Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(3): 653-664.e19, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32359438

RESUMEN

Gram-negative bacteria are surrounded by an outer membrane composed of phospholipids and lipopolysaccharide, which acts as a barrier and contributes to antibiotic resistance. The systems that mediate phospholipid trafficking across the periplasm, such as MCE (Mammalian Cell Entry) transporters, have not been well characterized. Our ~3.5 Å cryo-EM structure of the E. coli MCE protein LetB reveals an ~0.6 megadalton complex that consists of seven stacked rings, with a central hydrophobic tunnel sufficiently long to span the periplasm. Lipids bind inside the tunnel, suggesting that it functions as a pathway for lipid transport. Cryo-EM structures in the open and closed states reveal a dynamic tunnel lining, with implications for gating or substrate translocation. Our results support a model in which LetB establishes a physical link between the two membranes and creates a hydrophobic pathway for the translocation of lipids across the periplasm.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/fisiología , Transporte Biológico , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Transporte de Proteínas/fisiología
2.
Cell ; 177(2): 315-325.e14, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929905

RESUMEN

Transmission of malaria parasites occurs when a female Anopheles mosquito feeds on an infected host to acquire nutrients for egg development. How parasites are affected by oogenetic processes, principally orchestrated by the steroid hormone 20-hydroxyecdysone (20E), remains largely unknown. Here we show that Plasmodium falciparum development is intimately but not competitively linked to processes shaping Anopheles gambiae reproduction. We unveil a 20E-mediated positive correlation between egg and oocyst numbers; impairing oogenesis by multiple 20E manipulations decreases parasite intensities. These manipulations, however, accelerate Plasmodium growth rates, allowing sporozoites to become infectious sooner. Parasites exploit mosquito lipids for faster growth, but they do so without further affecting egg development. These results suggest that P. falciparum has adopted a non-competitive evolutionary strategy of resource exploitation to optimize transmission while minimizing fitness costs to its mosquito vector. Our findings have profound implications for currently proposed control strategies aimed at suppressing mosquito populations.


Asunto(s)
Ecdisterona/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/parasitología , Animales , Anopheles/parasitología , Culicidae , Ecdisterona/fisiología , Femenino , Células HEK293 , Humanos , Insectos Vectores , Malaria/parasitología , Ratones , Mosquitos Vectores , Células 3T3 NIH , Oogénesis/fisiología , Plasmodium/metabolismo , Plasmodium falciparum , Esporozoítos , Esteroides/metabolismo
3.
Annu Rev Cell Dev Biol ; 35: 85-109, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590585

RESUMEN

Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.


Asunto(s)
Transporte Biológico , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Animales , Humanos , Lípidos/biosíntesis , Lípidos/química , Orgánulos/química , Orgánulos/metabolismo
4.
Annu Rev Cell Dev Biol ; 32: 279-301, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27298092

RESUMEN

Inside eukaryotic cells, membrane contact sites (MCSs), regions where two membrane-bound organelles are apposed at less than 30 nm, generate regions of important lipid and calcium exchange. This review principally focuses on the structure and the function of MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM). Here we describe how tethering structures form and maintain these junctions and, in some instances, participate in their function. We then discuss recent insights into the mechanisms by which specific classes of proteins mediate nonvesicular lipid exchange between the ER and PM and how such phenomena, already known to be crucial for maintaining organelle identity, are also emerging as regulators of cell growth and development.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Animales , Humanos , Modelos Biológicos
5.
Annu Rev Biochem ; 83: 51-77, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606148

RESUMEN

Lipids are unevenly distributed within and between cell membranes, thus defining organelle identity. Such distribution relies on local metabolic branches and mechanisms that move lipids. These processes are regulated by feedback mechanisms that decipher topographical information in organelle membranes and then regulate lipid levels or flows. In the endoplasmic reticulum, the major lipid source, transcriptional regulators and enzymes sense changes in membrane features to modulate lipid production. At the Golgi apparatus, lipid-synthesizing, lipid-flippase, and lipid-transport proteins (LTPs) collaborate to control lipid balance and distribution within the membrane to guarantee remodeling processes crucial for vesicular trafficking. Open questions exist regarding LTPs, which are thought to be lipid sensors that regulate lipid synthesis or carriers that transfer lipids between organelles across long distances or in contact sites. A novel model is that LTPs, by exchanging two different lipids, exploit one lipid gradient between two distinct membranes to build a second lipid gradient.


Asunto(s)
Membrana Celular/metabolismo , Lípidos/química , Animales , Transporte Biológico , Retículo Endoplásmico/metabolismo , Retroalimentación Fisiológica , Hongos/fisiología , Aparato de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Orgánulos/metabolismo , Fosfolípidos/química , Transducción de Señal , Esteroles/química , Red trans-Golgi/química
6.
EMBO J ; 43(4): 595-614, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267654

RESUMEN

Miro proteins are universally conserved mitochondrial calcium-binding GTPases that regulate a multitude of mitochondrial processes, including transport, clearance, and lipid trafficking. The exact role of Miro in these functions is unclear but involves binding to a variety of client proteins. How this binding is operated at the molecular level and whether and how it is important for mitochondrial health, however, remains unknown. Here, we show that known Miro interactors-namely, CENPF, Trak, and MYO19-all use a similar short motif to bind the same structural element: a highly conserved hydrophobic pocket in the first calcium-binding domain of Miro. Using these Miro-binding motifs, we identified direct interactors de novo, including MTFR1/2/1L, the lipid transporters Mdm34 and VPS13D, and the ubiquitin E3-ligase Parkin. Given the shared binding mechanism of these functionally diverse clients and its conservation across eukaryotes, we propose that Miro is a universal mitochondrial adaptor coordinating mitochondrial health.


Asunto(s)
Calcio , Mitocondrias , Humanos , Calcio/metabolismo , Mitocondrias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Homeostasis , Lípidos , Proteínas Mitocondriales/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas/metabolismo
7.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627600

RESUMEN

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Asunto(s)
Fosfatidilinositoles , Proteínas de Transferencia de Fosfolípidos , Humanos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Membrana Celular/metabolismo , Células HeLa , Orgánulos/metabolismo , Endosomas/metabolismo , Animales
8.
Proc Natl Acad Sci U S A ; 121(3): e2314093121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38190532

RESUMEN

Lipid droplets (LDs) are organelles critical for energy storage and membrane lipid homeostasis, whose number and size are carefully regulated in response to cellular conditions. The molecular mechanisms underlying lipid droplet biogenesis and degradation, however, are not well understood. The Troyer syndrome protein spartin (SPG20) supports LD delivery to autophagosomes for turnover via lipophagy. Here, we characterize spartin as a lipid transfer protein whose transfer ability is required for LD degradation. Spartin copurifies with phospholipids and neutral lipids from cells and transfers phospholipids in vitro via its senescence domain. A senescence domain truncation that impairs lipid transfer in vitro also impairs LD turnover in cells while not affecting spartin association with either LDs or autophagosomes, supporting that spartin's lipid transfer ability is physiologically relevant. Our data indicate a role for spartin-mediated lipid transfer in LD turnover.


Asunto(s)
Autofagosomas , Gotas Lipídicas , Autofagia , Lípidos de la Membrana
9.
Proc Natl Acad Sci U S A ; 121(17): e2319476121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621120

RESUMEN

Glycerophospholipids are synthesized primarily in the cytosolic leaflet of the endoplasmic reticulum (ER) membrane and must be equilibrated between bilayer leaflets to allow the ER and membranes derived from it to grow. Lipid equilibration is facilitated by integral membrane proteins called "scramblases." These proteins feature a hydrophilic groove allowing the polar heads of lipids to traverse the hydrophobic membrane interior, similar to a credit card moving through a reader. Nevertheless, despite their fundamental role in membrane expansion and dynamics, the identity of most scramblases has remained elusive. Here, combining biochemical reconstitution and molecular dynamics simulations, we show that lipid scrambling is a general feature of protein insertases, integral membrane proteins which insert polypeptide chains into membranes of the ER and organelles disconnected from vesicle trafficking. Our data indicate that lipid scrambling occurs in the same hydrophilic channel through which protein insertion takes place and that scrambling is abolished in the presence of nascent polypeptide chains. We propose that protein insertases could have a so-far-overlooked role in membrane dynamics as scramblases.


Asunto(s)
Proteínas de la Membrana , Péptidos , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Membranas/metabolismo , Lípidos , Membrana Dobles de Lípidos/química
10.
Proc Natl Acad Sci U S A ; 121(21): e2321512121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748582

RESUMEN

The outer membrane (OM) of didermic gram-negative bacteria is essential for growth, maintenance of cellular integrity, and innate resistance to many antimicrobials. Its asymmetric lipid distribution, with phospholipids in the inner leaflet and lipopolysaccharides (LPS) in the outer leaflet, is required for these functions. Lpt proteins form a transenvelope bridge that transports newly synthesized LPS from the inner membrane (IM) to OM, but how the bulk of phospholipids are transported between these membranes is poorly understood. Recently, three members of the AsmA-like protein family, TamB, YhdP, and YdbH, were shown to be functionally redundant and were proposed to transport phospholipids between IM and OM in Escherichia coli. These proteins belong to the repeating ß-groove superfamily, which includes eukaryotic lipid-transfer proteins that mediate phospholipid transport between organelles at contact sites. Here, we show that the IM-anchored YdbH protein interacts with the OM lipoprotein YnbE to form a functional protein bridge between the IM and OM in E. coli. Based on AlphaFold-Multimer predictions, genetic data, and in vivo site-directed cross-linking, we propose that YnbE interacts with YdbH through ß-strand augmentation to extend the continuous hydrophobic ß-groove of YdbH that is thought to shield acyl chains of phospholipids as they travel through the aqueous intermembrane periplasmic compartment. Our data also suggest that the periplasmic protein YdbL prevents extensive amyloid-like multimerization of YnbE in cells. We, therefore, propose that YdbL has a chaperone-like function that prevents uncontrolled runaway multimerization of YnbE to ensure the proper formation of the YdbH-YnbE intermembrane bridge.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Membrana Externa Bacteriana , Proteínas de Escherichia coli , Escherichia coli , Homeostasis , Membrana Externa Bacteriana/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Lipopolisacáridos/metabolismo , Lipoproteínas/metabolismo , Fosfolípidos/metabolismo
11.
EMBO J ; 41(7): e109998, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35188676

RESUMEN

The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non-vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1-an uncharacterized protein harboring a Chorein-N lipid transport motif-for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.


Asunto(s)
Lípidos de la Membrana , Orgánulos , Transporte Biológico , Homeostasis , Metabolismo de los Lípidos/genética , Lípidos de la Membrana/genética , Lípidos de la Membrana/metabolismo , Orgánulos/metabolismo , Fosfolípidos/genética , Fosfolípidos/metabolismo
12.
EMBO J ; 41(2): e106837, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34873731

RESUMEN

Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.


Asunto(s)
Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico , Carboxiliasas/genética , Carboxiliasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Cell Sci ; 137(6)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488070

RESUMEN

Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.


Asunto(s)
Neoplasias , Esfingolípidos , Humanos , Esfingolípidos/metabolismo , Química Clic , Transporte Biológico
14.
EMBO Rep ; 25(4): 1711-1720, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467907

RESUMEN

The assembly of ß-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the ß-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of ß-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.


Asunto(s)
Proteínas de Escherichia coli , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Pliegue de Proteína , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo
15.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38228789

RESUMEN

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de la Membrana/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(20): e2301979120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155911

RESUMEN

The sorting of phospholipids between the inner and outer leaflets of the membrane bilayer is a fundamental problem in all organisms. Despite years of investigation, most of the enzymes that catalyze phospholipid reorientation in bacteria remain unknown. Studies from almost half a century ago in Bacillus subtilis and Bacillus megaterium revealed that newly synthesized phosphatidylethanolamine (PE) is rapidly translocated to the outer leaflet of the bilayer [Rothman & Kennedy, Proc. Natl. Acad. Sci. U.S.A. 74, 1821-1825 (1977)] but the identity of the putative PE flippase has eluded discovery. Recently, members of the DedA superfamily have been implicated in flipping the bacterial lipid carrier undecaprenyl phosphate and in scrambling eukaryotic phospholipids in vitro. Here, using the antimicrobial peptide duramycin that targets outward-facing PE, we show that Bacillus subtilis cells lacking the DedA paralog PetA (formerly YbfM) have increased resistance to duramycin. Sensitivity to duramycin is restored by expression of B. subtilis PetA or homologs from other bacteria. Analysis of duramycin-mediated killing upon induction of PE synthesis indicates that PetA is required for efficient PE transport. Finally, using fluorescently labeled duramycin we demonstrate that cells lacking PetA have reduced PE in their outer leaflet compared to wildtype. We conclude that PetA is the long-sought PE transporter. These data combined with bioinformatic analysis of other DedA paralogs argue that the primary role of DedA superfamily members is transporting distinct lipids across the membrane bilayer.


Asunto(s)
Fosfatidiletanolaminas , Fosfolípidos , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Bacterias/metabolismo , Membrana Celular/metabolismo
17.
J Biol Chem ; 300(10): 107738, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233230

RESUMEN

Membrane asymmetry is critical for maintenance of several different processes such as cell signaling, apoptosis, and vesicular transport in various eukaryotic systems. Flippases of the P4-ATPase family are associated with flipping phospholipids from the luminal or exoplasmic leaflet to the cytosolic leaflet. P4-ATPases belong to the P-type ATPase family, which are activated by phosphorylation and couple ATPase activity to substrate translocation. These proteins possess a transmembrane domain responsible for substrate transport, while the cytosolic machinery performs the necessary ATP hydrolysis for this process. Several high-resolution structures of human or yeast P4-ATPases have recently been resolved, but a comprehensive overview of the changes for reaction cycle in different members was crucial for future research. In this review, we have compiled available data reflecting the reaction cycle-associated changes in conformation of P4-ATPases. Together, this will provide an improved understanding of the similarities and differences between these members, which will drive further structural, functional, and computational studies to understand the mechanisms of these flippases.

18.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364889

RESUMEN

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Asunto(s)
Enfermedad , Fosfatidilinositoles , Transducción de Señal , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Humanos
19.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763336

RESUMEN

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Asunto(s)
Adenosina Trifosfatasas , Humanos , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , Transporte Biológico , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Conformación Proteica
20.
Biochem J ; 481(18): 1187-1202, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39258799

RESUMEN

Phosphatidylinositol is a precursor of various phosphoinositides, which play crucial roles in intracellular signaling and membrane dynamics and have impact on diverse aspects of cell physiology. Phosphoinositide synthesis and turnover occur in the cytoplasmic leaflet of the organellar and plasma membranes. P4-ATPases (lipid flippases) are responsible for translocating membrane lipids from the exoplasmic (luminal) to the cytoplasmic leaflet, thereby regulating membrane asymmetry. However, the mechanism underlying phosphatidylinositol translocation across cellular membranes remains elusive. Here, we discovered that the phosphatidylcholine flippases ATP8B1, ATP8B2, and ATP10A can also translocate phosphatidylinositol at the plasma membrane. To explore the function of these phosphatidylinositol flippases, we used cells depleted of CDC50A, a protein necessary for P4-ATPase function and ATP8B1 and ATP8B2, which express in HeLa cells. Upon activation of the Gq-coupled receptor, depletion of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was accelerated in CDC50A knockout (KO) and ATP8B1/8B2 double KO cells compared with control cells, suggesting a decrease in PtdIns(4,5)P2 levels within the plasma membrane of the KO cells upon stimulation. These findings highlight the important role of P4-ATPases in maintaining phosphoinositide homeostasis and suggest a mechanism for asymmetry of phosphatidylinositol in the cytoplasmic leaflet of the plasma membrane.


Asunto(s)
Adenosina Trifosfatasas , Membrana Celular , Homeostasis , Fosfatidilinositoles , Humanos , Membrana Celular/metabolismo , Células HeLa , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Fosfatidilinositoles/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA