Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
BMC Microbiol ; 24(1): 162, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730339

RESUMEN

BACKGROUND: Coastal areas are subject to various anthropogenic and natural influences. In this study, we investigated and compared the characteristics of two coastal regions, Andhra Pradesh (AP) and Goa (GA), focusing on pollution, anthropogenic activities, and recreational impacts. We explored three main factors influencing the differences between these coastlines: The Bay of Bengal's shallower depth and lower salinity; upwelling phenomena due to the thermocline in the Arabian Sea; and high tides that can cause strong currents that transport pollutants and debris. RESULTS: The microbial diversity in GA was significantly higher than that in AP, which might be attributed to differences in temperature, soil type, and vegetation cover. 16S rRNA amplicon sequencing and bioinformatics analysis indicated the presence of diverse microbial phyla, including candidate phyla radiation (CPR). Statistical analysis, random forest regression, and supervised machine learning models classification confirm the diversity of the microbiome accurately. Furthermore, we have identified 450 cultures of heterotrophic, biotechnologically important bacteria. Some strains were identified as novel taxa based on 16S rRNA gene sequencing, showing promising potential for further study. CONCLUSION: Thus, our study provides valuable insights into the microbial diversity and pollution levels of coastal areas in AP and GA. These findings contribute to a better understanding of the impact of anthropogenic activities and climate variations on biology of coastal ecosystems and biodiversity.


Asunto(s)
Bacterias , Bahías , Microbiota , Filogenia , ARN Ribosómico 16S , Agua de Mar , Aprendizaje Automático Supervisado , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbiota/genética , Agua de Mar/microbiología , India , Bahías/microbiología , Biodiversidad , ADN Bacteriano/genética , Salinidad , Análisis de Secuencia de ADN/métodos
2.
Int Microbiol ; 27(2): 571-580, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37523041

RESUMEN

Host gut microbiomes play an important role in animal health and resilience to conditions, such as malnutrition and starvation. These host-microbiome relationships are poorly understood in the marine mussel Perna canaliculus, which experiences significant variations in food quantity and quality in coastal areas. Prolonged starvation may be a contributory factor towards incidences of mass mortalities in farmed mussel populations, resulting in highly variable production costs and unreliable market supplies. Here, we examine the gut microbiota of P. canaliculus in response to starvation and subsequent re-feeding using high-throughput amplicon sequencing of the 16S rRNA gene. Mussels showed no change in bacterial species richness when subjected to a 14-day starvation, followed by re-feeding/recovery. However, beta bacteria diversity revealed significant shifts (PERMANOVA p-value < 0.001) in community structure in the starvation group and no differences in the subsequent recovery group (compared to the control group) once they were re-fed, highlighting their recovery capability and resilience. Phylum-level community profiles revealed an elevation in dominance of Proteobacteria (ANCOM-BC p-value <0.001) and Bacteroidota (ANCOM-BC p-value = 0.04) and lower relative abundance of Cyanobacteria (ANCOM-BC p-value = 0.01) in the starvation group compared to control and recovery groups. The most abundant genus-level shifts revealed relative increases of the heterotroph Halioglobus (p-value < 0.05) and lowered abundances of the autotroph Synechococcus CC9902 in the starvation group. Furthermore, a SparCC correlation network identified co-occurrence of a cluster of genera with elevated relative abundance in the starved mussels that were positively correlated with Synechococcus CC9902. The findings from this work provide the first insights into the effect of starvation on the resilience capacity of Perna canaliculus gut microbiota, which is of central importance to understanding the effect of food variation and limitation in farmed mussels.


Asunto(s)
Microbioma Gastrointestinal , Perna , Resiliencia Psicológica , Animales , ARN Ribosómico 16S/genética , Bacterias/genética
3.
Ecotoxicol Environ Saf ; 273: 116134, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387143

RESUMEN

The leaching of additives from plastics and elastomers (rubbers) has raised concerns due to their potential negative impacts on the environment and the development of antibiotic resistance. In this study, we investigated the effects of chemicals extracted from two types of rubber on microbiomes derived from a benthic sea urchin and two pelagic fish species. Additionally, we examined whether bacterial communities preconditioned with rubber-associated chemicals displayed adaptations to antibiotics. At the highest tested concentrations of chemicals, we observed reduced maximum growth rates and yields, prolonged lag phases, and increased alpha diversity. While the effects on alpha and beta diversity were not always conclusive, several bacterial genera were significantly influenced by chemicals from the two rubber sources. Subsequent exposure of sea urchin microbiomes preconditioned with rubber chemicals to the antibiotic ciprofloxacin resulted in decreased maximum growth rates. This indicates a more sensitive microbiome to ciprofloxacin when preconditioned with rubber chemicals. Although no significant interaction effects between rubber chemicals and ciprofloxacin exposure were observed in bacterial alpha and beta diversity, we observed log-fold changes in two bacterial genera in response to ciprofloxacin exposure. These findings highlight the structural and functional alterations in microbiomes originating from various marine species when exposed to rubber-associated chemicals and underscore the potential risks posed to marine life.


Asunto(s)
Microbiota , Goma , Animales , Antibacterianos/toxicidad , Plásticos , Ciprofloxacina/toxicidad
4.
Appl Environ Microbiol ; 89(1): e0189522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36622180

RESUMEN

A harmful algal bloom occurred in late spring 2019 across multiple, interconnected fjords and bays in northern Norway. The event was caused by the haptophyte Chrysochromulina leadbeateri and led to severe fish mortality at several salmon aquaculture facilities. This study reports on the spatial and temporal succession dynamics of the holistic marine microbiome associated with this bloom by relating all detectable 18S and 16S rRNA gene amplicon sequence variants to the relative abundance of the C. leadbeateri focal taxon. A k-medoid clustering enabled inferences on how the causative focal taxon cobloomed with diverse groups of bacteria and microeukaryotes. These coblooming patterns showed high temporal variability and were distinct between two geographically separated time series stations during the regional harmful algal bloom. The distinct blooming patterns observed with respect to each station were poorly connected to environmental conditions, suggesting that other factors, such as biological interactions, may be at least as important in shaping the dynamics of this type of harmful algal bloom. A deeper understanding of microbiome succession patterns during these rare but destructive events will help guide future efforts to forecast deviations from the natural bloom cycles of the northern Norwegian coastal marine ecosystems that are home to intensive aquaculture activities. IMPORTANCE The 2019 Chrysochromulina leadbeateri bloom in northern Norway had a major impact on the local economy and society through its devastating effect on the aquaculture industry. However, many fail to remember that C. leadbeateri is, in fact, a common member of the seasonal marine microbiome and the same spring phytoplankton blooms that support the marine ecosystem. It is challenging to draw any conclusions about exact causation behind the harmful bloom of 2019, especially since the natural bloom cycles of C. leadbeateri are not well understood. This study begins to fill major knowledge gaps that may lead to future forecasting abilities, by providing a molecular-based investigation of the destructive 2019 bloom that presents new insights into a seasonal marine microbial ecosystem during one of these sporadically reoccurring events.


Asunto(s)
Dinoflagelados , Haptophyta , Microbiota , Animales , Ecosistema , ARN Ribosómico 16S/genética , Floraciones de Algas Nocivas , Fitoplancton
5.
Microb Ecol ; 85(1): 121-136, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35039906

RESUMEN

Determinism and stochasticity in microbial community composition decisions have attracted wide attention. However, there is no consensus on their interrelationships and relative importance, and the mechanism controlling the interaction between the two ecological processes remains to be revealed. The interaction of the two ecological processes on the continental shelf of the South China Sea was studied by performing 16S rRNA gene amplicon sequencing on 90 sediments at multiple depths in five sites. Three nearshore sites have higher microbial diversity than those two close to the shelf margin. Different microbial composition was observed between sites and microbial composition of nearshore sites was positively correlated with total nitrogen, total sulfur, total organic carbon, and dissolved oxygen, while that of offshore was positively correlated with total carbon, salinity, and photosynthetically active radiation. The null model test showed that the community composition among layers of the same site and between nearby sites was mainly dominated by the homogeneous selection, while that between distant sites was mainly affected by dispersal limitation, which indicates that geographic scale influences the interactivities of determinism and stochasticity. Our research indicates that the balance of these two ecological processes along the geographic scale is mainly determined by the dispersal ability of microbes and environmental heterogeneity between areas. The study provides new insights into how deterministic and stochastic processes shape microbial community composition on the continental shelf.


Asunto(s)
Microbiota , ARN Ribosómico 16S/genética , Microbiota/genética , Carbono , China
6.
Entropy (Basel) ; 23(11)2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34828169

RESUMEN

The microbiome emits informative signals of biological organization and environmental pressure that aid ecosystem monitoring and prediction. Are the many signals reducible to a habitat-specific portfolio that characterizes ecosystem health? Does an optimally structured microbiome imply a resilient microbiome? To answer these questions, we applied our novel Eco-Evo Mandala to bacterioplankton data from four habitats within the Great Barrier Reef, to explore how patterns in community structure, function and genetics signal habitat-specific organization and departures from theoretical optimality. The Mandala revealed communities departing from optimality in habitat-specific ways, mostly along structural and functional traits related to bacterioplankton abundance and interaction distributions (reflected by ϵ and λ as power law and exponential distribution parameters), which are not linearly associated with each other. River and reef communities were similar in their relatively low abundance and interaction disorganization (low ϵ and λ) due to their protective structured habitats. On the contrary, lagoon and estuarine inshore reefs appeared the most disorganized due to the ocean temperature and biogeochemical stress. Phylogenetic distances (D) were minimally informative in characterizing bacterioplankton organization. However, dominant populations, such as Proteobacteria, Bacteroidetes, and Cyanobacteria, were largely responsible for community patterns, being generalists with a large functional gene repertoire (high D) that increases resilience. The relative balance of these populations was found to be habitat-specific and likely related to systemic environmental stress. The position on the Mandala along the three fundamental traits, as well as fluctuations in this ecological state, conveys information about the microbiome's health (and likely ecosystem health considering bacteria-based multitrophic dependencies) as divergence from the expected relative optimality. The Eco-Evo Mandala emphasizes how habitat and the microbiome's interaction network topology are first- and second-order factors for ecosystem health evaluation over taxonomic species richness. Unhealthy microbiome communities and unbalanced microbes are identified not by macroecological indicators but by mapping their impact on the collective proportion and distribution of interactions, which regulates the microbiome's ecosystem function.

7.
Appl Environ Microbiol ; 85(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552195

RESUMEN

An inherent issue in high-throughput rRNA gene tag sequencing microbiome surveys is that they provide compositional data in relative abundances. This often leads to spurious correlations, making the interpretation of relationships to biogeochemical rates challenging. To overcome this issue, we quantitatively estimated the abundance of microorganisms by spiking in known amounts of internal DNA standards. Using a 3-year sample set of diverse microbial communities from the Western Antarctica Peninsula, we demonstrated that the internal standard method yielded community profiles and taxon cooccurrence patterns substantially different from those derived using relative abundances. We found that the method provided results consistent with the traditional CHEMTAX analysis of pigments and total bacterial counts by flow cytometry. Using the internal standard method, we also showed that chloroplast 16S rRNA gene data in microbial surveys can be used to estimate abundances of certain eukaryotic phototrophs such as cryptophytes and diatoms. In Phaeocystis, scatter in the 16S/18S rRNA gene ratio may be explained by physiological adaptation to environmental conditions. We conclude that the internal standard method, when applied to rRNA gene microbial community profiling, is quantitative and that its application will substantially improve our understanding of microbial ecosystems.IMPORTANCE High-throughput-sequencing-based marine microbiome profiling is rapidly expanding and changing how we study the oceans. Although powerful, the technique is not fully quantitative; it provides taxon counts only in relative abundances. In order to address this issue, we present a method to quantitatively estimate microbial abundances per unit volume of seawater filtered by spiking known amounts of internal DNA standards into each sample. We validated this method by comparing the calculated abundances to other independent estimates, including chemical markers (pigments) and total bacterial cell counts by flow cytometry. The internal standard approach allows us to quantitatively estimate and compare marine microbial community profiles, with important implications for linking environmental microbiomes to quantitative processes such as metabolic and biogeochemical rates.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota , Agua de Mar/microbiología , Regiones Antárticas , Bacterias/aislamiento & purificación , Carga Bacteriana , ADN Bacteriano/genética , Citometría de Flujo , Microbiota/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN/métodos
8.
Mar Pollut Bull ; 207: 116939, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39243471

RESUMEN

Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.


Asunto(s)
Ecosistema , Microbiota , Organismos Acuáticos , Metagenómica , Agua de Mar/microbiología , Agua de Mar/química
9.
Mar Pollut Bull ; 203: 116495, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759465

RESUMEN

Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.


Asunto(s)
Bacterias , Microplásticos , Bacterias/genética , Bacterias/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Microbiota/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Monitoreo del Ambiente , Agua de Mar/microbiología , Agua de Mar/química
10.
Environ Sci Pollut Res Int ; 31(48): 58363-58374, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39307865

RESUMEN

Marine environments are subject to various naturally occurring phenomena, including marine snow and mucilage. In 2021, the rapid emergence of mucilage in the Marmara Sea raised concerns about its environmental impact. This study investigates the microbial communities in mucilage and seawater samples from the Marmara Sea using metagenomic-scale comparative analyses. The results indicate significant differences in microbial composition and diversity, with mucilage samples showing higher levels of polysaccharide biosynthesis-related enzymes. Over 50% of reads in mucilage samples remained unclassified (dark matter), highlighting unknown microbial taxa. Clean seawater was characterized by a higher presence of Euryarchaeota, Proteobacteria, and Rhodothermaeota, while Chlamydiae and Fusobacteria were dominant in mucilage. The study underscores the necessity for comprehensive metagenomic analyses to understand microbial roles in mucilage formation and persistence. Early detection of microbial shifts could serve as a warning system for mucilage outbreaks, aiding in the development of management strategies.


Asunto(s)
Microbiota , Agua de Mar , Agua de Mar/microbiología , Metagenómica , Bacterias/genética
11.
Microorganisms ; 11(9)2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37764143

RESUMEN

Microbially influenced corrosion (MIC) is a formidable challenge in the marine industry, resulting from intricate interactions among various biochemical reactions and microbial species. Many preventions used to mitigate biocorrosion fail due to ignorance of the MIC mechanisms. This review provides a summary of the current research on microbial corrosion in marine environments, including corrosive microbes and biocorrosion mechanisms. We also summarized current strategies for inhibiting MIC and proposed future research directions for MIC mechanisms and prevention. This review aims to comprehensively understand marine microbial corrosion and contribute to novel strategy developments for biocorrosion control in marine environments.

12.
Biology (Basel) ; 12(9)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37759645

RESUMEN

The seawater microbiome is crucial in marine ecosystems because of its role in food chains and biogeochemical cycles; thus, we studied the composition of the pelagic marine microbiome collected in the upper 50 m on the opposite sides of Fram Strait: Spitsbergen and Greenland shelves. We found out that it differed significantly, with salinity being the main environmental variable responsible for these differences. The Spitsbergen shelf was dominated by Atlantic Waters, with a rather homogenous water column in terms of salinity and temperature down to 300 m; hence, the marine microbial community was also homogenous at all sampled depths (0, 25, 50 m). On the contrary, stations on the Greenland shelf were exposed to different water masses of both Arctic and Atlantic origin, which resulted in a more diverse microbial community there. Unexpectedly, for the very first time, we identified cyanobacterium Prochlorococcus marinus in Arctic waters (Spitsbergen shelf, 75-77° N). Till now, the distribution of this cyanobacteria in oceans has been described only between 40° N and 40° S. Considering the accelerated rate of climate warming in the Arctic, our results indicated that the seawater microbiome can be viewed as an amplifier of global change and that the Atlantification is in progress.

13.
Sci Total Environ ; 904: 166658, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659522

RESUMEN

Understanding the rapid responses of marine microbiomes to environmental disturbances is paramount for supporting early assessments of harm to high-value ecosystems, such as coral reefs. Yet, management guidelines aimed at protecting aquatic life from environmental pollution remain exclusively defined for organisms at higher trophic levels. In this study, 16S rRNA gene amplicon sequencing was applied in conjunction with propidium monoazide for cell-viability assessment as a sensitive tool to determine taxon- and community-level changes in a seawater microbial community under copper (Cu) exposure. Bayesian model averaging was used to establish concentration-response relationships to evaluate the effects of copper on microbial composition, diversity, and richness for the purpose of estimating microbiome Hazard Concentration (mHCx) values. Predicted mHC5 values at which a 5 % change in microbial composition, diversity, and richness occurred were 1.05, 0.72, and 0.38 µg Cu L-1, respectively. Threshold indicator taxa analysis was applied across the copper concentrations to identify taxon-specific change points for decreasing taxa. These change points were then used to generate a Prokaryotic Sensitivity Distribution (PSD), from which mHCxdec values were derived for copper, suitable for the protection of 99, 95, 90, and 80 % of the marine microbiome. The mHC5dec guideline value of 0.61 µg Cu L-1, protective of 95 % of the marine microbial community, was lower than the equivalent Australian water quality guideline value based on eukaryotic organisms at higher trophic levels. This suggests that marine microbial communities might be more vulnerable, highlighting potential insufficiencies in their protection against copper pollution. The mHCx values proposed here provide approaches to quantitatively assess the effects of contaminants on microbial communities towards the inclusion of prokaryotes in future water quality guidelines.


Asunto(s)
Antozoos , Microbiota , Animales , Cobre/toxicidad , ARN Ribosómico 16S/genética , Teorema de Bayes , Australia
14.
Microbiol Spectr ; 10(3): e0198221, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35536036

RESUMEN

The Olympia oyster (Ostrea lurida) of the Puget Sound suffered a dramatic population crash, but restoration efforts hope to revive this native species. One overlooked variable in the process of assessing ecosystem health is association of bacteria with marine organisms and the environments they occupy. Oyster microbiomes are known to differ significantly between species, tissue type, and the habitat in which they are found. The goals of this study were to determine the impact of field site and habitat on the oyster microbiome and to identify core oyster-associated bacteria in the Puget Sound. Olympia oysters from one parental family were deployed at four sites in the Puget Sound both inside and outside of eelgrass (Zostera marina) beds. Using 16S rRNA gene amplicon sequencing of the oyster gut, shell, and surrounding seawater and sediment, we demonstrate that gut-associated bacteria are distinct from the surrounding environment and vary by field site. Furthermore, regional differences in the gut microbiota are associated with the survival rates of oysters at each site after 2 months of field exposure. However, habitat type had no influence on microbiome diversity. Further work is needed to identify the specific bacterial dynamics that are associated with oyster physiology and survival rates. IMPORTANCE This is the first exploration of the microbial colonizers of the Olympia oyster, a native oyster species to the West Coast, which is a focus of restoration efforts. The patterns of differential microbial colonization by location reveal microscale characteristics of potential restoration sites which are not typically considered. These microbial dynamics can provide a more holistic perspective on the factors that may influence oyster performance.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ostreidae , Animales , Bacterias/genética , Ostreidae/genética , ARN Ribosómico 16S/genética , Agua de Mar
15.
Life (Basel) ; 12(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36556353

RESUMEN

Despite the increasing recognition and importance surrounding bacterial and fungal interactions, and their critical contributions to ecosystem functioning and host fitness, studies examining their co-occurrence remain in their infancy. Similarly, studies have yet to characterise the bacterial and fungal communities associated with nudibranchs or their core microbial members. Doing this can advance our understanding of how the microbiome helps a host adapt and persist in its environment. In this study, we characterised the bacterial and fungal communities associated with 46 Pteraeolidia semperi nudibranch individuals collected from four offshore islands in Singapore. We found no distinct spatial structuring of microbial community, richness, or diversity across sampling locations. The bacterial genera Mycoplasma and Endozoicomonas were found across all samples and islands. The fungal genus Leucoagaricus was found with the highest occurrence, but was not found everywhere, and this is the first record of its reported presence in marine environments. The co-occurrence network suggests that bacterial and fungal interactions are limited, but we identified the bacterial family Colwelliaceae as a potential keystone taxon with its disproportionately high number of edges. Furthermore, Colwelliaceae clusters together with other bacterial families such as Pseudoalteromonadaceae and Alteromonadaceae, all of which have possible roles in the digestion of food.

16.
Sci Total Environ ; 823: 153731, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35143795

RESUMEN

Antibiotic resistance gene (ARG) content is a well-established driver of microbial abundance and diversity in an environment. By reanalyzing 132 metagenomic datasets from the Tara Oceans project, we aim to unveil the associations between environmental factors, the ocean microbial community structure and ARG contents. We first investigated the structural patterns of microbial communities including both prokaryotes such as bacteria and eukaryotes such as protists. Additionally, several ARG-dominant horizontal gene transfer events between Protist and Prokaryote have been identified, indicating the potential roles of ARG in shaping the ocean microbial communities. For a deeper insight into the role of ARGs in ocean microbial communities on a global scale, we identified 1926 unique types of ARGs and discovered that the ARGs are more abundant and diverse in the mesopelagic zone than other water layers, potentially caused by limited resources. Finally, we found that ARG-enriched genera were often more abundant compared to their ARG-less neighbors in the same environment (e.g. coastal oceans). A deeper understanding of the ARG-microbiome relationships could help in the conservation of the oceanic ecosystem.


Asunto(s)
Antibacterianos , Microbiota , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Océanos y Mares
17.
Environ Pollut ; 292(Pt A): 118282, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619178

RESUMEN

Wastewater treatment plant (WWTP) effluents are pointed as hotspots for the introduction of both commensal and pathogenic bacteria as well as their antibiotic resistance genes (ARGs) in receiving water bodies. For the first time, the effect of partially treated submarine effluents was explored at the bottom and surface of the water column to provide a comprehensive overview of the structure of the microbiome and associated AR, and to assess environmental factors leading to their alteration. Seawater samples were collected over a 5-month period from submarine outfalls in central Adriatic Sea, Croatia. 16S rRNA amplicon sequencing was used to establish taxonomic and resistome profiles of the bacterial communities. The community differences observed between the two discharge areas, especially in the abundance of Proteobacteria and Firmicutes, could be due to the origin of wastewaters treated in WWTPs and the limiting environmental conditions such as temperature and nutrients. PICRUSt2 analysis inferred the total content of ARGs in the studied microbiomes and showed the highest abundance of resistance genes encoding multidrug efflux pumps, such as MexAB-OprM, AcrEF-TolC and MdtEF-TolC, followed by the modified peptidoglycan precursors, transporter genes encoding tetracycline, macrolide and phenicol resistance, and the bla operon conferring ß-lactam resistance. A number of pathogenic genera introduced by effluents, including Acinetobacter, Arcobacter, Bacteroides, Escherichia-Shigella, Klebsiella, Pseudomonas, and Salmonella, were predicted to account for the majority of efflux pump-driven multidrug resistance, while Acinetobacter, Salmonella, Bacteroides and Pseudomonas were also shown to be the predominant carriers of non-efflux ARGs conferring resistance to most of nine antibiotic classes. Taken together, we evidenced the negative impact of submarine discharges of treated effluents via alteration of physico-chemical characteristics of the water column and enrichment of bacterial community with nonindigenous taxa carrying an arsenal of ARGs, which could contribute to the further propagation of the AR in the natural environment.


Asunto(s)
Microbiota , Antibacterianos/farmacología , Croacia , Farmacorresistencia Microbiana/genética , Genes Bacterianos , ARN Ribosómico 16S/genética , Aguas Residuales/análisis
18.
mSystems ; 7(4): e0007022, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35856685

RESUMEN

Microbial communities, through their metabolism, drive carbon cycling in marine environments. These complex communities are composed of many different microorganisms including heterotrophic bacteria, each with its own nutritional needs and metabolic capabilities. Yet, models of ecosystem processes typically treat heterotrophic bacteria as a "black box," which does not resolve metabolic heterogeneity nor address ecologically important processes such as the successive modification of different types of organic matter. Here we directly address the heterogeneity of metabolism by characterizing the carbon source utilization preferences of 63 heterotrophic bacteria representative of several major marine clades. By systematically growing these bacteria on 10 media containing specific subsets of carbon sources found in marine biomass, we obtained a phenotypic fingerprint that we used to explore the relationship between metabolic preferences and phylogenetic or genomic features. At the class level, these bacteria display broadly conserved patterns of preference for different carbon sources. Despite these broad taxonomic trends, growth profiles correlate poorly with phylogenetic distance or genome-wide gene content. However, metabolic preferences are strongly predicted by a handful of key enzymes that preferentially belong to a few enriched metabolic pathways, such as those involved in glyoxylate metabolism and biofilm formation. We find that enriched pathways point to enzymes directly involved in the metabolism of the corresponding carbon source and suggest potential associations between metabolic preferences and other ecologically relevant traits. The availability of systematic phenotypes across multiple synthetic media constitutes a valuable resource for future quantitative modeling efforts and systematic studies of interspecies interactions. IMPORTANCE Half of the Earth's annual primary production is carried out by phytoplankton in the surface ocean. However, this metabolic activity is heavily impacted by heterotrophic bacteria, which dominate the transformation of organic matter released from phytoplankton. Here, we characterize the diversity of metabolic preferences across many representative heterotrophs by systematically growing them on different fractions of dissolved organic carbon. Our analysis suggests that different clades of bacteria have substantially distinct preferences for specific carbon sources, in a way that cannot be simply mapped onto phylogeny. These preferences are associated with the presence of specific genes and pathways, reflecting an association between metabolic capabilities and ecological lifestyles. In addition to helping understand the importance of heterotrophs under different conditions, the phenotypic fingerprint we obtained can help build higher resolution quantitative models of global microbial activity and biogeochemical cycles in the oceans.


Asunto(s)
Microbiota , Agua de Mar , Agua de Mar/química , Filogenia , Océanos y Mares , Bacterias/genética , Microbiota/genética , Fitoplancton/genética , Carbono/metabolismo
19.
Environ Pollut ; 268(Pt A): 115757, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168375

RESUMEN

Anthropogenic activities in coastal marine ecosystems can lead to an increase in the abundance of potentially harmful microorganisms in the marine environment. To understand anthropogenic impacts on the marine microbiome, we first used publicly available microbial phylogenetic and functional data to establish a dataset of bacterial genera potentially related to pathogens that cause diseases (BGPRD) in marine organisms. Representatives of low-, medium- and highly impacted marine coastal environments were selected, and the abundance and composition of their microbial communities were determined by quantitative PCR and 16 S rRNA gene sequencing. In total, 72 BGPRD were cataloged, and 11, 36 and 37 BGPRD were found in low-, medium- and highly human-impacted ecosystems, respectively. The absolute abundance of BGPRD and the co-occurrence of antibiotic resistance genes (AGR) increased with the degree of anthropogenic perturbation in these ecosystems. Anthropogenically impacted coastal microbiomes were compositionally and functionally distinct from those of less impacted sites, presenting features that may contribute to adverse outcomes for marine macrobiota in the Anthropocene era.


Asunto(s)
Microbiota , Organismos Acuáticos , Bacterias/genética , Farmacorresistencia Microbiana , Humanos , Filogenia
20.
Microorganisms ; 9(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922357

RESUMEN

The large canopy-forming macroalga, Sargassum ilicifolium, provides shelter and food for numerous coral reef species, but it can also be detrimental at high abundances where it outcompetes other benthic organisms for light and space. Here, we investigate the microbial communities associated with S. ilicifolium in Singapore, where it is an abundant and important member of coral reef communities. We collected eight complete S. ilicifolium thalli from eight island locations along an approximate 14 km east-to-west transect. Each thallus was dissected into three separate parts: holdfast, vesicles, and leaves. We then characterized the bacterial communities associated with each part via polymerase chain reaction (PCR) amplification of the 16S rRNA gene V4 region. We then inferred predicted metagenome functions using METAGENassist. Despite the comparatively short distances between sample sites, we show significant differences in microbial community composition, with communities further differentiated by part sampled. Holdfast, vesicles and leaves all harbor distinct microbial communities. Functional predictions reveal some separation between holdfast and leaf communities, with higher representation of sulphur cycling taxa in the holdfast and higher representation of nitrogen cycling taxa in the leaves. This study provides valuable baseline data that can be used to monitor microbial change, and helps lay the foundation upon which we can begin to understand the complexities of reef-associated microbial communities and the roles they play in the functioning and diversity of marine ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA