Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 17(10)2016 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-27669235

RESUMEN

In this study, methasterone urinary metabolic profiles were investigated by liquid chromatography quadrupole time of flight mass spectrometry (LC-QTOF-MS) in full scan and targeted MS/MS modes with accurate mass measurement. A healthy male volunteer was asked to take the drug and liquid-liquid extraction was employed to process urine samples. Chromatographic peaks for potential metabolites were hunted out with the theoretical [M - H](-) as a target ion in a full scan experiment and actual deprotonated ions were studied in targeted MS/MS experiment. Fifteen metabolites including two new sulfates (S1 and S2), three glucuronide conjugates (G2, G6 and G7), and three free metabolites (M2, M4 and M6) were detected for methasterone. Three metabolites involving G4, G5 and M5 were obtained for the first time in human urine samples. Owing to the absence of helpful fragments to elucidate the steroid ring structure of methasterone phase II metabolites, gas chromatography mass spectrometry (GC-MS) was employed to obtain structural information of the trimethylsilylated phase I metabolite released after enzymatic hydrolysis and the potential structure was inferred using a combined MS method. Metabolite detection times were also analyzed and G2 (18-nor-17ß-hydroxymethyl-2α, 17α-dimethyl-androst-13-en-3α-ol-ξ-O-glucuronide) was thought to be new potential biomarker for methasterone misuse which can be detected up to 10 days.


Asunto(s)
Androstanoles/orina , Biomarcadores/orina , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem , Androstanoles/aislamiento & purificación , Androstanoles/metabolismo , Doping en los Deportes , Cromatografía de Gases y Espectrometría de Masas , Glucurónidos/química , Humanos , Extracción Líquido-Líquido , Sulfatos/química
2.
Steroids ; 193: 109199, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36796473

RESUMEN

From 2012 to 2013, approximately 16 New York residents reported vague, nonspecific adverse health effects which included fatigue, loss of scalp hair, and muscle aches. One patient was hospitalized for liver damage. An epidemiological investigation identified a common factor among these patients; the consumption of B-50 vitamin and multimineral supplements from the same supplier. To investigate whether these nutritional supplements might have been responsible for the adverse health effects observed, comprehensive chemical analyses of marketed lots of the supplements were performed. To determine presence of organic components and contaminants, organic extracts of samples were prepared and analyzed using gas chromatography-mass spectrometry (GC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), liquid chromatography high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR). These analyses revealed the presence of significant levels of methasterone (17ß-hydroxy-2α,17α-dimethyl-5α-androstane-3-one), an androgenic steroid and schedule III-controlled substance; dimethazine, an azine-linked dimer of methasterone; and methylstenbolone (2,17α-dimethyl-17ß-hydroxy-5α-androst-1-en-3-one), a related androgenic steroid. Methasterone and extracts of certain supplement capsules were identified as highly androgenic in luciferase assays by using an androgen receptor promoter construct. This androgenicity persisted for several days after cell exposure to the compounds. The presence of these components in implicated lots were associated with adverse health effects and the hospitalization of one patient and the presentation of symptoms of severe virilization in a child. These findings underscore the need for more rigorous oversight of the nutritional supplement industry.


Asunto(s)
Anabolizantes , Doping en los Deportes , Niño , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Andrógenos/efectos adversos , Suplementos Dietéticos/efectos adversos , Suplementos Dietéticos/análisis
3.
Steroids ; 194: 109219, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36893829

RESUMEN

Transformation of steroidal drug mesterolone (1) with Glomerella fusarioides yielded two new (17α-hydroxy-1α-methyl-5α-androstan-3-one-11α-yl acetate (2) and 15α-hydroxy-1-methyl-5α-androstan-1-en-3,17-dione (3)), and four known derivatives (15α,17ß-dihydroxy-1α-methyl-5α-androstan-3-one (4), 15α-hydroxy-1α-methyl-5α-androstan-3,17-dione (5), 1α-methyl-androsta-4-en-3,17-dione (6) and 15α,17ß-dihydroxy-1-methyl-5α-androstan-1-en-3-one (7). Similarly, G. fusarioides-catalyzed transformation of steroidal drug methasterone (8) afforded four new metabolites, 11α,17ß-dihydroxy-2,17α-dimethylandrosta-1,4-diene-3-one (9), 3a,11α,17ß-trihydroxy-2α,17α-dimethyl-5α-androstane (10), 1ß,3ß,17ß-trihydroxy-2α,17α-dimethyl-5α-androstane (11), and 11α,17ß-dihydroxy-2,17α-dimethylandrosta-1,4-diene-3-one (12). Structures of new derivatives were determined by using 1D-, and 2D-NMR, HREI-MS, and IR spectroscopic data. New derivative 3 was identified as a potent inhibitor of NÈ® production with the IC50 value of 29.9 ± 1.8 µM, in comparison to the standard l-NMMA (IC50 = 128.2 ± 0.8 µM) in vitro. In addition, methasterone (8) (IC50 = 83.6 ± 0.22 µM) also showed a significant activity comparable to new derivative 12 (IC50 = 89.8 ± 1.2 µM). New derivatives 2 (IC50 = 102.7 ± 0.5 µM), 9 (IC50 = 99.6 ± 5.7 µM), 10 (IC50 = 123.5 ± 5.7 µM), and 11 (IC50 = 170.5 ± 5.0 µM) showed a moderate activity. NG-MonomethylL-arginine acetate (IC50 = 128.2 ± 0.8 µM) was used as standared NO⋅- free radicals have an important role in the regulation of immune responses and cellular events. Their overproduction is associated with the pathogenesis of numerous ailments, such as Alzheimer's cardiac disorders, cancer, diabetes, and degenerative diseases. Therefore, inhibition of NÈ® production can help in the treatment of chronic inflammation and associated disorders. All derivatives were found to be non-cytotoxic to human fibroblast (BJ) cell line. The results presented here form the basis of further research for the development of new anti-inflammatory agents with improved efficacy through biotransformation approaches.


Asunto(s)
Mesterolona , Phyllachorales , Congéneres de la Testosterona , Humanos , Antiinflamatorios/farmacología , Catálisis , Espectroscopía de Resonancia Magnética , Mesterolona/química , Mesterolona/metabolismo , Phyllachorales/metabolismo , Congéneres de la Testosterona/química , Congéneres de la Testosterona/metabolismo
5.
Steroids ; 128: 75-84, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28404456

RESUMEN

Microbial transformation of methasterone (1) was investigated with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini. Biotransformation of 1 with M. phaseolina yielded metabolite 2, while metabolites 3-7 were obtained from the incubation of 1 with C. blakesleeana. Metabolites 8-13 were obtained through biotransformation with F. lini. All metabolites, except 13, were found to be new. Methasterone (1) and its metabolites 2-6, 9, 10, and 13 were then evaluated for their immunomodulatory effects against TNF-α, NO, and ROS production. Among all tested compounds, metabolite 6 showed a potent inhibition of proinflammatory cytokine TNF-α (IC50=8.1±0.9µg/mL), as compared to pentoxifylline used as a standard (IC50=94.8±2.1µg/mL). All metabolites were also evaluated for the inhibition of NO production at concentration of 25µg/mL. Metabolites 6 (86.7±2.3%) and 13 (62.5±1.5%) were found to be the most potent inhibitors of NO as compared to the standard NG-monomethyl-l-arginine acetate (65.6±1.1%). All metabolites were found to be non-toxic against PC3, HeLa, and 3T3 cell lines. Observed inhibitory potential of metabolites 6 and 13 against pro-inflammatory cytokine TNF-α, as well as NO production makes them interesting leads for further studies.


Asunto(s)
Biotransformación , Congéneres de la Testosterona/biosíntesis , Congéneres de la Testosterona/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Células 3T3 , Animales , Ascomicetos/genética , Proliferación Celular/efectos de los fármacos , Cunninghamella/genética , Fusarium/genética , Células HeLa , Humanos , Ratones , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Congéneres de la Testosterona/química , Congéneres de la Testosterona/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA