Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 167(1): 219-232.e14, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662090

RESUMEN

Gene silencing is instrumental to interrogate gene function and holds promise for therapeutic applications. Here, we repurpose the endogenous retroviruses' silencing machinery of embryonic stem cells to stably silence three highly expressed genes in somatic cells by epigenetics. This was achieved by transiently expressing combinations of engineered transcriptional repressors that bind to and synergize at the target locus to instruct repressive histone marks and de novo DNA methylation, thus ensuring long-term memory of the repressive epigenetic state. Silencing was highly specific, as shown by genome-wide analyses, sharply confined to the targeted locus without spreading to nearby genes, resistant to activation induced by cytokine stimulation, and relieved only by targeted DNA demethylation. We demonstrate the portability of this technology by multiplex gene silencing, adopting different DNA binding platforms and interrogating thousands of genomic loci in different cell types, including primary T lymphocytes. Targeted epigenome editing might have broad application in research and medicine.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Edición Génica/métodos , Silenciador del Gen , Marcación de Gen/métodos , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/metabolismo , Dominio Catalítico , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Células Madre Embrionarias/metabolismo , Ingeniería Genética , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Proteínas Represoras/genética , Linfocitos T/metabolismo
2.
Annu Rev Cell Dev Biol ; 31: 429-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26393776

RESUMEN

Transposable elements (TEs) account for at least 50% of the human genome. They constitute essential motors of evolution through their ability to modify genomic architecture, mutate genes and regulate gene expression. Accordingly, TEs are subject to tight epigenetic control during the earliest phases of embryonic development via histone and DNA methylation. Key to this process is recognition by sequence-specific RNA- and protein-based repressors. Collectively, these mediators are responsible for silencing a very broad range of TEs in an evolutionarily dynamic fashion. As a consequence, mobile elements and their controllers exert a marked influence on transcriptional networks in embryonic stem cells and a variety of adult tissues. The emerging picture is not that of a simple arms race but rather of a massive and sophisticated enterprise of TE domestication for the evolutionary benefit of the host.


Asunto(s)
Elementos Transponibles de ADN/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Evolución Biológica , Células Madre Embrionarias/fisiología , Epigénesis Genética/genética , Humanos , Transcripción Genética/genética
3.
Immunity ; 50(2): 334-347.e9, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30709743

RESUMEN

Elevated endogenous retrovirus (ERV) transcription and anti-ERV antibody reactivity are implicated in lupus pathogenesis. Overproduction of non-ecotropic ERV (NEERV) envelope glycoprotein gp70 and resultant nephritis occur in lupus-prone mice, but whether NEERV mis-expression contributes to lupus etiology is unclear. Here we identified suppressor of NEERV (Snerv) 1 and 2, Krüppel-associated box zinc-finger proteins (KRAB-ZFPs) that repressed NEERV by binding the NEERV long terminal repeat to recruit the transcriptional regulator KAP1. Germline Snerv1/Snerv2 deletion increased activating chromatin modifications, transcription, and gp70 expression from NEERV loci. F1 crosses of lupus-prone New Zealand Black (NZB) and 129 mice to Snerv1/Snerv2-/- mice failed to restore NEERV repression, demonstrating that loss of SNERV underlies the lupus autoantigen gp70 overproduction that promotes nephritis in susceptible mice and that SNERV encodes for Sgp3 (in NZB mice) and Gv-1 loci (in 129 mice). Increased ERV expression in lupus patients inversely correlated with three putative ERV-suppressing KRAB-ZFPs, suggesting that loss of KRAB-ZFP-mediated ERV control may contribute to human lupus pathogenesis.


Asunto(s)
Proteínas Portadoras/inmunología , Retrovirus Endógenos/inmunología , Glicoproteínas/inmunología , Nefritis Lúpica/inmunología , Chaperonas Moleculares/inmunología , Proteínas Nucleares/inmunología , Proteínas Represoras/inmunología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Regulación de la Expresión Génica/inmunología , Predisposición Genética a la Enfermedad/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Nefritis Lúpica/genética , Nefritis Lúpica/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Endogámicos NZB , Ratones Noqueados , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
4.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003570

RESUMEN

The global cancer burden remains high; thus, a better understanding of the molecular mechanisms driving carcinogenesis is needed to improve current prevention and treatment options. We previously detected the ZNF643/ZFP69B gene upregulated in multiple tumors, and we speculated it may play a role in tumor biology. To test this hypothesis, we employed TCGA-centered databases to correlate ZNF643 status with various clinicopathological parameters. We also performed RNA-seq analysis and in vitro studies assessing cancer cell phenotypes, and we searched for ZNF643-bound genomic loci. Our data indicated higher levels of ZNF643 in most analyzed tumors compared to normal samples, possibly due to copy number variations. ZNF643 mRNA correlated with diverse molecular and immune subtypes and clinicopathological features (tumor stage, grade, patient survival). RNA-seq analysis revealed that ZNF643 silencing triggers the deregulation of the genes implicated in various cancer-related processes, such as growth, adhesion, and immune system. Moreover, we observed that ZNF643 positively influences cell cycle, migration, and invasion. Finally, our ChIP-seq analysis indicated that the genes associated with ZNF643 binding are linked to adhesion and immune signaling. In conclusion, our data confirm the oncogenic properties of ZNF643 and pinpoint its impact on cell adhesion and immune processes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Humanos , Adhesión Celular/genética , Neoplasias/genética , Carcinogénesis/genética , Inmunidad , Regulación Neoplásica de la Expresión Génica
5.
Mol Biol Evol ; 38(6): 2468-2474, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33560369

RESUMEN

The genomes of inbred mice harbor around 50 endogenous murine leukemia virus (MLV) loci, although the specific complement varies greatly between strains. The Gv1 locus is known to control the transcription of endogenous MLVs and to be the dominant determinant of cell-surface presentation of MLV envelope, the GIX antigen. Here, we identify a single Krüppel-associated box zinc finger protein (ZFP) gene, Zfp998, as Gv1 and show it to be necessary and sufficient to determine the GIX+ phenotype. By long-read sequencing of bacterial artificial chromosome clones from 129 mice, the prototypic GIX+ strain, we reveal the source of sufficiency and deficiency as splice-acceptor variations and highlight the varying origins of the chromosomal region encompassing Gv1. Zfp998 becomes the second identified ZFP gene responsible for epigenetic suppression of endogenous MLVs in mice and further highlights the prominent role of this gene family in control of endogenous retroviruses.


Asunto(s)
Retrovirus Endógenos/fisiología , Interacciones Huésped-Patógeno/genética , Virus de la Leucemia Murina/fisiología , Animales , Interacciones Huésped-Patógeno/inmunología , Ratones
6.
Development ; 146(19)2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-30846446

RESUMEN

Global epigenetic reprogramming is vital to purge germ cell-specific epigenetic features to establish the totipotent state of the embryo. This process transpires to be carefully regulated and is not an undirected, radical erasure of parental epigenomes. The TRIM28 complex has been shown to be crucial in embryonic epigenetic reprogramming by regionally opposing DNA demethylation to preserve vital parental information to be inherited from germline to soma. Yet the DNA-binding factors guiding this complex to specific targets are largely unknown. Here, we uncover and characterize a novel, maternally expressed, TRIM28-interacting KRAB zinc-finger protein: ZFP708. It recruits the repressive TRIM28 complex to RMER19B retrotransposons to evoke regional heterochromatin formation. ZFP708 binding to these hitherto unknown TRIM28 targets is DNA methylation and H3K9me3 independent. ZFP708 mutant mice are viable and fertile, yet embryos fail to inherit and maintain DNA methylation at ZFP708 target sites. This can result in activation of RMER19B-adjacent genes, while ectopic expression of ZFP708 results in transcriptional repression. Finally, we describe the evolutionary conservation of ZFP708 in mice and rats, which is linked to the conserved presence of the targeted RMER19B retrotransposons in these species.


Asunto(s)
Represión Epigenética , Proteínas Represoras/metabolismo , Retroelementos/genética , Dedos de Zinc , Animales , Secuencia de Bases , Sitios de Unión/genética , Blastocisto/metabolismo , Metilación de ADN/genética , Embrión de Mamíferos/metabolismo , Evolución Molecular , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Unión Proteica/genética , Ratas , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito/metabolismo
7.
Development ; 144(15): 2719-2729, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765213

RESUMEN

Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Proteínas Represoras/química , Proteínas Represoras/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Dedos de Zinc/genética , Dedos de Zinc/fisiología
8.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29695433

RESUMEN

Cancer-causing herpesviruses infect nearly every human and persist indefinitely in B lymphocytes in a quiescent state known as latency. A hallmark of this quiescence or latency is the presence of extrachromosomal viral genomes with highly restricted expression of viral genes. Silencing of viral genes ensures both immune evasion by the virus and limited pathology to the host, yet how multiple genes on multiple copies of viral genomes are simultaneously silenced is a mystery. In a unifying theme, we report that both cancer-causing human herpesviruses, despite having evolved independently, are silenced through the activities of two members of the Krüppel-associated box (KRAB) domain-zinc finger protein (ZFP) (KRAB-ZFP) epigenetic silencing family, revealing a novel STAT3-KRAB-ZFP axis of virus latency. This dual-edged antiviral strategy restricts the destructive ability of the lytic phase while promoting the cancer-causing latent phase. These findings also unveil roles for KRAB-ZFPs in silencing of multicopy foreign genomes with the promise of evicting herpesviruses to kill viral cancers bearing clonal viral episomes.IMPORTANCE Despite robust immune responses, cancer-causing viruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) persist for life. This persistence is accomplished partly through a stealth mechanism that keeps extrachromosomal viral genomes quiescent. Quiescence, or latency, ensures that not every cell harboring viral genomes is killed directly through lytic activation or indirectly via the immune response, thereby evicting virus from host. For the host, quiescence limits pathology. Thus, both virus and host benefit from quiescence, yet how quiescence is maintained through silencing of a large set of viral genes on multiple viral genomes is not well understood. Our studies reveal that members of a gene-silencing family, the KRAB-ZFPs, promote quiescence of both cancer-causing human viruses through simultaneous silencing of multiple genes on multicopy extrachromosomal viral genomes.


Asunto(s)
Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/patogenicidad , Proteínas Represoras/metabolismo , Factor de Transcripción STAT3/metabolismo , Activación Viral/fisiología , Latencia del Virus/fisiología , Carcinogénesis , Niño , Genoma Viral , Infecciones por Herpesviridae/metabolismo , Herpesvirus Humano 8/aislamiento & purificación , Humanos , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Replicación Viral
9.
Viruses ; 16(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39205286

RESUMEN

Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.


Asunto(s)
Retrovirus Endógenos , Epigénesis Genética , Retrovirus Endógenos/genética , Humanos , Animales , Metilación de ADN , Regulación Viral de la Expresión Génica , Transcripción Genética , Transcripción Viral/genética , Infecciones por Retroviridae/virología
10.
Genes Dis ; 10(5): 1820-1832, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37492743

RESUMEN

Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.

11.
Front Cell Dev Biol ; 11: 1124374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910142

RESUMEN

Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to the extreme, prompting the question of whether TE silencing also deviates from typical conditions. To address this question, we characterize TE silencing via two pathways-the piRNA pathway and KRAB-ZFP transcriptional repression-in the male and female gonads of Ranodon sibiricus, a salamander species with a ∼21 Gb genome. We quantify 1) genomic TE diversity, 2) TE expression, and 3) small RNA expression and find a significant relationship between the expression of piRNAs and TEs they target for silencing in both ovaries and testes. We also quantified TE silencing pathway gene expression in R. sibiricus and 14 other vertebrates with genome sizes ranging from 1 to 130 Gb and find no association between pathway expression and genome size. Taken together, our results reveal that the gigantic R. sibiricus genome includes at least 19 putatively active TE superfamilies, all of which are targeted by the piRNA pathway in proportion to their expression levels, suggesting comprehensive piRNA-mediated silencing. Testes have higher TE expression than ovaries, suggesting that they may contribute more to the species' high genomic TE load. We posit that apparently conflicting interpretations of TE silencing and genomic gigantism in the literature, as well as the absence of a correlation between TE silencing pathway gene expression and genome size, can be reconciled by considering whether the TE community or the host is currently "on the attack" in the arms race dynamic.

12.
Mob DNA ; 13(1): 25, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357895

RESUMEN

BACKGROUND: Krüppel Associated Box-containing Zinc Finger Proteins (KRAB-ZFPs), representing the largest superfamily of transcription factors in mammals, are predicted to primarily target and repress transposable elements (TEs). It is challenging to dissect the distinct functions of these transcription regulators due to their sequence similarity and diversity, and also the complicated repetitiveness of their targeting TE sequences. RESULTS: Mouse KRAB-Zfps are mainly organized into clusters genomewide. In this study, we revealed that the intra-cluster members had a close evolutionary relationship, and a similar preference for zinc finger (ZnF) usage. KRAB-Zfps were expressed in a cell type- or tissue type specific manner and they tended to be actively transcribed together with other cluster members. Further sequence analyses pointed out the linker sequences in between ZnFs were conserved, and meanwhile had distinct cluster specificity. Based on these unique characteristics of KRAB-Zfp clusters, sgRNAs were designed to edit cluster-specific linkers to abolish the functions of the targeted cluster(s). Using mouse embryonic stem cells (mESC) as a model, we screened and obtained a series of sgRNAs targeting various highly expressed KRAB-Zfp clusters. The effectiveness of sgRNAs were verified in a reporter assay exclusively developed for multi-target sgRNAs and further confirmed by PCR-based analyses. Using mESC cell lines inducibly expressing Cas9 and these sgRNAs, we found that editing different KRAB-Zfp clusters resulted in the transcriptional changes of distinct categories of TEs. CONCLUSIONS: Collectively, the intrinsic sequence correlations of intra-cluster KRAB-Zfp members discovered in this study suggest that the conserved cluster specific linkers played crucial roles in diversifying the tandem ZnF array and the related target specificity of KRAB-Zfps during clusters' evolution. On this basis, an effective CRISPR-Cas9 based approach against the linker sequences is developed and verified for rapidly editing KRAB-Zfp clusters to identify the regulatory correlation between the cluster members and their potential TE targets.

13.
Viruses ; 13(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066537

RESUMEN

The success of long-term host-virus partnerships is predicated on the ability of the host to limit the destructive potential of the virus and the virus's skill in manipulating its host to persist undetected yet replicate efficiently when needed. By mastering such skills, herpesviruses persist silently in their hosts, though perturbations in this host-virus equilibrium can result in disease. The heterochromatin machinery that tightly regulates endogenous retroviral elements and pericentromeric repeats also silences invading genomes of alpha-, beta-, and gammaherpesviruses. That said, how these viruses disrupt this constitutive heterochromatin machinery to replicate and spread, particularly in response to disparate lytic triggers, is unclear. Here, we review how the cancer-causing gammaherpesvirus Epstein-Barr virus (EBV) uses the inflammasome as a security system to alert itself of threats to its cellular home as well as to flip the virus-encoded lytic switch, allowing it to replicate and escape in response to a variety of lytic triggers. EBV provides the first example of an infectious agent able to actively exploit the inflammasome to spark its replication. Revealing an unexpected link between the inflammasome and the epigenome, this further brings insights into how the heterochromatin machinery uses differential strategies to maintain the integrity of the cellular genome whilst guarding against invading pathogens. These recent insights into EBV biology and host-viral epigenetic regulation ultimately point to the NLRP3 inflammasome as an attractive target to thwart herpesvirus reactivation.


Asunto(s)
Carcinogénesis , Herpesviridae/genética , Heterocromatina/genética , Heterocromatina/inmunología , Inflamasomas/genética , Inflamasomas/inmunología , Replicación Viral/inmunología , Línea Celular Tumoral , Epigénesis Genética , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/virología , Herpesviridae/fisiología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/inmunología , Humanos , Activación Viral , Latencia del Virus/fisiología , Replicación Viral/genética
14.
Elife ; 92020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32479262

RESUMEN

The Krüppel-associated box zinc finger protein (KRAB-ZFP) family diversified in mammals. The majority of human KRAB-ZFPs bind transposable elements (TEs), however, since most TEs are inactive in humans it is unclear whether KRAB-ZFPs emerged to suppress TEs. We demonstrate that many recently emerged murine KRAB-ZFPs also bind to TEs, including the active ETn, IAP, and L1 families. Using a CRISPR/Cas9-based engineering approach, we genetically deleted five large clusters of KRAB-ZFPs and demonstrate that target TEs are de-repressed, unleashing TE-encoded enhancers. Homozygous knockout mice lacking one of two KRAB-ZFP gene clusters on chromosome 2 and chromosome 4 were nonetheless viable. In pedigrees of chromosome 4 cluster KRAB-ZFP mutants, we identified numerous novel ETn insertions with a modest increase in mutants. Our data strongly support the current model that recent waves of retrotransposon activity drove the expansion of KRAB-ZFP genes in mice and that many KRAB-ZFPs play a redundant role restricting TE activity.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN , Proteínas Represoras , Retroelementos/genética , Dedos de Zinc/genética , Animales , Sistemas CRISPR-Cas , ADN/química , ADN/genética , ADN/metabolismo , Evolución Molecular , Edición Génica , Ratones , Ratones Noqueados , Mutación/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Genetics ; 211(3): 831-845, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30593494

RESUMEN

The epigenetic landscape varies greatly among cell types. Although a variety of writers, readers, and erasers of epigenetic features are known, we have little information about the underlying regulatory systems controlling the establishment and maintenance of these features. Here, we have explored how natural genetic variation affects the epigenome in mice. Studying levels of H3K4me3, a histone modification at sites such as promoters, enhancers, and recombination hotspots, we found tissue-specific trans-regulation of H3K4me3 levels in four highly diverse cell types: male germ cells, embryonic stem cells, hepatocytes, and cardiomyocytes. To identify the genetic loci involved, we measured H3K4me3 levels in male germ cells in a mapping population of 59 BXD recombinant inbred lines. We found extensive trans-regulation of H3K4me3 peaks, including six major histone quantitative trait loci (QTL). These chromatin regulatory loci act dominantly to suppress H3K4me3, which at hotspots reduces the likelihood of subsequent DNA double-strand breaks. QTL locations do not correspond with genes encoding enzymes known to metabolize chromatin features. Instead their locations match clusters of zinc finger genes, making these possible candidates that explain the dominant suppression of H3K4me3. Collectively, these data describe an extensive, set of chromatin regulatory loci that control the epigenetic landscape.


Asunto(s)
Células Madre Embrionarias/metabolismo , Epigénesis Genética , Hepatocitos/metabolismo , Código de Histonas , Miocitos Cardíacos/metabolismo , Espermatogonias/metabolismo , Animales , Células Cultivadas , Ensamble y Desensamble de Cromatina , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Especificidad de Órganos , Sitios de Carácter Cuantitativo , Recombinación Genética
16.
J Mol Biol ; 431(14): 2511-2527, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31078555

RESUMEN

TRIM28 (also known as KAP1 or TIF1ß) is the universal co-repressor of the Krüppel-associated box-containing zinc finger proteins (Krab-ZFPs), the largest family of transcription factors in mammals. During early embryogenesis, TRIM28 mediates the transcriptional silencing of many endogenous retroviral elements and genomic imprinted sites. Silencing is initiated by the recruitment of TRIM28 to a target locus by members of the Krab-ZFP. Subsequently, TRIM28 functions as a scaffold protein to recruit chromatin modifying effectors featuring SETDB1, HP1 and the NuRD complex. Although many protein partners involved in silencing have been identified, the molecular basis of the protein interactions that mediate silencing remains largely unclear. In the present study, we identified the first Bbox domain (T28_B1 135-203) as a molecular interface responsible for the formation of higher-order oligomers of TRIM28. The structure of this domain reveals a new interface on the surface of the Bbox domain. Mutants disrupting the interface disrupt the formation of oligomers but have no observed effect on transcriptional silencing defining a single TRIM28 dimer as the functional unit for silencing. Using assembly-deficient mutants, we employed small-angle X-ray scattering and biophysical techniques to characterize binding to member of the Krab-ZFP family. This allows us to narrow and define the binding interface to the center of the coiled-coil region (residues 294-321) of TRIM28 and define mutants that abolish binding to the Krab-ZFP proteins.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Células Cultivadas , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Embrionarias/citología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/química , Factores de Transcripción de Tipo Kruppel/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Proteína 28 que Contiene Motivos Tripartito/química , Proteína 28 que Contiene Motivos Tripartito/genética
17.
Cell Biosci ; 7: 33, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28670441

RESUMEN

BACKGROUND: Accumulating evidence demonstrates that the KRAB-ZNFs involve in various biological processes. As a typical member of KRAB-ZNFs, dysregulation of ZNF300 contributes to multiple pathologies such as leukemia and cancer. However, mechanisms underlying ZNF300 tight regulation and its pathophysiological function remain largely unknown. METHODS: The effect of ZNF300ZFR on gene transcriptional activity was measured by Dual luciferase reporter system. ChIP-PCR assay were performed to detect the enrichment of ZNF300 protein and H3K9Ac in the ZNF300 gene. Co-immunoprecipitation assays followed by western blot were performed to detect the interaction between ZNF300 and KAP1. The DNA methylation in the ZNF300 gene promoter was analyzed by BSP. ZNF300 function on K562 cell differentiation was analyzed by flow cytometry. RESULTS: In this study, we found that the zinc finger domain-encoding region (ZFR) of ZNF300 functioned as a repressor possibly by mediating DNA methylation and ZNF300 bound to its ZNF300ZFR, suggesting a potential auto-inhibition mechanism. To support this, DNA methylation inhibition upregulated ZNF300 expression and ZNF300 overexpression inhibited endogenous ZNF300 expression. More importantly, DNA methylation inhibition restored megakaryocyte differentiation in K562 cells suppressed by ZNF300 downregulation, suggesting an important role of DNA methylation in ZNF300 function. Interestingly, ZNF300 knockdown restored global H3K9Ac that was reduced in K562 cells undergoing megakaryocyte differentiation. CONCLUSIONS: Our study revealed novel features of ZNF300 that possibly mediate its regulation and function by modulating epigenetic modifications.

18.
Viruses ; 9(6)2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561791

RESUMEN

Transposable elements, including endogenous retroviruses (ERVs), comprise almost 45% of the human genome. This could represent a significant pathogenic burden but it is becoming more evident that many of these elements have a positive contribution to make to normal human physiology. In particular, the contributions of human ERVs (HERVs) to gene regulation and the expression of noncoding RNAs has been revealed with the help of new and emerging genomic technologies. HERVs have the common provirus structure of coding open reading frames (ORFs) flanked by two long-terminal repeats (LTRs). However, over the course of evolution and as a consequence of host defence mechanisms, most of the sequences contain INDELs, mutations or have been reduced to single LTRs by recombination. These INDELs and mutations reduce HERV activity. However, there is a trade-off for the host cells in that HERVs can provide beneficial sources of genetic variation but with this benefit comes the risk of pathogenic activity and spread within the genome. For example, the LTRs are of critical importance as they contain promoter sequences and can regulate not only HERV expression but that of human genes. This is true even when the LTRs are located in intergenic regions or are in antisense orientation to the rest of the gene. Uncontrolled, this promoter activity could disrupt normal gene expression or transcript processing (e.g., splicing). Thus, control of HERVs and particularly their LTRs is essential for the cell to manage these elements and this control is achieved at multiple levels, including epigenetic regulations that permit HERV expression in the germline but silence it in most somatic tissues. We will discuss some of the common epigenetic mechanisms and how they affect HERV expression, providing detailed discussions of HERVs in stem cell, placenta and cancer biology.


Asunto(s)
Retrovirus Endógenos/genética , Epigénesis Genética , Regulación Viral de la Expresión Génica , Secuencias Repetidas Terminales , Humanos
19.
Methods Mol Biol ; 1400: 403-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26895067

RESUMEN

Deposition of epigenetic marks is an important layer of the transcriptional control of retrotransposons, especially during early embryogenesis. Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are one of the largest families of transcription factors, and collectively partake in this process by tethering to thousands of retroelement-containing genomic loci their cofactor KAP1, which acts as a scaffold for a heterochromatin-inducing machinery. However, while the sequence-specific DNA binding potential of the poly-zinc finger-containing KRAB-ZFPs is recognized, very few members of the family have been assigned specific targets. In this chapter, we describe a large-scale functional screen to identify the retroelements bound by individual murine KRAB-ZFPs. Our method is based on the automated transfection of a library of mouse KRAB-ZFP-containing vectors into 293T cells modified to express GFP from a PGK promoter harboring in its immediate vicinity a KAP1-recruiting retroelement-derived sequence. Analysis is then performed by plate reader and flow cytometry fluorescence readout. Such large-scale DNA-centered functional approach can not only help to identify the trans-acting factors responsible for silencing retrotransposons, but also serve as a model for dissecting the transcriptional networks influenced by retroelement-derived cis-acting sequences.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Proteínas Represoras/metabolismo , Retroelementos , Animales , Línea Celular , Clonación Molecular , Regulación de la Expresión Génica , Biblioteca de Genes , Humanos , Ratones , Unión Proteica , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Nucleus ; 5(2): 138-48, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24699165

RESUMEN

The ability of adaptive immune system to protect higher vertebrates from pathogens resides in the ability of B and T cells to express different antigen specific receptors and to respond to different threats by activating distinct differentiation and/or activation pathways. In the past 10 years, the major role of epigenetics in controlling molecular mechanisms responsible for these peculiar features and, more in general, for lymphocyte development has become evident. KRAB-ZFPs is the widest family of mammalian transcriptional repressors, which function through the recruitment of the co-factor KRAB-Associated Protein 1 (KAP1) that in turn engages histone modifiers inducing heterochromatin formation. Although most of the studies on KRAB proteins have been performed in embryonic cells, more recent reports highlighted a relevant role for these proteins also in adult tissues. This article will review the role of KRAB-ZFP and KAP1 in the epigenetic control of mouse and human adaptive immune cells.


Asunto(s)
Inmunidad Adaptativa , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Humanos , Factores de Transcripción de Tipo Kruppel/química , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA