

Field-emission devices are promising candidates to replace silicon fin field-effect transistors as next-generation nanoelectronic components. For these devices to be adopted, nanoscale field emitters with nanoscale gaps between them need to be fabricated, requiring the transfer of, for example, sub-10 nm patterns with a sub-20 nm pitch to substrates like silicon and tungsten. New resist materials must therefore be developed that exhibit the properties of sub-10 nm resolution and high dry etch resistance. A negative tone, metal-organic resist is presented here. It can be patterned to produce sub-10 nm features when exposed to helium ion beam lithography at line doses on the order of tens of picocoulombs per centimeter. The resist was used to create 5 nm wide, continuous, discrete lines spaced on a 16 nm pitch in silicon and 6 nm wide lines on an 18 nm pitch in tungsten, with line edge roughness of 3 nm. After the lithographic exposure, the resist demonstrates high resistance to silicon and tungsten dry etch conditions (SF6 and C4F8 plasma), allowing the pattern to be transferred to the underlying substrates. The resist's etch selectivity for silicon and tungsten was measured to be 6.2:1 and 5.6:1, respectively; this allowed 3 to 4 nm thick resist films to yield structures that were 21 and 19 nm tall, respectively, while both maintained a sub-10 nm width on a sub-20 nm pitch.

6.
Small ; 10(5): 878-83, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24123854

RESUMEN

Well-defined semiconducting microelectrodes on silicon chips are prepared for new insights into microelectrode electrochemistry. Unique voltammetric features are observed due to a combined effect of enhanced mass transport from microelectrodes and rectifying nature of the semiconductor-electrolyte interface. The "diffusional independence" of single elements in certain arrays is also carefully studied.

7.
Methods Mol Biol ; 2565: 213-221, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36205897

RESUMEN

Diamond-based multiarray sensors are suitable to detect in real-time exocytosis and action potentials from cultured, spontaneously firing chromaffin cells, primary hippocampal neurons, and midbrain dopaminergic neurons. Here, we focus on how amperometric measurements of catecholamine release are performed on micrographitic diamond multiarrays (µG-D-MEAs) with high temporal and spatial resolution by 16 electrodes simultaneously.


Asunto(s)
Células Cromafines , Diamante , Catecolaminas , Células Cultivadas , Cisteamina , Exocitosis/fisiología
8.
Biosens Bioelectron ; 220: 114876, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375258

RESUMEN

The investigation of secondary effects induced by ionizing radiation represents a new and ever-growing research field in radiobiology. This new paradigm cannot be investigated only using standard instrumentation and methodologies, but rather requires novel technologies to achieve significant progress. In this framework, we developed diamond-based sensors that allow simultaneous real-time measurements with a high spatial resolution of the secretory activity of a network of cells cultured on the device, as well as of the dose at which they are exposed during irradiation experiments. The devices were functionally characterized by testing both the above-mentioned detection schemes, namely: amperometric measurements of neurotransmitter release from excitable cells (such as dopamine or adrenaline) and dosimetric evaluation using different ionizing particles (alpha particle and X-ray photons). Finally, the sensors were employed to investigate the effects induced by X-rays on the exocytotic activity of PC12 neuroendocrine cells by monitoring the modulation of the dopamine release in real-time.


Asunto(s)
Técnicas Biosensibles , Diamante , Dopamina , Técnicas Biosensibles/métodos , Radiobiología , Radiación Ionizante
9.
Micromachines (Basel) ; 14(11)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-38004917

RESUMEN

Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits the portable application of MOS gas sensors. The miniaturization of the hotplate geometry is one of the most effective methods used to reduce its power consumption. In this work, a new method is presented, combining electron beam lithography (EBL) and focused ion beam (FIB) technologies to obtain low power consumption. EBL is used to define the low-resolution section of the electrode, and FIB technology is utilized to pattern the high-resolution part. Different Au++ ion fluences in FIBs are tested in different milling strategies. The resulting devices are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). Furthermore, the electrical resistance of the hotplate is measured at different voltages, and the operational temperature is calculated based on the Pt temperature coefficient of resistance value. In addition, the thermal heater and electrical stability is studied at different temperatures for 110 h. Finally, the implementation of the fabricated hotplate in ZnO gas sensors is investigated using ethanol at 250 °C.

10.
Beilstein J Nanotechnol ; 12: 633-664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34285866

RESUMEN

The helium ion microscope has emerged as a multifaceted instrument enabling a broad range of applications beyond imaging in which the finely focused helium ion beam is used for a variety of defect engineering, ion implantation, and nanofabrication tasks. Operation of the ion source with neon has extended the reach of this technology even further. This paper reviews the materials modification research that has been enabled by the helium ion microscope since its commercialization in 2007, ranging from fundamental studies of beam-sample effects, to the prototyping of new devices with features in the sub-10 nm domain.

11.
ACS Appl Mater Interfaces ; 12(17): 19616-19624, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32267144

RESUMEN

Hybrid metal-organic cluster resist materials, also termed as organo-inorganics, demonstrate their potential for use in next-generation lithography owing to their ability for patterning down to ∼10 nm or below. High-resolution resist patterning is integrally associated with the compatibility of the resist and irradiation of the exposure source. Helium ion beam lithography (HIBL) is an emerging approach for the realization of sub-10 nm patterns at considerably lower line edge/width roughness (LER/LWR) and higher sensitivity as compared to electron beam lithography (EBL). Here, for the first time, a negative tone resist incorporating nickel (Ni)-based metal-organic clusters (Ni-MOCs) was synthesized and patterned using HIBL and EBL at 30 keV. This resist comprises a nickel-based metal building unit covalently linked with the organic ligand: m-toluic acid (C8H8O2). Dynamic light scattering confirmed a narrow size distribution of ∼2 nm for metal-organic cluster (MOC) formulations. High-resolution ∼9 nm HIBL line patterns were well developed at a sensitivity of 22 µC/cm2 and at a significantly low LER and LWR of 1.81 ± 0.06 and 2.90 ± 0.06 nm, respectively. Analogous high-resolution patterns were also observed in EBL with a sensitivity of 473 µC/cm2. Hence, the Ni-MOC-based resist investigated using HIBL and EBL elucidates the ability of its potential for the sub-10 nm technology node, under standard processing conditions.

12.
Beilstein J Nanotechnol ; 9: 2049-2056, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116695

RESUMEN

Fresnel zone plates (FZP) are diffractive photonic devices used for high-resolution imaging and lithography at short wavelengths. Their fabrication requires nano-machining capabilities with exceptional precision and strict tolerances such as those enabled by modern lithography methods. In particular, ion beam lithography (IBL) is a noteworthy method thanks to its robust direct writing/milling capability. IBL allows for rapid prototyping of high-resolution FZPs that can be used for high-resolution imaging at soft X-ray energies. Here, we discuss improvements in the process enabling us to write zones down to 15 nm in width, achieving an effective outermost zone width of 30 nm. With a 35% reduction in process time and an increase in resolution by 26% compared to our previous results, we were able to resolve 21 nm features of a test sample using the FZP. The new process conditions are then applied for fabrication of large arrays of high-resolution zone plates. Results show that relatively large areas can be decorated with nanostructured devices via IBL by using multipurpose SEM/FIB instruments with potential applications in FEL focusing, extreme UV and soft X-ray lithography and as wavefront sensing devices for beam diagnostics.

13.
Micron ; 57: 56-66, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24239415

RESUMEN

Aspheric lenses are the most common method for correcting for spherical aberrations but, in microlens production, highly-controlled lens profiles are hard to achieve. We demonstrate a technique for creating bespoke, highly-accurate aspheric or spherical profile silicon microlens moulds, of almost any footprint, using focused ion-beam milling. Along with this, we present a method of removing induced ion-beam damage in silicon, via a hydrofluoric acid etch, helping to recover the surface's optical and chemical properties. In this paper, we demonstrate that our milled and etched moulds have a roughness of 4.0-4.1 nm, meaning they scatter less than 1% of light, down to wavelengths of 51 nm, showing that the moulds are suitable to make lenses that are able to handle light from UV up to infra-red. Using empirical experiments and computer simulations, we show that increasing the ion-dose when milling increases the amount of gallium a hydrofluoric acid etch can remove, by increasing the degree of amorphisation within the surface. For doses above 3000 µC/cm(2) this restores previous surface properties, reducing adhesion to the mould, allowing for a cleaner release and enabling higher quality lenses to be made. Our technique is used to make aspheric microlenses of down to 3 µm in size, but with a potential to make lenses smaller than 1 µm.

14.
Adv Mater ; 25(34): 4696-700, 2013 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-23847004

RESUMEN

An MeV ion-microbeam lithographic technique can be successfully employed for the fabrication of an all-carbon miniaturized cellular biosensor based on graphitic microchannels embedded in a single-crystal diamond matrix. The device is functionally characterized for the in vitro recording of quantal exocytic events from single chromaffin cells, with high sensitivity and signal-to-noise ratio, opening promising perspectives for the realization of monolithic all-carbon cellular biosensors.


Asunto(s)
Técnicas Biosensibles , Células Cromafines/citología , Diamante/química , Exocitosis/fisiología , Glándulas Suprarrenales/citología , Animales , Células Cultivadas , Células Cromafines/metabolismo , Técnicas Electroquímicas , Masculino , Ratones , Ratones Endogámicos C57BL , Microelectrodos , Miniaturización , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA