Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.988
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(17): 4637-4655.e26, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043180

RESUMEN

The medical burden of stroke extends beyond the brain injury itself and is largely determined by chronic comorbidities that develop secondarily. We hypothesized that these comorbidities might share a common immunological cause, yet chronic effects post-stroke on systemic immunity are underexplored. Here, we identify myeloid innate immune memory as a cause of remote organ dysfunction after stroke. Single-cell sequencing revealed persistent pro-inflammatory changes in monocytes/macrophages in multiple organs up to 3 months after brain injury, notably in the heart, leading to cardiac fibrosis and dysfunction in both mice and stroke patients. IL-1ß was identified as a key driver of epigenetic changes in innate immune memory. These changes could be transplanted to naive mice, inducing cardiac dysfunction. By neutralizing post-stroke IL-1ß or blocking pro-inflammatory monocyte trafficking with a CCR2/5 inhibitor, we prevented post-stroke cardiac dysfunction. Such immune-targeted therapies could potentially prevent various IL-1ß-mediated comorbidities, offering a framework for secondary prevention immunotherapy.


Asunto(s)
Lesiones Encefálicas , Inmunidad Innata , Memoria Inmunológica , Inflamación , Interleucina-1beta , Ratones Endogámicos C57BL , Monocitos , Animales , Ratones , Interleucina-1beta/metabolismo , Lesiones Encefálicas/inmunología , Humanos , Masculino , Monocitos/metabolismo , Monocitos/inmunología , Inflamación/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/inmunología , Cardiopatías/inmunología , Femenino , Receptores CCR2/metabolismo , Fibrosis , Epigénesis Genética , Inmunidad Entrenada
2.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929899

RESUMEN

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/fisiología , Animales , Autofagia/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Restricción Calórica , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Permeabilidad , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Daño por Reperfusión/metabolismo , Transducción de Señal
3.
Immunity ; 57(9): 2157-2172.e7, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39079536

RESUMEN

Stroke leads to persistently high risk for recurrent vascular events caused by systemic atheroprogression that is driven by endothelial cell (EC) activation. However, whether and how stroke induces sustained pro-inflammatory and proatherogenic endothelial alterations in systemic vessels remain poorly understood. We showed that brain ischemia induces persistent activation, the upregulation of adhesion molecule VCAM1, and increased senescence in peripheral ECs until 4 weeks after stroke onset. This aberrant EC activity resulted from sustained Notch1 signaling, which was triggered by increased circulating Notch1 ligands DLL1 and Jagged1 after stroke in mice and humans. Consequently, this led to increased myeloid cell adhesion and atheroprogression by generating a senescent, pro-inflammatory endothelium. Notch1- or VCAM1-blocking antibodies and the genetic ablation of endothelial Notch1 reduced atheroprogression after stroke. Our findings revealed a systemic machinery that induces the persistent activation of peripheral ECs after stroke, which paves the way for therapeutic interventions or the prevention of recurrent vascular events following stroke.


Asunto(s)
Aterosclerosis , Isquemia Encefálica , Proteínas de Unión al Calcio , Células Endoteliales , Receptor Notch1 , Animales , Humanos , Masculino , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Isquemia Encefálica/metabolismo , Proteínas de Unión al Calcio/metabolismo , Adhesión Celular , Senescencia Celular , Células Endoteliales/metabolismo , Proteína Jagged-1/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor Notch1/metabolismo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/inmunología , Molécula 1 de Adhesión Celular Vascular/metabolismo
4.
Cell ; 173(1): 74-89.e20, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29570999

RESUMEN

A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.


Asunto(s)
Envejecimiento , Sulfuro de Hidrógeno/metabolismo , NAD/metabolismo , Animales , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Noqueados , Microvasos/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Sirtuina 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37100060

RESUMEN

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Asunto(s)
Interleucina-6 , ARN , Células Endoteliales/metabolismo , Receptor gp130 de Citocinas , Endotelio/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
6.
Cell ; 168(5): 867-877.e13, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235198

RESUMEN

The adenosine A1 receptor (A1-AR) is a G-protein-coupled receptor that plays a vital role in cardiac, renal, and neuronal processes but remains poorly targeted by current drugs. We determined a 3.2 Å crystal structure of the A1-AR bound to the selective covalent antagonist, DU172, and identified striking differences to the previously solved adenosine A2A receptor (A2A-AR) structure. Mutational and computational analysis of A1-AR revealed a distinct conformation of the second extracellular loop and a wider extracellular cavity with a secondary binding pocket that can accommodate orthosteric and allosteric ligands. We propose that conformational differences in these regions, rather than amino-acid divergence, underlie drug selectivity between these adenosine receptor subtypes. Our findings provide a molecular basis for AR subtype selectivity with implications for understanding the mechanisms governing allosteric modulation of these receptors, allowing the design of more selective agents for the treatment of ischemia-reperfusion injury, renal pathologies, and neuropathic pain.


Asunto(s)
Receptor de Adenosina A1/química , Agonistas del Receptor de Adenosina A1/química , Antagonistas del Receptor de Adenosina A1/química , Sitio Alostérico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Receptor de Adenosina A1/genética , Receptor de Adenosina A2A/química
7.
Proc Natl Acad Sci U S A ; 121(21): e2317495121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753506

RESUMEN

Myogenic regeneration relies on the proliferation and differentiation of satellite cells. TECRL (trans-2,3-enoyl-CoA reductase like) is an endoplasmic reticulum protein only expressed in cardiac and skeletal muscle. However, its role in myogenesis remains unknown. We show that TECRL expression is increased in response to injury. Satellite cell-specific deletion of TECRL enhances muscle repair by increasing the expression of EGR2 through the activation of the ERK1/2 signaling pathway, which in turn promotes the expression of PAX7. We further show that TECRL deletion led to the upregulation of the histone acetyltransferase general control nonderepressible 5, which enhances the transcription of EGR2 through acetylation. Importantly, we showed that AAV9-mediated TECRL silencing improved muscle repair in mice. These findings shed light on myogenic regeneration and muscle repair.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz , Desarrollo de Músculos , Músculo Esquelético , Regeneración , Animales , Ratones , Músculo Esquelético/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 2 de la Respuesta de Crecimiento Precoz/genética , Desarrollo de Músculos/genética , Regeneración/genética , Regulación hacia Arriba , Células Satélite del Músculo Esquelético/metabolismo , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Diferenciación Celular
8.
Pharmacol Rev ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866562

RESUMEN

Nitric oxide (NO) from endothelial NO synthase (eNOS) importantly contributes to vascular homeostasis. Reduced NO production or increased scavenging during disease conditions with oxidative stress contribute to endothelial dysfunction and NO deficiency. In addition to the classical enzymatic NOS system, NO can also be generated via the nitrate-nitrite-NO pathway. Dietary and pharmacological approaches aimed at increasing NO bioactivity, especially in the cardiovascular system, have been the focus of much research since the discovery of this small gaseous signaling molecule. Despite wide appreciation of the biological role of NOS/NO signaling, questions still remain about the chemical nature of NOS-derived bioactivity. Recent studies show that NO-like bioactivity can be efficiently transduced by mobile NO-ferroheme species which can transfer between proteins, partition into a hydrophobic phase, and directly activate the sGC-cGMP-PKG pathway without intermediacy of free NO. Moreover, interaction between red blood cells and the endothelium in the regulation of vascular NO homeostasis have gained much attention, especially in conditions with cardiometabolic disease. In this review we discuss both classical and non-classical pathways for NO generation in the cardiovascular system, and how these can be modulated for therapeutic purposes. Significance Statement After four decades of intensive research, questions persist about the transduction and control of NO synthase bioactivity. Here we discuss NO signaling in cardiovascular health and disease, highlighting new findings, such as the important role of red blood cells in cardiovascular NO homeostasis. Non-classical signaling modes, like the nitrate-nitrite-NO pathway, and therapeutic opportunities related to the NO system are discussed. Existing and potential pharmacological treatments/strategies, as well as dietary components influencing NO generation and signaling are covered.

9.
Semin Cell Dev Biol ; 155(Pt C): 16-22, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479554

RESUMEN

In the human body, the 1013 blood endothelial cells (ECs) which cover a surface of 500-700 m2 (Mai et al., 2013) are key players of tissue homeostasis, remodeling and regeneration. Blood vessel ECs play a major role in the regulation of metabolic and gaz exchanges, cell trafficking, blood coagulation, vascular tone, blood flow and fluid extravasation (also referred to as blood vascular permeability). ECs are heterogeneous in various capillary beds and have the exquisite capacity to cope with environmental changes by regulating their gene expression. Ischemia has major detrimental effects on the endothelium and ischemia-induced regulation of vascular integrity is of paramount importance for human health, as small amounts of fluid accumulation in the interstitium may be responsible for major effects on organ functions and patients outcome. In this review, we will here focus on the stimuli and the molecular mechanisms that control blood endothelium maintenance and phenotypic plasticity/transition involved in controlling blood capillary leakage that might open new avenues for therapeutic applications.


Asunto(s)
Células Endoteliales , Endotelio Vascular , Humanos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Isquemia/metabolismo , Permeabilidad Capilar , Adaptación Fisiológica , Permeabilidad
10.
Immunity ; 46(3): 474-487, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28314594

RESUMEN

Brain ischemia inhibits immune function systemically, with resulting infectious complications. Whether in stroke different immune alterations occur in brain and periphery and whether analogous mechanisms operate in these compartments remains unclear. Here we show that in patients with ischemic stroke and in mice subjected to middle cerebral artery occlusion, natural killer (NK) cells display remarkably distinct temporal and transcriptome profiles in the brain as compared to the periphery. The activation of catecholaminergic and hypothalamic-pituitary-adrenal axis leads to splenic atrophy and contraction of NK cell numbers in the periphery through a modulated expression of SOCS3, whereas cholinergic innervation-mediated suppression of NK cell responses in the brain involves RUNX3. Importantly, pharmacological or genetic ablation of innervation preserved NK cell function and restrained post-stroke infection. Thus, brain ischemia compromises NK cell-mediated immune defenses through mechanisms that differ in the brain versus the periphery, and targeted inhibition of neurogenic innervation limits post-stroke infection.


Asunto(s)
Isquemia Encefálica/inmunología , Encéfalo/inmunología , Células Asesinas Naturales/inmunología , Bazo/inmunología , Anciano , Animales , Isquemia Encefálica/complicaciones , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Infecciones/etiología , Infecciones/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
11.
Circ Res ; 134(6): 618-634, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484033

RESUMEN

The timing of life on Earth is remarkable: between individuals of the same species, a highly similar temporal pattern is observed, with shared periods of activity and inactivity each day. At the individual level, this means that over the course of a single day, a person alternates between two states. They are either upright, active, and communicative or they lie down in a state of (un)consciousness called sleep where even the characteristic of neuronal signals in the brain shows distinctive properties. The circadian clock governs both of these time stamps-activity and (apparent) inactivity-making them come and go consistently at the same approximate time each day. This behavior thus represents the meeting of two pervasive systems: the circadian clock and metabolism. In this article, we will describe what is known about how the circadian clock anticipates daily changes in oxygen usage, how circadian clock regulation may relate to normal physiology, and to hypoxia and ischemia that can result from pathologies such as myocardial infarction and stroke.


Asunto(s)
Relojes Circadianos , Humanos , Relojes Circadianos/fisiología , Sueño/fisiología , Hipoxia , Encéfalo , Oxígeno , Ritmo Circadiano
12.
Circ Res ; 135(5): 575-592, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39034919

RESUMEN

BACKGROUND: The SPAN trial (Stroke Preclinical Assessment Network) is the largest preclinical study testing acute stroke interventions in experimental focal cerebral ischemia using endovascular filament middle cerebral artery occlusion (MCAo). Besides testing interventions against controls, the prospective design captured numerous biological and procedural variables, highlighting the enormous heterogeneity introduced by the multicenter structure that might influence stroke outcomes. Here, we leveraged the unprecedented sample size achieved by the SPAN trial and the prospective design to identify the biological and procedural variables that affect experimental stroke outcomes in transient endovascular filament MCAo. METHODS: The study cohort included all mice enrolled and randomized in the SPAN trial (N=1789). Mice were subjected to 60-minute MCAo and followed for a month. Thirteen biological and procedural independent variables and 4 functional (weight loss and 4-point neuroscore on days 1 and 2, corner test on days 7 and 28, and mortality) and 3 tissue (day 2, magnetic resonance imaging infarct volumes and swelling; day 30, magnetic resonance imaging tissue loss) outcome variables were prospectively captured. Multivariable regression with stepwise elimination was used to identify the predictors and their effect sizes. RESULTS: Older age, active circadian stage at MCAo, and thinner and longer filament silicone tips predicted higher mortality. Older age, larger body weight, longer anesthesia duration, and longer filament tips predicted worse neuroscores, while high-fat diet and blood flow monitoring predicted milder neuroscores. Older age and a high-fat diet predicted worse corner test performance. While shorter filament tips predicted more ipsiversive turning, longer filament tips appeared to predict contraversive turning. Age, sex, and weight interacted when predicting the infarct volume. Older age was associated with smaller infarcts on day 2 magnetic resonance imaging, especially in animals with larger body weights; this association was most conspicuous in females. High-fat diet also predicted smaller infarcts. In contrast, the use of cerebral blood flow monitoring and more severe cerebral blood flow drop during MCAo, longer anesthesia, and longer filament tips all predicted larger infarcts. Bivariate analyses among the dependent variables highlighted a disconnect between tissue and functional outcomes. CONCLUSIONS: Our analyses identified variables affecting endovascular filament MCAo outcome, an experimental stroke model used worldwide. Multiple regression refuted some commonly reported predictors and revealed previously unrecognized associations. Given the multicenter prospective design that represents a sampling of real-world conditions, the degree of heterogeneity mimicking clinical trials, the large number of predictors adjusted for in the multivariable model, and the large sample size, we think this is the most definitive analysis of the predictors of preclinical stroke outcome to date. Future multicenter experimental stroke trials should standardize or at least ensure a balanced representation of the biological and procedural variables identified herein as potential confounders.


Asunto(s)
Infarto de la Arteria Cerebral Media , Animales , Masculino , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/patología , Ratones , Femenino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Accidente Cerebrovascular/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen
13.
Mol Cell ; 70(3): 502-515.e8, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29727620

RESUMEN

Nutrients are not only organic compounds fueling bioenergetics and biosynthesis, but also key chemical signals controlling growth and metabolism. Nutrients enormously impact the production of reactive oxygen species (ROS), which play essential roles in normal physiology and diseases. How nutrient signaling is integrated with redox regulation is an interesting, but not fully understood, question. Herein, we report that superoxide dismutase 1 (SOD1) is a conserved component of the mechanistic target of rapamycin complex 1 (mTORC1) nutrient signaling. mTORC1 regulates SOD1 activity through reversible phosphorylation at S39 in yeast and T40 in humans in response to nutrients, which moderates ROS level and prevents oxidative DNA damage. We further show that SOD1 activation enhances cancer cell survival and tumor formation in the ischemic tumor microenvironment and protects against the chemotherapeutic agent cisplatin. Collectively, these findings identify a conserved mechanism by which eukaryotes dynamically regulate redox homeostasis in response to changing nutrient conditions.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nutrientes/metabolismo , Fosforilación/fisiología , Superóxido Dismutasa-1/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Daño del ADN/fisiología , Metabolismo Energético/fisiología , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Desnudos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo
14.
Mol Cell Proteomics ; 23(2): 100723, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38253182

RESUMEN

Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1ß, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.


Asunto(s)
Anexina A2 , Microglía , Daño por Reperfusión , Animales , Ratones , Anexina A2/metabolismo , Microglía/metabolismo , Multiómica , FN-kappa B/metabolismo , Proteómica , Daño por Reperfusión/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(9): e2220769120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812211

RESUMEN

S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.


Asunto(s)
Hiperemia , Humanos , Ratones , Animales , Microcirculación , Hemoglobinas/genética , Eritrocitos/fisiología , Oxígeno , Sujetos de Investigación , Óxido Nítrico/fisiología
16.
Proc Natl Acad Sci U S A ; 120(1): e2208541120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574661

RESUMEN

Impaired endothelial cell (EC)-mediated angiogenesis contributes to critical limb ischemia in diabetic patients. The sonic hedgehog (SHH) pathway participates in angiogenesis but is repressed in hyperglycemia by obscure mechanisms. We investigated the orphan G protein-coupled receptor GPR39 on SHH pathway activation in ECs and ischemia-induced angiogenesis in animals with chronic hyperglycemia. Human aortic ECs from healthy and type 2 diabetic (T2D) donors were cultured in vitro. GPR39 mRNA expression was significantly elevated in T2D. The EC proliferation, migration, and tube formation were attenuated by adenovirus-mediated GPR39 overexpression (Ad-GPR39) or GPR39 agonist TC-G-1008 in vitro. The production of proangiogenic factors was reduced by Ad-GPR39. Conversely, human ECs transfected with GPR39 siRNA or the mouse aortic ECs isolated from GPR39 global knockout (GPR39KO) mice displayed enhanced migration and proliferation compared with their respective controls. GPR39 suppressed the basal and ligand-dependent activation of the SHH effector GLI1, leading to attenuated EC migration. Coimmunoprecipitation revealed that the GPR39 direct binding of the suppressor of fused (SUFU), the SHH pathway endogenous inhibitor, may achieve this. Furthermore, in ECs with GPR39 knockdown, the robust GLI1 activation and EC migration were abolished by SUFU overexpression. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, the GPR39KO mice demonstrated a faster pace of revascularization from hind limb ischemia and lower incidence of tissue necrosis than GPR39 wild-type (GPR39WT) counterparts. These findings have provided a conceptual framework for developing therapeutic tools that ablate or inhibit GPR39 for ischemic tissue repair under metabolic stress.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1 , Células Cultivadas , Neovascularización Fisiológica/fisiología , Células Endoteliales/metabolismo , Neovascularización Patológica , Isquemia , Receptores Acoplados a Proteínas G/genética , Hiperglucemia/genética , Diabetes Mellitus Tipo 2/genética
17.
J Neurosci ; 44(22)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38548341

RESUMEN

The neurovascular unit (NVU) includes multiple different cell types, including neurons, astrocytes, endothelial cells, and pericytes, which respond to insults on very different time or dose scales. We defined differential vulnerability among these cell types, using response to two different insults: oxygen-glucose deprivation (OGD) and thrombin-mediated cytotoxicity. We found that neurons are most vulnerable, followed by endothelial cells and astrocytes. After temporary focal cerebral ischemia in male rats, we found significantly more injured neurons, compared with astrocytes in the ischemic area, consistent with differential vulnerability in vivo. We sought to illustrate different and shared mechanisms across all cell types during response to insult. We found that gene expression profiles in response to OGD differed among the cell types, with a paucity of gene responses shared by all types. All cell types activated genes relating to autophagy, apoptosis, and necroptosis, but the specific genes differed. Astrocytes and endothelial cells also activated pathways connected to DNA repair and antiapoptosis. Taken together, the data support the concept of differential vulnerability in the NVU and suggest that different elements of the unit will evolve from salvageable to irretrievable on different time scales while residing in the same brain region and receiving the same (ischemic) blood flow. Future work will focus on the mechanisms of these differences. These data suggest future stroke therapy development should target different elements of the NVU differently.


Asunto(s)
Astrocitos , Células Endoteliales , Neuronas , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Astrocitos/metabolismo , Astrocitos/patología , Células Endoteliales/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Glucosa/deficiencia , Glucosa/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Pericitos/metabolismo , Pericitos/patología , Acoplamiento Neurovascular/fisiología
18.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38565288

RESUMEN

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Transducción de Señal , Canales Catiónicos TRPM , Animales , Masculino , Ratones , Isquemia Encefálica/metabolismo , Región CA1 Hipocampal/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Neuronas GABAérgicas/metabolismo , Paro Cardíaco/complicaciones , Paro Cardíaco/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Inhibición Neural/fisiología , Receptores de GABA-A/metabolismo , Canales Catiónicos TRPM/metabolismo
19.
J Biol Chem ; 300(8): 107520, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950862

RESUMEN

Acute kidney injury (AKI) is a common condition associated with significant morbidity, mortality, and cost. Injured kidney tissue can regenerate after many forms of AKI. However, there are no treatments in routine clinical practice to encourage recovery. In part, this shortcoming is due to an incomplete understanding of the genetic mechanisms that orchestrate kidney recovery. The advent of high-throughput sequencing technologies and genetic mouse models has opened an unprecedented window into the transcriptional dynamics that accompany both successful and maladaptive repair. AKI recovery shares similar cell-state transformations with kidney development, which can suggest common mechanisms of gene regulation. Several powerful bioinformatic strategies have been developed to infer the activity of gene regulatory networks by combining multiple forms of sequencing data at single-cell resolution. These studies highlight not only shared stress responses but also key changes in gene regulatory networks controlling metabolism. Furthermore, chromatin immunoprecipitation studies in injured kidneys have revealed dynamic epigenetic modifications at enhancer elements near target genes. This review will highlight how these studies have enhanced our understanding of gene regulation in injury response and regeneration.


Asunto(s)
Lesión Renal Aguda , Regeneración , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Humanos , Regulación de la Expresión Génica , Riñón/metabolismo , Redes Reguladoras de Genes , Epigénesis Genética , Ratones
20.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-37886839

RESUMEN

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Asunto(s)
Lesiones Cardíacas , Células Madre Pluripotentes Inducidas , Infarto del Miocardio , Animales , Humanos , Ratones , Animales Recién Nacidos , Proliferación Celular , Corazón , Lesiones Cardíacas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mamíferos , Miocitos Cardíacos/metabolismo , Regeneración , Versicanos/genética , Versicanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA