Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Appl Radiat Isot ; 202: 111058, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797449

RESUMEN

The beta spectrum of the main transition of the ß- decay of 171Tm was measured using a double focalizing spectrometer. The instrument was lately improved in order to reduce its low energy threshold to 34 keV. We used the spectrometer to measure the beta spectrum end-point energy of the main transition of 171Tm decay using the Kurie plot formalism. We report a new value of 97.60(38) keV, which is in agreement with previous measurements. In addition, the spectrum shape was compared with the ξ-approximation calculation where the shape factor is equal to 1 and good agreement was found between the theory and the measurement at the 1% level.

2.
Appl Radiat Isot ; 185: 110237, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35452904

RESUMEN

The beta decay of 151Sm was measured by means of a metallic magnetic calorimeter. The measurement and subsequent analysis yielded a beta spectrum with an outstanding high-energy resolution of about 70 eV (FWHM) at 22 keV and a very low energy threshold well below 400 eV. The spectrum exhibited unexpectedly elevated beta emission probabilities at very low energy that we have not been able to reproduce in our theoretical study. The data analysis was thus scrutinized and an independent analysis of the same data set carried out. All new approaches have confirmed the previously found shape of the beta spectrum. The measured spectrum was compared to predictions from an advanced theoretical modeling that includes the atomic exchange effect, precise radiative corrections as well as the realistic nuclear structure that usually plays an important role in first forbidden non-unique transitions. The measured spectrum was then carefully analyzed to determine the maximum beta energy, which was found to be Q = 76.430(68) keV. The dominant beta decay of 151Sm populates the ground state of 151Eu, and a weak beta branch populates the first excited state of 151Eu. From our measurements, the probabilities of these two branches were determined to be 99.31(11)% and 0.69(11)%, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA