Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 243: 117896, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38081348

RESUMEN

Understanding the dynamics and succession of phytoplankton in large lakes can help inform future lake management. The study analyzed phytoplankton community variations in Lake Taihu over a 21-year period, focusing on realized niches and their impact on succession. The study developed a niche periodic table with 32 niches, revealing responses to environmental factors and the optimal number of niches. Results showed that the phytoplankton in Lake Taihu showed significant spatial and temporal heterogeneity, with biomass decreasing as one moved from the northwest to the southeast and expanding towards central lake area, and towards autumn and winter. Different phytoplankton groups in Lake Taihu occupied realized niches shaped by temperature, nitrate, and phosphate. To predict the response of eutrophic freshwater lake ecosystems to human activities and climate change, it is critical to interpret the law of phytoplankton bloom and niche succession.


Asunto(s)
Ecosistema , Fitoplancton , Humanos , Fitoplancton/fisiología , Lagos , Biomasa , China , Eutrofización , Monitoreo del Ambiente/métodos
2.
J Environ Sci (China) ; 139: 34-45, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105060

RESUMEN

In this study, sediment organic phosphorus (OP) and organic carbon (OC) in Lake Taihu, China, as well as their relationships, were analyzed during the outbreak and decline of algal blooms (ABs) over a five-month field study. The results showed synchronous temporal changes in the sediment OP and OC contents with the development of ABs. In addition, there was a significant positive correlation between the sediment OP and OC (p < 0.01), suggesting simultaneous deposition and consumption during the ABs outbreak. The sediment OP and OC contents decreased significantly at the early and last stages of the ABs outbreak and increased at the peak of the ABs outbreak and during the ABs decline. These temporal variation patterns suggest that the sediment OC and OP contents did not consistently increase during the ABs outbreak, even though algae are an important source of organic matter in sediments. The depletion or enrichment of OC and OP in sediments may also depend on the scale of the ABs outbreak. The obtained results revealed significant differences in the sediment OC and OP contents between the months (p < 0.05). In addition, OP in the sediments was dominated by orthophosphate diester (phospholipids and DNA-P) and orthophosphate monoester during the ABs outbreak and decline, respectively. The active OC contents and proportions in the sediments in the ABs outbreak were significantly lower than those observed in the ABs decline period, demonstrating the significant impacts of the ABs outbreak and decline on the sediment OC and OP in Lake Taihu.


Asunto(s)
Lagos , Contaminantes Químicos del Agua , Fósforo/análisis , Carbono , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Eutrofización , China , Fosfatos
3.
Environ Res ; 237(Pt 1): 116922, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598844

RESUMEN

Shallow lakes are an important natural source of atmospheric methane (CH4), and the input of autochthonous organic matter (OM) into their sediments encourages methanogenesis. Although algal- and macrophytic-originated OM in these lakes are expected to have different impacts on methanogenesis and methanogenic archaeal communities in lake sediments owing to their various properties, their specific influence and role in sediment remain unclear. In this study, a 148-day incubation was carried out by adding algal- and macrophytic-OM to the sediments of shallow eutrophic Lake Chaohu and Lake Taihu in China. CH4 was periodically monitored, while the methanogens were examined via qPCR and high-throughput sequencing at the end of incubation. Algal-OM stimulated CH4 production more than macrophytic-OM in both sediments, with the rates initially increasing and then decreasing before reaching a relative constant. Macrophytic-OM promoted CH4 production to a comparable extent in both lakes, while algal-OM promoted greater CH4 in Lake Chaohu than in Lake Taihu. However, algal-OM did not significantly increase mcrA gene copies, while macrophytic-OM did by 17.0-20.1-fold. Algal-OM potentially promoted the methylotrophic pathway in Lake Taihu but did not change the methanogenic structure in Lake Chaohu. Comparatively, macrophytic-OM promoted CH4 production mainly by acetoclastic methanogen proliferation in both lakes. More CH4 release with algal-OM compared to macrophytic-OM deserves further attention owing to the prevailing increasing algal blooms and the declining macrophyte population in lakes.

4.
Can J Microbiol ; 69(6): 228-239, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36753712

RESUMEN

To elucidate the effects of environmental heterogeneity on diversity, composition, and degree of overlap between free-living (FL) and particle-attached (PA) bacteria, we sampled large, shallow, eutrophic Lake Taihu, China across gradients spanning riverine inflow, cyanobacterial blooms, and the open limnetic area. Using high-throughput sequencing of the 16S rRNA gene, we show that (i) bacterial communities near riverine inflow had high α-diversity and a high degree of overlap between FL and PA lifestyles, (ii) communities in cyanobacterial blooms have reduced α-diversity within the PA lifestyle, and (iii) communities from the limnetic area had the lowest bacterial α-diversity within the FL lifestyle and a medium degree of overlap between the FL and PA lifestyles. Redundancy analysis showed that the variation of the FL bacterial community was shaped by suspended solids and total phosphorous, while the variation of the PA bacterial community was shaped by suspended solids, dissolved oxygen, and the percentage of organic matter in suspended solids. This study highlights the importance of environmental heterogeneity, riverine input, cyanobacterial blooms, and nutrient status on the spatial distribution patterns of FL and PA bacterial communities in freshwater lakes.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , ARN Ribosómico 16S/genética , Biodiversidad , Cianobacterias/genética , China , Eutrofización
5.
J Environ Manage ; 326(Pt B): 116833, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435125

RESUMEN

Global distribution and health threats of microcystins (MCs) have received much more attention, but there are still significant knowledge gaps in the peak periods and driving factors of MC in different phases of freshwater ecosystems. Thus, we systematically analyzed the annual variation of different MC congeners (-LR, -RR, and -YR, where L, R, and Y respectively represent leucine, arginine, and tyrosine) in particulates, dissolved water, and sediments in three eutrophic bays of Lake Taihu, China. The results indicated that particulate MCs concentration was the highest, followed by dissolved and sediment MC, with the mean concentration of 7.58 µg/L, 1.48 µg/L, and 0.15 µg/g (DW), respectively. Except for particulate MC, the concentrations of the other two types of MC showed significant differences among the three bays. The dominant congeners of the three types of MCs were different, with the highest proportion of MC-LR being observed in sediment MCs and the lowest in particulate MCs. The peak period of the three types of MC was also different, with particulate MCs reaching their peak in July and October, dissolved MCs in May to July and October, and sediment MCs reaching their peak in September. Consistent with our hypothesis, the dynamics of different types of MCs were driven by different environmental factors. Particulate MCs were primarily related to biological parameters, followed by TP and dissolved carbon. By contrast, dissolved MCs strongly correlated with water temperature and dissolved oxygen. While sediment MCs were primarily driven by properties of sediments, followed by different forms of nitrogen in the water column. Our results suggested that particulate and dissolved MCs in northern Lake Taihu pose high health threats, especially in the peak period. Moreover, a more detailed and targeted risk management strategy should be designed to prevent the possible hazards posed by different types of MC.


Asunto(s)
Lagos , Microcistinas , Agua , Ecosistema , Monitoreo del Ambiente , Polvo , China
6.
J Environ Manage ; 344: 118406, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354595

RESUMEN

Climate warming impact on excessive nitrogen (N) load in sediment favours cyanobacterial blooms in eutrophic waters. The nitrate (NO3--N) and ammonium (NH4+-N) are two forms of N loads that contribute to algae blooms. However, little attention is paid to the impact of environmental factors on N loads variations at different time scales. This paper used a well-calibrated and validated EFDC model to investigate the temporal patterns and trends of ammonium and nitrate from June 2016 to June 2017. This paper presented the relationship and effects between these variations and environmental factors using data from satellite and reanalysis-based observations obtained for six meteorological parameters. The relationship and effects between these variations and environmental factors were also examined at different timescales (i.e., daily, monthly and seasonal scales). Model calibration results indicated that measured values reasonably matched simulated values. The validation results revealed that relative error (RE) values were within an acceptable range. The REs of ammonium at East Taihu (S12) and Xu Lake (S23) sampling sites were 55.83% and 57.61%, while that of nitrate was 24.37% (S12) and 41.08%, respectively. The daily analysis of NH4+-N and NO3--N variations was 7.318 ± 3.876 (g/m2/day) and 0.0275 ± 0.222 (g/m2/day), respectively. The monthly analysis showed NH4+-N and NO3-N range from 2.04 to 12.04 (g/m2/day) and 0.0008 to 0.064 (g/m2/day), respectively. The magnitude NH4+-N and NO3--N varied and showed distinct inter-monthly variations. , The relationship between sediment fluxes and meteorological parameters showed the magnitude of correlation coefficient (r) and strength of correlation varied significantly. At daily scales, the relationship of NH4+-N and NO3--N had a significant positive correlation with all meteorological parameters. At monthly, the correlation coefficient (r) of NH4+-N and NO3-N were heterogenous. At daily and monthly scales, air temperature and wind speed are the main drivers affecting sediment N loads' dynamics; however, the influence of relative humidity, precipitation, and evaporation on N loads are smaller. The study demonstrates the contribution of meteorological conditions to the magnitude and timing of N loadings variability in water bodies. The findings provide more insight into lake ecosystem protection and environmental remediation.


Asunto(s)
Compuestos de Amonio , Lagos , Ecosistema , Nitratos/análisis , Nitrógeno/análisis , Monitoreo del Ambiente , China , Eutrofización
7.
Environ Geochem Health ; 45(6): 3025-3039, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36136253

RESUMEN

Due to the allochthonous input of nutrients and species, the cumulative effects of water diversion on water-receiving lakes deserve attention. Taking the water diversion project from the Yangtze River to Lake Taihu (WDYT) as an example, we explored the temporal effects of WDYT on the phytoplankton community and physicochemical habitat of Lake Taihu in autumn and winter from 2013 to 2018. Although the short-term diversion significantly increased the risk of importing nutrients, the relatively high quality of the diversion water compared with other inflow rivers had improved the water quality of the water-receiving lake region. The seasonal water diversion significantly increased phytoplankton diversity and community network complexity and reshaped the lacustrine community to be diatom-dominated with their relative proportions of 24.1-64.9% during water diversion periods. The contributions of physicochemical habitat changes induced by water diversion to variations in phytoplankton communities were 24.0-28.0%. The differences in phytoplankton diversity, community composition and physicochemical habitat in the water-receiving lake region between the diversion and non-diversion years were more evident than those between the non-diversion years in the same season, when comparing the multivariate dispersion indices among them. However, the lacustrine phytoplankton community during non-diversion periods still has not been essentially altered after several years of diversion, so the pulse effects of short-term water diversion were more obvious than the long-term cumulative impacts. Better control of allochthonous nutrients, appropriate increase in inflow water, adhering to the long-term operation, should be effective to enhance ecological benefits of such water diversion projects.


Asunto(s)
Lagos , Fitoplancton , Lagos/química , Ríos/química , Calidad del Agua , Ecosistema , China
8.
J Environ Sci (China) ; 129: 79-89, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36804244

RESUMEN

Sediment core is the recorder of polycyclic aromatic hydrocarbon (PAH) pollutions and the associated sedimentary organic matter (SOM), acting as crucial supports for pollution control and environmental management. Here, the sedimentary records of PAHs and SOM in the past century in Lake Taihu, China, were reconstructed from a 50-cm sediment core. On the one hand, the presence of PAHs ranged from 8.99 to 199.2 ng/g. Vertically, PAHs declined with the depth increased, and the sedimentation history of PAHs was divided into two stages with a discontinuity at 20 cm depth. In composition, PAHs in the sediment core were dominated by three-ring PAHs (44.6% ± 9.1%, mean ± standard deviation), and were followed by four-ring (27.0% ± 3.3%), and five-ring (12.1% ± 4.0%) PAHs. In toxicity assessment, the sedimentary records of benzo[a]pyrene-based toxic equivalency were well described by an exponential model with R-square of 0.95, and the environmental background toxic value was identified as 1.62 ng/g. On the other hand, different components of SOM were successfully identified by n-alkane markers (p < 0.01) and the variations of SOM were well explained (84.6%). A discontinuity of SOM was recognized at 22 cm depth. Association study showed that the sedimentary PAHs were associated with both anthropogenic and biogenic SOM (p < 0.05) with explained variances for most individual PAHs of 60%. It indicated the vertical distributions of PAHs were driven by sedimentary SOM. Therefore, environmental processes such as biogenic factors should attract more attentions as well as PAH emissions to reduce the impacts of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Lagos , Monitoreo del Ambiente , Sedimentos Geológicos , China
9.
J Environ Sci (China) ; 127: 1-14, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522044

RESUMEN

Understanding the history of microcystins (MCs) pollution in large lakes can help inform future lake management. We collected sediment cores from Lake Taihu to: investigate the long-term record of MCs (MC-LR, MC-YR, and MC-RR), explore the main environmental drivers of MCs, and assess their public health and ecological risks. Results showed that MCs content in all cores increased over time. The core from north Taihu had the highest MC concentrations, with an average total MCs (sum of MC-LR, MC-YR, and MC-RR = TMCs) content of (74.31±328.55) ng/g. The core from eastern Taihu showed the lowest average TMCs content of (2.91±3.95) ng/g. PCA showed that sediment MCs at the three sites were positively correlated with sediment chlorophyll-a. MC-LR and MC-YR in northern and western Taihu negatively correlated with both the sediment total organic carbon/sediment total nitrogen ratio (STOC/STN) and water nitrate (NO3--N) concentration, but three MC congeners at eastern Taihu showed positive correlations with water orthophosphate (PO43--P), NO3--N, and STOC/STN. Generalized additive model analysis at each site revealed that NO3--N was the main TMCs driver in northern and western Taihu where phytoplankton dominated, whereas PO43--P was the main TMCs driver in eastern Taihu where macrophytes dominated. At the whole lake scale, total phosphorus (TP) and PO43--P were the most important environmental drivers influencing MCs; TP explained 47.4%, 44.2%, and 47.6% while orthophosphate explained 34.8%, 31.2%, and 34.7% of the deviance on TMCs, MC-LR, and MC-YR, respectively. NO3--N also showed a strong effect on MCs variation, especially on MC-YR. Risk assessment showed that both ecological and public health risk has increased in recent years. We conclude that while control of phosphorus and nitrogen input should be a major focus for future lake management, lake zone-specific management strategies may also be important.


Asunto(s)
Monitoreo del Ambiente , Microcistinas , Microcistinas/análisis , Fósforo/análisis , Nitrógeno/análisis , Medición de Riesgo , Fosfatos/análisis , Agua/análisis , China
10.
J Environ Manage ; 310: 114734, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35220103

RESUMEN

Cyanobacterial blooms are one of the most severe ecological problems affecting lakes. The vertical migration of cyanobacteria in the water column increases the uncertainty in the formation and disappearance of blooms, which may be closely associated with light, temperature, and wind speed. However, it is difficult to quantitatively evaluate the influencing factors of cyanobacteria vertical movement in natural environment compared to the laboratory experimental environment. Besides, both field survey and laboratory experiment method have the difficulties in determining the diurnal vertical migration of cyanobacteria at the synoptic lake scale. In this study, based on the diurnal dynamics of cyanobacterial bloom intensity (CBI) observed by the Geostationary Ocean Color Imager (GOCI) from 2011 to 2019, the daily variations, floating rate, and sinking rate of Microcystis aeruginosa were calculated in the natural environment. Then, the effects of light, temperature, and wind speed on the vertical migration of M. aeruginosa were analysed from the perspectives of day, night, and season. The results are as follows: the records of three typical patterns of diurnal CBI exhibited strong seasonal variability from the 9-year statistics; at night, the buoyancy recovery rate of cyanobacterial colonies increased with temperature, so that at temperature >15 °C and wind speed <3 m s-1, CBI reached the maximum of the whole day at 08:16; the sinking rate of M. aeruginosa was positively correlated with the cumulated light energy at both synoptic and pixel scale; the upward migration speed of M. aeruginosa was positively correlated with the maximum wind speed of the day before cyanobacterial bloom. Therefore, the severer cyanobacterial blooms were often observed by satellite images after strong winds. The analysis of diurnal variation, floating rate, and sinking rate of M. aeruginosa will expand our knowledge for further understanding the formation mechanism of cyanobacterial blooms and for improving the accuracy of model simulation to predict the hourly changes in cyanobacterial blooms in Lake Taihu.


Asunto(s)
Cianobacterias , Microcystis , China , Monitoreo del Ambiente/métodos , Eutrofización , Lagos
11.
Ecotoxicol Environ Saf ; 213: 112017, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33582414

RESUMEN

The distribution of hydrophobic organic contaminants (HOCs) in eutrophic ecosystems has been widely studied, but how phytoplankton blooms affect their occurrence and benthic bioaccumulation is poorly understood. To fill this knowledge gap, the biological pump effects of phytoplankton on the fate of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in sediments and benthos (Corbicula fluminea) from Lake Taihu, a hypereutrophic lake in China, were identified. The spatial-temporal distribution of HOCs suggests that higher phytoplankton biomass, coupled with sediment organic matter (SOM) content, greatly increased the concentration of HOCs in sediments in both winter and summer seasons. This could be attributed to the biological pump effects sequestering more HOCs from water to sediments with settling phytoplankton, especially during the summer. The biological pump effects further promoted the uptake of sediment-bound HOCs by benthos. The significant positive relationships between concentrations of HOCs in sediments and benthos were observed during the winter dormancy phase of benthos. Furthermore, the benthic bioaccumulation of HOCs could be strengthened by phytoplankton, due to their contribution to SOM and the following increased bioavailability of HOCs in sediments. Further research is needed to elucidate the phytoplankton biological pump effects on the fate of HOCs in benthic food chain, especially for hypereutrophic waters.


Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Clorados/análisis , Contaminantes Químicos del Agua/análisis , Bioacumulación , Biomasa , Ecosistema , Cadena Alimentaria , Sedimentos Geológicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Lagos/química , Proteínas de Transporte de Membrana , Plaguicidas/análisis , Fitoplancton , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año
12.
Bull Environ Contam Toxicol ; 106(1): 190-197, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32303814

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) pose great risks to lake ecosystem and human health. Comprehensive knowledge on PAHs in lakes is critical for their risk control. 118 samples were collected from different environmental medium to study the occurrence and fluxes of 16 PAH in Lake Taihu. The average ∑PAH16 in air, water, phytoplankton, zooplankton, suspended particle matter, and surface sediments were 122 ng m-3, 61.3 ng L-1, 6500 ng g-1, 4940 ng g-1, 27,900 ng g-1, and 522 ng g-1, respectively. Sediments were contaminated by PAHs from pyrogenic sources. The average fluxes of air-water, dry deposition, and sinking of the 16 individual PAHs were 2900, 300, and 251 ng m-2 d-1. In the air-water column-surface sediments system, air-water exchange was the main transport pathway. In order to ensure safety of drinking water resources for local residence, the governments are suggested to work together to reduce PAHs emission and implement new energy policy.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , Humanos , Lagos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
13.
Environ Manage ; 57(1): 237-50, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26296739

RESUMEN

Algal blooms have recently become one of the most serious environmental problems in eutrophic freshwater ecosystems worldwide. Although many observation and simulation approaches have been applied to predict algal blooms, few studies have addressed the alert levels of algal blooms using integrative indicators in a large lake with multiple service function and significant horizontal heterogeneity. This study developed an integrative indicator assessment system (IIAS) to rank the alert level of algal blooms. In the IIAS, algal biomass, area percentage, distance from drinking water intake points, distance from scenic zones and duration of algal bloom were used as indicators to calculate a comprehensive alert level, which was classified into five grades (Vigilance, Low, Moderate, High, and Severe). Lake Taihu was taken as a case study to assess the comprehensive alert level of algal blooms in 2007 and 2010. The comprehensive alert level showed obvious spatial-temporal patterns, with an acceptable accuracy in Lake Taihu. The comprehensive alert levels were relatively higher in typical phytoplankton subzones than typical hydrophytes subzones and are more sensitive to weight factor in the northern and western subzones where high biomass usually occurs. Case study showed a very good application of the proposed comprehensive alert level assessment methodology, which can be adjusted to predict the degree of hazard of algal blooms in multi-service function large lakes to help the government and decision makers to act to prevent the disaster from algal bloom spreading.


Asunto(s)
Eutrofización , Lagos/química , Fitoplancton/crecimiento & desarrollo , Biomasa , China , Ecosistema , Monitoreo del Ambiente
14.
Bull Environ Contam Toxicol ; 95(5): 618-23, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26370278

RESUMEN

Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Lagos/química , Metales Pesados/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , China , Ecosistema , Lagos/análisis , Análisis de Componente Principal , Medición de Riesgo , Aguas Residuales/análisis
15.
Can J Microbiol ; 60(10): 669-80, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25302531

RESUMEN

To clarify the relationships between dissolved organic carbon (DOC) and bacterioplankton community composition (BCC), a 1-year survey (June 2009 - May 2010) was conducted in 3 regions of Lake Taihu (Meiliang Bay, Lake Center, and Eastern Taihu), China. Polymerase chain reaction - denaturing gradient gel electrophoresis was used to analyze the composition and heterogeneity of the bacterioplankton community. Canonical correspondence analysis was used to explore the relationships between DOC concentration and BCC. We found a significant negative correlation between DOC concentration and bacterioplankton community diversity (as measured by the Shannon-Wiener index (H')). The results show that spatial variation in the bacterioplankton population was stronger than the seasonal variation and that DOC concentration influences BCC in Lake Taihu. DOC concentration, followed by macrophyte biomass, water turbidity, and phytoplankton biomass were the most influential factors that account for BCC changes in Lake Taihu. More detailed studies on the relationship between DOC concentration and BCC should focus on differences in DOC concentrations and quality among these lake regions. DOC had a significant impact on BCC in Meiliang Bay. The relationship between DOC and BCC in the 2 other regions studied (Lake Center and Eastern Taihu) was weaker. The results of this study add to our understanding of the BCC in eutrophic lakes, especially regarding the role of the microbial loop in lake ecosystems.


Asunto(s)
Biodiversidad , Carbono/análisis , Lagos/microbiología , Plancton/microbiología , Microbiología del Agua , Biomasa , Carbono/metabolismo , China , Electroforesis en Gel de Gradiente Desnaturalizante , Ecosistema , Fitoplancton , Estaciones del Año
16.
J Environ Sci (China) ; 26(3): 626-35, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25079276

RESUMEN

To learn the relationship between sunlight intensity and cyanobacterial proliferations for the further control of the heavy blooms, enclosure experiment were conducted in Meiliang Bay, Lake Taihu by regulating the natural light intensities with different shading ratio (0% (full sunlight), 10%, 25%, 50% and 75% of original natural sunlight intensities) from September to November in 2010. The results indicated that phytoplankton biomass (mean) decreased significantly when the shading ratios reached 50% or more. Higher shading ratios (e.g. 75%) were very efficient in controlling the average and total cyanobacterial bloom biomass, while 50% shading ratio was proven very effective either in controlling the peak value of phytoplankton biomass or postponing the occurrence of cyanobacterial blooms in Lake Taihu. In addition, phytoplankton composition and photosynthesis efficiency were also affected by altering the shading ratios, and in turn, they might also act on phytoplankton growth. Based on the results from the present study, intermediate shading strategies such as regulation of water level or turbidity through the hydrology regulations would probably be an effective and efficient method in controlling cyanobacterial blooms in large and shallow lakes.


Asunto(s)
Biomasa , Cianobacterias , Eutrofización , Luz Solar , China , Lagos , Fotosíntesis , Fitoplancton
17.
Sci Total Environ ; 942: 173684, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38844233

RESUMEN

Lake Taihu, an inland lake, frequently experiences Cyanobacterial blooms that have historically posed severe threats to its aquatic ecosystem. Combining field observations and satellite remote-sensed data, factors that influence algal bloom intensity in Lake Taihu over an eight-year period, from 2016 to 2023, are examined, and changes in phytoplankton community composition, climate, water quality, economic activities, and food web dynamics are reported. Sentinel-2 MSI data analysis reveals a dramatic decrease in Cyanobacterial blooms in 2023, with a reduction in the annual maximum bloom area of 76.90 % from 2016 values. From 2016 to 2022, the ratio of Cyanobacteria to other phytoplankton ranged 82.09 %-98.29 %, but in 2023, this dropped to 60.98 %. Concurrently, Cyanobacteria density dropped to an historic low of 2.29 × 107 cells/L (16.4 % of 2021 peak values). Redundancy and random forest analyses indicated that nitrogen has a greater influence on phytoplankton than phosphorus, with temperature and permanganate index being the important parameters to affect phytoplankton community structure. We attribute the decrease in Cyanobacterial blooms in Lake Taihu in 2023 to be largely caused by shifts in phytoplankton community structure, particularly the sharp decline in Microcystis sp. density, a genus often linked to bloom formation. Meteorological conditions such as reduced rainfall and wind speed during the winter and spring of 2023 also contributed to diminishing Cyanobacterial blooms. Ongoing improvements in water quality, reduced economic activities because of pandemic restrictions, and implementation of a fishing ban since 2020 have likely further contributed to reductions in bloom frequency. These results improve our understanding of the processes that affect algal blooms in Lake Taihu, and potentially other eutrophic inland lakes.


Asunto(s)
Cianobacterias , Monitoreo del Ambiente , Eutrofización , Lagos , Fitoplancton , Lagos/microbiología , Lagos/química , Cianobacterias/crecimiento & desarrollo , China , Estaciones del Año , Calidad del Agua
18.
Sci Total Environ ; 941: 173512, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815825

RESUMEN

To clarify the wind-driven post-bloom dispersion range of Microcystis, which originally clustered on the water surface, an Individual-Based Model (IBM) of Microcystis movement considering the combined effects of wind and light was developed based on actual hydrodynamic data and Microcystis biomass. After calibrating the effects of hydrodynamics and light, 66 cases of short-term (within a week) post-bloom with satellite images from 2011 to 2017 were simulated. The results showed that there were three short-term post-bloom types: vertical reduction (VR), horizontal reduction (HR) and mixed reduction (MR). For VR type, the cyanobacterial bloom reduction rate was rapid (>160 km2/day), but the dispersion range of Microcystis was limited (<2 km/day), and a larger bloom area was likely to form in the original location when wind speed decreased. For HR type, the cyanobacterial bloom reduction rate was slow (<10 km2/day), but Microcystis exhibited a broad dispersion range (>4 km/day), often leading to smaller, thicker, and longer-lasting cyanobacterial blooms downwind, albeit with a lower probability of occurrence. The characteristics of MR lay between the two aforementioned types.


Asunto(s)
Monitoreo del Ambiente , Eutrofización , Lagos , Microcystis , Viento , Lagos/microbiología , China
19.
Environ Sci Pollut Res Int ; 31(17): 26123-26140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492146

RESUMEN

As an essential drinking water source and one of the largest eutrophic shallow lakes in China, the management of Lake Taihu requires an adequate understanding of its hydrodynamic characteristics. Studying the hydrodynamic characteristics of Lake Taihu based on field observations is limited owing to its large area and the lack of flow field stability. Previous studies using hydrodynamic models experienced challenges, such as dimensionality and lack of dynamic response analysis between flow field and realistic wind; therefore, the results were still inconclusive. In this study, a 3D model of Lake Taihu, calibrated and validated based on field observations, was used to simulate and compare three scenarios: windless, steady wind, and realistic wind. The hydrodynamic characteristics of Lake Taihu were analyzed as close to the actual conditions as possible. The results showed that wind-driven currents dominated the flow field in Lake Taihu, and the horizontal velocity driven by wind was more than 6 times that without wind. Observing a stable flow field in Lake Taihu was difficult because of the variability of realistic wind. The hydrodynamic characteristics of Lake Taihu were defined as "strongly affected by wind," "higher on the surface and smaller at the bottom," and "difference between the surface and the bottom." Vertical turbulent kinetic energy can be used to characterize the variable flow field of a wind-driven lake and has a positive correlation with wind speed. Therefore, it could be used as a key component to predict water blooms with practical implications.


Asunto(s)
Monitoreo del Ambiente , Lagos , Viento , Hidrodinámica , Eutrofización , China
20.
FEMS Microbiol Ecol ; 100(1)2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38148131

RESUMEN

Microcystis blooms have a marked effect on microbial taxonomical diversity in eutrophic lakes, but their influence on the composition of microbial functional genes is still unclear. In this study, the free-living microbial functional genes (FMFG) composition was investigated in the period before Microcystis blooms (March) and during Microcystis blooms (July) using a comprehensive functional gene array (GeoChip 5.0). The composition and richness of FMFG in the water column was significantly different between these two periods. The FMFG in March was enriched in the functional categories of nitrogen, sulfur, and phosphorus cycling, whereas the FMFG in July was enriched in carbon cycling, organic remediation, and metal homeostasis. Molecular ecological network analysis further demonstrated fewer functional gene interactions and reduced complexity in July than in March. Module hubs of the March network were mediated by functional genes associated with carbon, nitrogen, sulfur, and phosphorus, whereas those in July by a metal homeostasis functional gene. We also observed stronger deterministic processes in the FMFG assembly in July than in March. Collectively, this study demonstrated that Microcystis blooms induced significant changes in FMFG composition and metabolic potential, and abundance-information, which can support the understanding and management of biogeochemical cycling in eutrophic lake ecosystems.


Asunto(s)
Microcystis , Microcystis/genética , Microcystis/metabolismo , Lagos/química , Ecosistema , China , Fósforo/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Azufre/metabolismo , Eutrofización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA