Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(1): e104416, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33185277

RESUMEN

The transport of auxin controls the rate, direction and localization of plant growth and development. The course of auxin transport is defined by the polar subcellular localization of the PIN proteins, a family of auxin efflux transporters. However, little is known about the composition and regulation of the PIN protein complex. Here, using blue-native PAGE and quantitative mass spectrometry, we identify native PIN core transport units as homo- and heteromers assembled from PIN1, PIN2, PIN3, PIN4 and PIN7 subunits only. Furthermore, we show that endogenous flavonols stabilize PIN dimers to regulate auxin efflux in the same way as does the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). This inhibitory mechanism is counteracted both by the natural auxin indole-3-acetic acid and by phosphomimetic amino acids introduced into the PIN1 cytoplasmic domain. Our results lend mechanistic insights into an endogenous control mechanism which regulates PIN function and opens the way for a deeper understanding of the protein environment and regulation of the polar auxin transport complex.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiología , Flavonoles/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ftalimidas/metabolismo
2.
Stem Cells ; 42(7): 581-592, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655883

RESUMEN

Fully grown oocytes have the natural ability to transform 2 terminally differentiated gametes into a totipotent zygote representing the acquisition of totipotency. This process wholly depends on maternal-effect factors (MFs). MFs stored in the eggs are therefore likely to be able to induce cellular reprogramming to a totipotency state. Here we report the generation of totipotent-like stem cells from mESCs using 4MFs Hsf1, Zar1, Padi6, and Npm2, designated as MFiTLSCs. MFiTLSCs exhibited a unique and inherent capability to differentiate into embryonic and extraembryonic derivatives. Transcriptomic analysis revealed that MFiTLSCs are enriched with 2-cell-specific genes that appear to synergistically induce a transcriptional repressive state, in that parental genomes are remodeled to a poised transcriptional repression state while totipotency is established following fertilization. This method to derive MFiTLSCs could help advance the understanding of fate determinations of totipotent stem cells in a physiological context and establish a foundation for the development of oocyte biology-based reprogramming technology.


Asunto(s)
Células Madre Totipotentes , Animales , Ratones , Células Madre Totipotentes/metabolismo , Células Madre Totipotentes/citología , Diferenciación Celular/genética , Femenino , Reprogramación Celular/genética , Oocitos/metabolismo , Oocitos/citología
3.
FASEB J ; 38(13): e23725, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959016

RESUMEN

SLC40A1 is the sole iron export protein reported in mammals. In humans, its dysfunction is responsible for ferroportin disease, an inborn error of iron metabolism transmitted as an autosomal dominant trait and observed in different ethnic groups. As a member of the major facilitator superfamily, SLC40A1 requires a series of conformational changes to enable iron translocation across the plasma membrane. The influence of lipids on protein stability and its conformational changes has been little investigated to date. Here, we combine molecular dynamics simulations of SLC40A1 embedded in membrane bilayers with experimental alanine scanning mutagenesis to analyze the specific role of glycerophospholipids. We identify four basic residues (Lys90, Arg365, Lys366, and Arg371) that are located at the membrane-cytosol interface and consistently interact with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) molecules. These residues surround a network of salt bridges and hydrogens bonds that play a critical role in stabilizing SLC40A1 in its basal outward-facing conformation. More deeply embedded in the plasma membrane, we identify Arg179 as a charged amino acid residue also tightly interacting with lipid polar heads. This results in a local deformation of the lipid bilayer. Interestingly, Arg179 is adjacent to Arg178, which forms a functionally important salt-bridge with Asp473 and is a recurrently associated with ferroportin disease when mutated to glutamine. We demonstrate that the two p.Arg178Gln and p.Arg179Thr missense variants have similar functional behaviors. These observations provide insights into the role of phospholipids in the formation/disruption of the SLC40A1 inner gate, and give a better understanding of the diversity of molecular mechanisms of ferroportin disease.


Asunto(s)
Proteínas de Transporte de Catión , Hierro , Simulación de Dinámica Molecular , Humanos , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/química , Hierro/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/química , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química
4.
Infect Immun ; 92(3): e0046123, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345371

RESUMEN

Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.


Asunto(s)
Antibacterianos , Clostridioides difficile , Animales , Antibacterianos/farmacología , Antibacterianos/metabolismo , Esporas Bacterianas , Regulación Bacteriana de la Expresión Génica , Farmacorresistencia Bacteriana , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/metabolismo , Mamíferos
5.
Antimicrob Agents Chemother ; 68(10): e0071224, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39194207

RESUMEN

Acinetobacter baumannii is a notorious opportunistic pathogen responsible for healthcare-associated infections worldwide. Efflux pumps play crucial roles in mediating antimicrobial resistance, motility, and virulence. In this study, we present the identification and characterization of the new A. baumannii efflux pump SxtP belonging to the MFS superfamily (major facilitator superfamily), along with its associated activator LysR-type transcriptional regulator (LTTR) SxtR, demonstrating their roles in sulfamethoxazole/trimethoprim (also known as co-trimoxazole or SXT) resistance, surface-associated motility and virulence.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Proteínas Bacterianas , Pruebas de Sensibilidad Microbiana , Combinación Trimetoprim y Sulfametoxazol , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , Combinación Trimetoprim y Sulfametoxazol/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Animales , Regulación Bacteriana de la Expresión Génica , Virulencia/genética , Infecciones por Acinetobacter/microbiología , Infecciones por Acinetobacter/tratamiento farmacológico , Farmacorresistencia Bacteriana Múltiple/genética , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
J Cell Sci ; 135(10)2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35437607

RESUMEN

Plasma membrane (PM) transporters of the major facilitator superfamily (MFS) are essential for cell metabolism, growth and response to stress or drugs. In Saccharomyces cerevisiae, Jen1 is a monocarboxylate/H+ symporter that provides a model to dissect the molecular details underlying cellular expression, transport mechanism and turnover of MFS transporters. Here, we present evidence revealing novel roles of the cytosolic N- and C-termini of Jen1 in its biogenesis, PM stability and transport activity, using functional analyses of Jen1 truncations and chimeric constructs with UapA, an endocytosis-insensitive transporter of Aspergillus nidulans. Our results show that both N- and C-termini are critical for Jen1 trafficking to the PM, transport activity and endocytosis. Importantly, we provide evidence that Jen1 N- and C-termini undergo transport-dependent dynamic intramolecular interactions, which affect the transport activity and turnover of Jen1. Our results support an emerging concept where the cytoplasmic termini of PM transporters control transporter cell surface stability and function through flexible intramolecular interactions with each other. These findings might be extended to other MFS members to understand conserved and evolving mechanisms underlying transporter structure-function relationships. This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Simportadores , Endocitosis/fisiología , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/metabolismo
7.
Am J Med Genet A ; : e63812, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990105

RESUMEN

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.

8.
Mol Cell Biochem ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997507

RESUMEN

Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown. Human cardiac fibroblasts (HCFs) were stimulated with TGF-ß1 to induce myofibroblast; Immunofluorescent staining, Immunoblotting, and fluorescence in situ hybridization were used to detect the myofibroblasts phenotypes and lnc PVT1 expression. Cell biological phenotypes induced by lnc PVT1 knockdown or overexpression were detected by CCK-8, flow cytometry, and Immunoblotting. A mouse model of myocardial fibrosis was induced using isoproterenol (ISO), and the cardiac functions were examined by echocardiography measurements, cardiac tissues by H&E, and Masson trichrome staining. In this study, TGF-ß1 induced HCF transformation into myofibroblasts, as manifested as significantly increased levels of α-SMA, vimentin, collagen I, and collagen III; the expression level of lnc PVT1 expression showed to be significantly increased by TGF-ß1 stimulation. The protein levels of TGF-ß1, TGFBR1, and TGFBR2 were also decreased by lnc PVT1 knockdown. Under TGF-ß1 stimulation, lnc PVT1 knockdown decreased FN1, α-SMA, collagen I, and collagen III protein contents, inhibited HCF cell viability and enhanced cell apoptosis, and inhibited Smad2/3 phosphorylation. Lnc PVT1 positively regulated MYC expression with or without TGF-ß1 stimulation; MYC overexpression in TGF-ß1-stimulated HCFs significantly attenuated the effects of lnc PVT1 knockdown on HCF proliferation and trans-differentiation to MFs. In the ISO-induced myocardial fibrosis model, lnc PVT1 knockdown partially reduced fibrotic area, improved cardiac functions, and decreased the levels of fibrotic markers. In addition, lnc PVT1 knockdown decreased MYC and CDK4 levels but increased E-cadherin in mice heart tissues. lnc PVT1 is up-regulated in cardiac fibrosis and TGF-ß1-stimulated HCFs. Lnc PVT1 knockdown partially ameliorates TGF-ß1-induced HCF activation and trans-differentiation into MFs in vitro and ISO-induced myocardial fibrosis in vivo, potentially through interacting with MYC and up-regulating MYC.

9.
Int Microbiol ; 27(1): 277-290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37316617

RESUMEN

BACKGROUND: Polymyxin B is considered a last-line therapeutic option against multidrug-resistant gram-negative bacteria, especially in COVID-19 coinfections or other serious infections. However, the risk of antimicrobial resistance and its spread to the environment should be brought to the forefront. METHODS: Pandoraea pnomenusa M202 was isolated under selection with 8 mg/L polymyxin B from hospital sewage and then was sequenced by the PacBio RS II and Illumina HiSeq 4000 platforms. Mating experiments were performed to evaluate the transfer of the major facilitator superfamily (MFS) transporter in genomic islands (GIs) to Escherichia coli 25DN. The recombinant E. coli strain Mrc-3 harboring MFS transporter encoding gene FKQ53_RS21695 was also constructed. The influence of efflux pump inhibitors (EPIs) on MICs was determined. The mechanism of polymyxin B excretion mediated by FKQ53_RS21695 was investigated by Discovery Studio 2.0 based on homology modeling. RESULTS: The MIC of polymyxin B for the multidrug-resistant bacterial strain P. pnomenusa M202, isolated from hospital sewage, was 96 mg/L. GI-M202a, harboring an MFS transporter-encoding gene and conjugative transfer protein-encoding genes of the type IV secretion system, was identified in P. pnomenusa M202. The mating experiment between M202 and E. coli 25DN reflected the transferability of polymyxin B resistance via GI-M202a. EPI and heterogeneous expression assays also suggested that the MFS transporter gene FKQ53_RS21695 in GI-M202a was responsible for polymyxin B resistance. Molecular docking revealed that the polymyxin B fatty acyl group inserts into the hydrophobic region of the transmembrane core with Pi-alkyl and unfavorable bump interactions, and then polymyxin B rotates around Tyr43 to externally display the peptide group during the efflux process, accompanied by an inward-to-outward conformational change in the MFS transporter. Additionally, verapamil and CCCP exhibited significant inhibition via competition for binding sites. CONCLUSIONS: These findings demonstrated that GI-M202a along with the MFS transporter FKQ53_RS21695 in P. pnomenusa M202 could mediate the transmission of polymyxin B resistance.


Asunto(s)
Burkholderiaceae , Escherichia coli , Polimixina B , Polimixina B/farmacología , Escherichia coli/genética , Islas Genómicas , Simulación del Acoplamiento Molecular , Aguas del Alcantarillado , Proteínas de Transporte de Membrana/genética , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
10.
Appl Microbiol Biotechnol ; 108(1): 251, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436751

RESUMEN

Product secretion from an engineered cell can be advantageous for microbial cell factories. Extensive work on nucleotide manufacturing, one of the most successful microbial fermentation processes, has enabled Corynebacterium stationis to transport nucleotides outside the cell by random mutagenesis; however, the underlying mechanism has not been elucidated, hindering its applications in transporter engineering. Herein, we report the nucleotide-exporting major facilitator superfamily (MFS) transporter from the C. stationis genome and its hyperactive mutation at the G64 residue. Structural estimation and molecular dynamics simulations suggested that the activity of this transporter improved via two mechanisms: (1) enhancing interactions between transmembrane helices through the conserved "RxxQG" motif along with substrate binding and (2) trapping substrate-interacting residue for easier release from the cavity. Our results provide novel insights into how MFS transporters change their conformation from inward- to outward-facing states upon substrate binding to facilitate efflux and can contribute to the development of rational design approaches for efflux improvements in microbial cell factories. KEYPOINTS: • An MFS transporter from C. stationis genome and its mutation at residue G64 were assessed • It enhanced the transporter activity by strengthening transmembrane helix interactions and trapped substrate-interacting residues • Our results contribute to rational design approach development for efflux improvement.


Asunto(s)
Corynebacterium , Proteínas de Transporte de Membrana , Proteínas de Transporte de Membrana/genética , Transporte Biológico , Corynebacterium/genética , Nucleótidos
11.
Neurol Sci ; 45(5): 2331-2335, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270731

RESUMEN

BACKGROUND: Guillain-Barré syndrome (GBS), as the most common cause of acute flaccid paralysis worldwide, is considered a part of a clinical spectrum in which discrete, complete, or incomplete forms of GBS and overlapping syndromes lie on the basis of their clinical features. The term overlapping Miller Fisher syndrome (MFS)/GBS is used when patients with MFS also suffer from progressive motor weakness of the limbs. Anti-ganglioside GQ1b has been specifically associated with MFS and ophthalmoplegia. CASE DESCRIPTION: Here, we report a Chinese girl who was diagnosed with overlapping MFS/GBS showing acute flaccid paralysis of all four limbs, sensory symptoms, cranial nerve dysfunction, autonomic involvement, ophthalmoplegia, and ataxia. She had high serum and cerebrospinal fluid titres of monospecific anti-GM4 IgG antibody instead of anti-GQ1b antibody in the acute phase. CONCLUSION: Anti-GM4 antibodies usually coexist with other antiganglioside antibodies, leading to missed diagnoses. The findings of the present study show that antibodies to ganglioside GM4 may in overlapping MFS/GBS as the lone immunological factors.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Síndrome de Guillain-Barré , Síndrome de Miller Fisher , Mielitis , Enfermedades Neuromusculares , Oftalmoplejía , Femenino , Humanos , China , Gangliósidos , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Miller Fisher/diagnóstico , Oftalmoplejía/diagnóstico , Preescolar
12.
Pestic Biochem Physiol ; 198: 105760, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38225067

RESUMEN

Corynespora leaf spot, caused by Corynespora cassiicola, is a foliar disease in cucumber. While the application of quinone outside inhibitors (QoIs) is an effective measure for disease control, it carries the risk of resistance development. In our monitoring of trifloxystrobin resistance from 2008 to 2020, C. cassiicola isolates were categorized into three populations: sensitive isolates (S, 0.01 < EC50 < 0.83 µg/mL), moderately resistant isolates (MR, 1.18 < EC50 < 55.67 µg/mL), and highly resistant isolates (HR, EC50 > 56.98 µg/mL). The resistance frequency reached up to 90% during this period, with an increasing trend observed in the annual average EC50 values of all the isolates. Analysis of the CcCytb gene revealed that both MR and HR populations carried the G143A mutation. Additionally, we identified mitochondrial heterogeneity, with three isolates carrying both G143 and A143 in MR and HR populations. Interestingly, isolates with the G143A mutation (G143A-MR and G143A-HR) displayed differential sensitivity to QoIs. Further experiments involving gene knockout and complementation demonstrated that the major facilitator superfamily (MFS) transporter (CcMfs1) may contribute to the disparity in sensitivity to QoIs between the G143A-MR and G143A-HR populations. However, the difference in sensitivity caused by the CcMfs1 transporter is significantly lower than the differences observed between the two populations. This suggests additional mechanisms contributing to the variation in resistance levels among C. cassiicola isolates. Our study highlights the alarming level of trifloxystrobin resistance in C. cassiicola in China, emphasizing the need for strict prohibition of QoIs use. Furthermore, our findings shed light on the occurrence of both target and non-target resistance mechanisms associated with QoIs in C. cassiicola.


Asunto(s)
Acetatos , Ascomicetos , Fungicidas Industriales , Iminas , Estrobilurinas/farmacología , Fungicidas Industriales/farmacología , Farmacorresistencia Fúngica/genética , Enfermedades de las Plantas
13.
Sensors (Basel) ; 24(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38894342

RESUMEN

Hydropower units are the core equipment of hydropower stations, and research on the fault prediction and health management of these units can help improve their safety, stability, and the level of reliable operation and can effectively reduce costs. Therefore, it is necessary to predict the swing trend of these units. Firstly, this study considers the influence of various factors, such as electrical, mechanical, and hydraulic swing factors, on the swing signal of the main guide bearing y-axis. Before swing trend prediction, the multi-index feature selection algorithm is used to obtain suitable state variables, and the low-dimensional effective feature subset is obtained using the Pearson correlation coefficient and distance correlation coefficient algorithms. Secondly, the dilated convolution graph neural network (DCGNN) algorithm, with a dilated convolution graph, is used to predict the swing trend of the main guide bearing. Existing GNN methods rely heavily on predefined graph structures for prediction. The DCGNN algorithm can solve the problem of spatial dependence between variables without defining the graph structure and provides the adjacency matrix of the graph learning layer simulation, avoiding the over-smoothing problem often seen in graph convolutional networks; furthermore, it effectively improves the prediction accuracy. The experimental results showed that, compared with the RNN-GRU, LSTNet, and TAP-LSTM algorithms, the MAEs of the DCGNN algorithm decreased by 6.05%, 6.32%, and 3.04%; the RMSEs decreased by 9.21%, 9.01%, and 2.83%; and the CORR values increased by 0.63%, 1.05%, and 0.37%, respectively. Thus, the prediction accuracy was effectively improved.

14.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791509

RESUMEN

Fibrillin-1 and fibrillin-2, encoded by FBN1 and FBN2, respectively, play significant roles in elastic fiber assembly, with pathogenic variants causing a diverse group of connective tissue disorders such as Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCD). Different genomic variations may lead to heterogeneous phenotypic features and functional consequences. Recent high-throughput sequencing modalities have allowed detection of novel variants that may guide the care for patients and inform the genetic counseling for their families. We performed clinical phenotyping for two newborn infants with complex congenital heart defects. For genetic investigations, we employed next-generation sequencing strategies including whole-genome Single-Nucleotide Polymorphism (SNP) microarray for infant A with valvular insufficiency, aortic sinus dilatation, hydronephrosis, and dysmorphic features, and Trio whole-exome sequencing (WES) for infant B with dextro-transposition of the great arteries (D-TGA) and both parents. Infant A is a term male with neonatal marfanoid features, left-sided hydronephrosis, and complex congenital heart defects including tricuspid regurgitation, aortic sinus dilatation, patent foramen ovale, patent ductus arteriosus, mitral regurgitation, tricuspid regurgitation, aortic regurgitation, and pulmonary sinus dilatation. He developed severe persistent pulmonary hypertension and worsening acute hypercapnic hypoxemic respiratory failure, and subsequently expired on day of life (DOL) 10 after compassionate extubation. Cytogenomic whole-genome SNP microarray analysis revealed a deletion within the FBN1 gene spanning exons 7-30, which overlapped with the exon deletion hotspot region associated with neonatal Marfan syndrome. Infant B is a term male prenatally diagnosed with isolated D-TGA. He required balloon atrial septostomy on DOL 0 and subsequent atrial switch operation, atrial septal defect repair, and patent ductus arteriosus ligation on DOL 5. Trio-WES revealed compound heterozygous c.518C>T and c.8230T>G variants in the FBN2 gene. Zygosity analysis confirmed each of the variants was inherited from one of the parents who were healthy heterozygous carriers. Since his cardiac repair at birth, he has been growing and developing well without any further hospitalization. Our study highlights novel FBN1/FBN2 variants and signifies the phenotype-genotype association in two infants affected with complex congenital heart defects with and without dysmorphic features. These findings speak to the importance of next-generation high-throughput genomics for novel variant detection and the phenotypic variability associated with FBN1/FBN2 variants, particularly in the neonatal period, which may significantly impact clinical care and family counseling.


Asunto(s)
Fibrilina-1 , Fibrilina-2 , Cardiopatías Congénitas , Síndrome de Marfan , Humanos , Fibrilina-1/genética , Síndrome de Marfan/genética , Fibrilina-2/genética , Masculino , Recién Nacido , Cardiopatías Congénitas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Femenino , Polimorfismo de Nucleótido Simple , Mutación , Genómica/métodos , Fenotipo , Secuenciación del Exoma , Adipoquinas
15.
Artículo en Inglés | MEDLINE | ID: mdl-38809322

RESUMEN

Including routine client feedback can increase the effectiveness of mental health interventions for children, especially when implemented as intended. Rate of implementation, or dose, of such feedback interventions has been shown to moderate results in some studies. Variation in implementation and use of client feedback may also contribute to the mixed results observed within the feedback literature. This study evaluates dose-response associations of client feedback using a novel Measurement Feedback System (MFS) within an indicated group intervention. The primary aim was to determine whether the rate of MFS implementation predicts symptom reduction in anxiety and depression among school-aged children. The secondary aim was to assess whether the rate of MFS implementation influences children's satisfaction with the group intervention or their dropout rates. Data were collected via a randomized factorial study (clinicaltrials.gov NCT04263558) across 58 primary schools in Norway. Children aged 8 to 12 years (N = 701) participated in a group-based, transdiagnostic intervention targeting elevated symptoms of anxiety or depression. Half of the child groups also received the feedback intervention using the MittEcho MFS. Group leaders (N = 83), recruited locally, facilitated the interventions. The MFS dose was measured using the Implementation Index, which combines the use of MFS by both children and providers (group leaders) into a single dose variable. Results showed no significant additional effect of dose of MFS on change in depression or anxiety scores, on user satisfaction with the intervention or on intervention dropout. The discussion addresses potential reasons for these non-significant findings and implications for MFS implementation in preventive, group-based interventions in school settings.

16.
J Biol Chem ; 298(2): 101505, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929170

RESUMEN

Bacterial transporters are difficult to study using conventional electrophysiology because of their low transport rates and the small size of bacterial cells. Here, we applied solid-supported membrane-based electrophysiology to derive kinetic parameters of sugar translocation by the Escherichia coli xylose permease (XylE), including functionally relevant mutants. Many aspects of the fucose permease (FucP) and lactose permease (LacY) have also been investigated, which allow for more comprehensive conclusions regarding the mechanism of sugar translocation by transporters of the major facilitator superfamily. In all three of these symporters, we observed sugar binding and transport in real time to determine KM, Vmax, KD, and kobs values for different sugar substrates. KD and kobs values were attainable because of a conserved sugar-induced electrogenic conformational transition within these transporters. We also analyzed interactions between the residues in the available X-ray sugar/H+ symporter structures obtained with different bound sugars. We found that different sugars induce different conformational states, possibly correlating with different charge displacements in the electrophysiological assay upon sugar binding. Finally, we found that mutations in XylE altered the kinetics of glucose binding and transport, as Q175 and L297 are necessary for uncoupling H+ and d-glucose translocation. Based on the rates for the electrogenic conformational transition upon sugar binding (>300 s-1) and for sugar translocation (2 s-1 - 30 s-1 for different substrates), we propose a multiple-step mechanism and postulate an energy profile for sugar translocation. We also suggest a mechanism by which d-glucose can act as an inhibitor for XylE.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte de Monosacáridos , Simportadores , Metabolismo de los Hidratos de Carbono , Electrofisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucosa/metabolismo , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Azúcares/metabolismo , Simportadores/metabolismo
17.
Microbiology (Reading) ; 169(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36748523

RESUMEN

Fungal environments are rich in natural and engineered antimicrobials, and this, combined with the fact that fungal genomes are rich in coding sequences for transporters, suggests that fungi are an intriguing group in which to search for evidence of antimicrobial efflux pumps in mitochondria. Herein, the range of protective mechanisms used by fungi against antimicrobials is introduced, and it is hypothesized, based on the susceptibility of mitochondrial and bacterial ribosomes to the same antibiotics, that mitochondria might also contain pumps that efflux antibiotics from these organelles. Preliminary evidence of ethidium bromide efflux is presented and several candidate efflux pumps are identified in fungal mitochondrial proteomes.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Mitocondrias , Ribosomas/metabolismo
18.
Microbiology (Reading) ; 169(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37252766

RESUMEN

Genes encoding a novel multidrug efflux pump, AadT, from the Drug:H+ antiporter 2 family, were discovered in Acinetobacter multidrug resistance plasmids. Here, we profiled the antimicrobial resistance potential, and examined the distribution of these genes. aadT homologs were found in many Acinetobacter and other Gram-negative species and were typically adjacent to novel variants of adeAB(C), which encodes a major tripartite efflux pump in Acinetobacter. The AadT pump decreased bacterial susceptibility to at least eight diverse antimicrobials, including antibiotics (erythromycin and tetracycline), biocides (chlorhexidine), and dyes (ethidium bromide and DAPI) and was able to mediate ethidium transport. These results show that AadT is a multidrug efflux pump in the Acinetobacter resistance arsenal and may cooperate with variants of AdeAB(C).


Asunto(s)
Acinetobacter baumannii , Antiinfecciosos , Antibacterianos/farmacología , Proteínas de Transporte de Membrana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
19.
Small ; 19(48): e2304687, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37518858

RESUMEN

MXene nanosheets are believed to be an ideal candidate for fabricating fiber supercapacitors (FSCs) due to their metallic conductivity and superior volumetric capacitance, while challenges remain in continuously collecting bare MXene fibers (MFs) via the commonly used wet-spinning technique due to the intercalation of water molecules and a weak interaction between Ti3 C2 TX nanosheets in aqueous coagulation bath that ultimately leads to a loosely packed structure. To address this issue, for the first time, a dry-spinning strategy is proposed by engineering the rheological behavior of Ti3 C2 TX sediment and extruding the highly viscose stock directly through a spinneret followed by a solvent evaperation induced solidification. The dry-spun Ti3 C2 TX fibers show an optimal conductivity of 2295 S cm-1 , a tensile strength of 64 MPa and a specific capacitance of 948 F cm-3 . Nitrogen (N) doping further improves the capacitance of MFs to 1302 F cm-3 without compromising their mechanical and electrical properties. Moreover, the FSC based on N-doped MFs exhibits a high volumetric capacitance of 293 F cm-3 , good stability over 10 000 cycles, excellent flexibility upon bending-unbending, superior energy/power densities and anti-self-discharging property. The excellent electrochemical and mechanical properties endow the dry-spun MFs great potential for future applications in wearable electronics.

20.
Metab Eng ; 80: 163-172, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37778408

RESUMEN

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Asunto(s)
Ácido Aconítico , Aspergillus , Ácido Aconítico/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Proteínas de Transporte de Membrana/genética , Ingeniería Metabólica , Succinatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA