Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.899
Filtrar
Más filtros

Colección CLAP
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105712, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309509

RESUMEN

We recently established a method for the isolation of serum-free oligosaccharides, and characterized various features of their structures. However, the precise mechanism for how these glycans are formed still remains unclarified. To further investigate the mechanism responsible for these serum glycans, here, we utilized rat primary hepatocytes to examine whether they are able to secrete free glycans. Our findings indicated that a diverse array of free oligosaccharides such as sialyl/neutral free N-glycans (FNGs), as well as sialyl lactose/LacNAc-type glycans, were secreted into the culture medium by primary hepatocytes. The structural features of these free glycans in the medium were similar to those isolated from the sera of the same rat. Further evidence suggested that an oligosaccharyltransferase is involved in the release of the serum-free N-glycans. Our results indicate that the liver is indeed secreting various types of free glycans directly into the serum.


Asunto(s)
Hepatocitos , Oligosacáridos , Animales , Ratas , Hepatocitos/metabolismo , Oligosacáridos/sangre , Oligosacáridos/química , Oligosacáridos/metabolismo , Células Hep G2 , Humanos , Masculino , Ratas Wistar
2.
J Biol Chem ; 300(8): 107573, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39009340

RESUMEN

Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as ß-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.

3.
J Virol ; 98(3): e0170923, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38305156

RESUMEN

Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Transmisión Vertical de Enfermedad Infecciosa , Glándulas Mamarias Animales , Leche , Animales , Femenino , Ratones , Virus de la Encefalitis Transmitidos por Garrapatas/crecimiento & desarrollo , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Encefalitis Transmitida por Garrapatas/transmisión , Encefalitis Transmitida por Garrapatas/virología , Glándulas Mamarias Animales/virología , Leche/virología , Animales Recién Nacidos/virología
4.
J Virol ; 98(7): e0088124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38958444

RESUMEN

In March 2024, clade 2.3.4.4b H5N1 highly pathogenic avian influenza virus (HPAIV) was detected in dairy cattle in the US, and it was discovered that the virus could be detected in raw milk. Although affected cow's milk is diverted from human consumption and current pasteurization requirements are expected to reduce or eliminate infectious HPAIV from the milk supply, a study was conducted to characterize whether the virus could be detected by quantitative real-time RT-PCR (qrRT-PCR) in pasteurized retail dairy products and, if detected, to determine whether the virus was viable. From 18 April to 22 April 2024, a total of 297 samples of Grade A pasteurized retail milk products (23 product types) were collected from 17 US states that represented products from 132 processors in 38 states. Viral RNA was detected in 60 samples (20.2%), with qrRT-PCR-based quantity estimates (non-infectious) of up to 5.4log1050% egg infectious doses per mL, with a mean and median of 3.0log10/mL and 2.9log10/mL, respectively. Samples that were positive for type A influenza by qrRT-PCR were confirmed to be clade 2.3.4.4 H5 HPAIV by qrRT-PCR. No infectious virus was detected in any of the qrRT-PCR-positive samples in embryonating chicken eggs. Further studies are needed to monitor the milk supply, but these results provide evidence that the infectious virus did not enter the US pasteurized milk supply before control measures for HPAIV were implemented in dairy cattle.IMPORTANCEHighly pathogenic avian influenza virus (HPAIV) infections in US dairy cattle were first confirmed in March 2024. Because the virus could be detected in raw milk, a study was conducted to determine whether it had entered the retail food supply. Pasteurized dairy products were collected from 17 states in April 2024. Viral RNA was detected in one in five samples, but infectious virus was not detected. This provides a snapshot of HPAIV in milk products early in the event and reinforces that with current safety measures, infectious viruses in milk are unlikely to enter the food supply.


Asunto(s)
Productos Lácteos , Leche , ARN Viral , Animales , Bovinos , Leche/virología , Estados Unidos , Productos Lácteos/virología , ARN Viral/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Pasteurización , Gripe Aviar/virología , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Exp Cell Res ; 439(1): 114090, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740167

RESUMEN

Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.


Asunto(s)
Apoptosis , Bromocriptina , Domperidona , Células Epiteliales , Lactancia , Glándulas Mamarias Animales , Proteínas de la Leche , Receptores de Dopamina D2 , Animales , Femenino , Ratones , Apoptosis/efectos de los fármacos , Bromocriptina/farmacología , Células Cultivadas , AMP Cíclico/metabolismo , Domperidona/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Lactancia/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/metabolismo , Proteínas de la Leche/genética , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Factor de Transcripción STAT5/metabolismo
6.
Mol Ther ; 32(8): 2762-2777, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38859589

RESUMEN

This study demonstrates the potential of using biological nanoparticles to deliver RNA therapeutics targeting programmed death-ligand 1 (PD-L1) as a treatment strategy for cholangiocarcinoma (CCA). RNA therapeutics offer prospects for intracellular immune modulation, but effective clinical translation requires appropriate delivery strategies. Milk-derived nanovesicles were decorated with epithelial cellular adhesion molecule (EpCAM) aptamers and used to deliver PD-L1 small interfering RNA (siRNA) or Cas9 ribonucleoproteins directly to CCA cells. In vitro, nanovesicle treatments reduced PD-L1 expression in CCA cells while increasing degranulation, cytokine release, and tumor cell cytotoxicity when tumor cells were co-cultured with T cells or natural killer cells. Similarly, immunomodulation was observed in multicellular spheroids that mimicked the tumor microenvironment. Combining targeted therapeutic vesicles loaded with siRNA to PD-L1 with gemcitabine effectively reduced tumor burden in an immunocompetent mouse CCA model compared with controls. This proof-of-concept study demonstrates the potential of engineered targeted nanovesicle platforms for delivering therapeutic RNA cargoes to tumors, as well as their use in generating effective targeted immunomodulatory therapies for difficult-to-treat cancers such as CCA.


Asunto(s)
Antígeno B7-H1 , Colangiocarcinoma , Inmunoterapia , ARN Interferente Pequeño , Colangiocarcinoma/terapia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/inmunología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/genética , Animales , Humanos , Ratones , Línea Celular Tumoral , Inmunoterapia/métodos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/administración & dosificación , Nanopartículas/química , Neoplasias de los Conductos Biliares/terapia , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/inmunología , Microambiente Tumoral/inmunología , Modelos Animales de Enfermedad , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Gemcitabina
7.
BMC Biol ; 22(1): 65, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38486242

RESUMEN

BACKGROUND: DNA methylation has been documented to play vital roles in diseases and biological processes. In bovine, little is known about the regulatory roles of DNA methylation alterations on production and health traits, including mastitis. RESULTS: Here, we employed whole-genome DNA methylation sequencing to profile the DNA methylation patterns of milk somatic cells from sixteen cows with naturally occurring Staphylococcus aureus (S. aureus) subclinical mastitis and ten healthy control cows. We observed abundant DNA methylation alterations, including 3,356,456 differentially methylated cytosines and 153,783 differential methylation haplotype blocks (dMHBs). The DNA methylation in regulatory regions, including promoters, first exons and first introns, showed global significant negative correlations with gene expression status. We identified 6435 dMHBs located in the regulatory regions of differentially expressed genes and significantly correlated with their corresponding genes, revealing their potential effects on transcriptional activities. Genes harboring DNA methylation alterations were significantly enriched in multiple immune- and disease-related pathways, suggesting the involvement of DNA methylation in regulating host responses to S. aureus subclinical mastitis. In addition, we found nine discriminant signatures (differentiates cows with S. aureus subclinical mastitis from healthy cows) representing the majority of the DNA methylation variations related to S. aureus subclinical mastitis. Validation of seven dMHBs in 200 cows indicated significant associations with mammary gland health (SCC and SCS) and milk production performance (milk yield). CONCLUSIONS: In conclusion, our findings revealed abundant DNA methylation alterations in milk somatic cells that may be involved in regulating mammary gland defense against S. aureus infection. Particularly noteworthy is the identification of seven dMHBs showing significant associations with mammary gland health, underscoring their potential as promising epigenetic biomarkers. Overall, our findings on DNA methylation alterations offer novel insights into the regulatory mechanisms of bovine subclinical mastitis, providing further avenues for the development of effective control measures.


Asunto(s)
Mastitis Bovina , Infecciones Estafilocócicas , Bovinos , Animales , Femenino , Humanos , Staphylococcus aureus , Metilación de ADN , Mastitis Bovina/genética , Mastitis Bovina/metabolismo , Haplotipos , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/veterinaria
8.
Genomics ; 116(4): 110873, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38823464

RESUMEN

Goat milk exhibits a robust and distinctive "goaty" flavor. However, the underlying genetic basis of goaty flavor remains elusive and requires further elucidation at the genomic level. Through comparative genomics analysis, we identified divergent signatures of certain proteins in goat, sheep, and cow. MMUT has undergone a goat-specific mutation in the B12 binding domain. We observed the goat FASN exhibits nonsynonymous mutations in the acyltransferase domain. Structural variations in these key proteins may enhance the capacity for synthesizing goaty flavor compounds in goat. Integrated omics analysis revealed the catabolism of branched-chain amino acids contributed to the goat milk flavor. Furthermore, we uncovered a regulatory mechanism in which the transcription factor ZNF281 suppresses the expression of the ECHDC1 gene may play a pivotal role in the accumulation of flavor substances in goat milk. These findings provide insights into the genetic basis underlying the formation of goaty flavor in goat milk. STATEMENT OF SIGNIFICANCE: Branched-chain fatty acids (BCFAs) play a crucial role in generating the distinctive "goaty" flavor of goat milk. Whether there is an underlying genetic basis associated with goaty flavor is unknown. To begin deciphering mechanisms of goat milk flavor development, we collected transcriptomic data from mammary tissue of goat, sheep, cow, and buffalo at peak lactation for cross-species transcriptome analysis and downloaded nine publicly available genomes for comparative genomic analysis. Our data indicate that the catabolic pathway of branched-chain amino acids (BCAAs) is under positive selection in the goat genome, and most genes involved in this pathway exhibit significantly higher expression levels in goat mammary tissue compared to other species, which contributes to the development of flavor in goat milk. Furthermore, we have elucidated the regulatory mechanism by which the transcription factor ZNF281 suppresses ECHDC1 gene expression, thereby exerting an important influence on the accumulation of flavor compounds in goat milk. These findings provide insights into the genetic mechanisms underlying flavor formation in goat milk and suggest further research to manipulate the flavor of animal products.


Asunto(s)
Cabras , Leche , Animales , Cabras/genética , Cabras/metabolismo , Leche/metabolismo , Leche/química , Gusto , Genómica , Transcriptoma , Femenino , Ovinos/genética , Ovinos/metabolismo , Bovinos/genética , Bovinos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo
9.
Gut ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084687

RESUMEN

OBJECTIVE: The specific breast milk-derived metabolites that mediate host-microbiota interactions and contribute to the onset of atopic dermatitis (AD) remain unknown and require further investigation. DESIGN: We enrolled 250 mother-infant pairs and collected 978 longitudinal faecal samples from infants from birth to 6 months of age, along with 243 maternal faecal samples for metagenomics. Concurrently, 239 corresponding breast milk samples were analysed for metabolomics. Animal and cellular experiments were conducted to validate the bioinformatics findings. RESULTS: The clinical findings suggested that a decrease in daily breastfeeding duration was associated with a reduced incidence of AD. This observation inspired us to investigate the effects of breast milk-derived fatty acids. We found that high concentrations of arachidonic acid (AA), but not eicosapentaenoic acid (EPA) or docosahexaenoic acid, induced gut dysbiosis in infants. Further investigation revealed that four specific bacteria degraded mannan into mannose, consequently enhancing the mannan-dependent biosynthesis of O-antigen and lipopolysaccharide. Correlation analysis confirmed that in infants with AD, the abundance of Escherichia coli under high AA concentrations was positively correlated with some microbial pathways (eg, 'GDP-mannose-derived O-antigen and lipopolysaccharide biosynthesis'). These findings are consistent with those of the animal studies. Additionally, AA, but not EPA, disrupted the ratio of CD4/CD8 cells, increased skin lesion area and enhanced the proportion of peripheral Th2 cells. It also promoted IgE secretion and the biosynthesis of prostaglandins and leukotrienes in BALB/c mice fed AA following ovalbumin immunostimulation. Moreover, AA significantly increased IL-4 secretion in HaCaT cells costimulated with TNF-α and INF-γ. CONCLUSIONS: This study demonstrates that AA is intimately linked to the onset of AD via gut dysbiosis.

10.
Proteomics ; 24(14): e2300340, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38873899

RESUMEN

The breast milk composition includes a multitude of bioactive factors such as viable cells, lipids and proteins. Measuring the levels of specific proteins in breast milk plasma can be challenging because of the large dynamic range of protein concentrations and the presence of interfering substances. Therefore, most proteomic studies of breast milk have been able to identify under 1000 proteins. Optimised procedures and the latest separation technologies used in milk proteome research could lead to more precise knowledge of breast milk proteome. This study (n = 53) utilizes three different protein quantification methods, including direct DIA, library-based DIA method and a hybrid method combining direct DIA and library-based DIA. On average we identified 2400 proteins by hybrid method. By applying these methods, we quantified body mass index (BMI) associated variation in breast milk proteomes. There were 210 significantly different proteins when comparing the breast milk proteome of obese and overweight mothers. In addition, we analysed a small cohort (n = 5, randomly selected from 53 samples) by high field asymmetric waveform ion mobility spectrometry (FAIMS). FAIMS coupled with the Orbitrap Fusion Lumos mass spectrometer, which led to 41.7% higher number of protein identifications compared to Q Exactive HF mass spectrometer.


Asunto(s)
Leche Humana , Proteoma , Proteómica , Espectrometría de Masas en Tándem , Leche Humana/química , Humanos , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis , Femenino , Cromatografía Liquida/métodos , Proteómica/métodos , Proteínas de la Leche/análisis , Espectrometría de Movilidad Iónica/métodos , Adulto , Cromatografía Líquida con Espectrometría de Masas
11.
J Lipid Res ; 65(6): 100557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719152

RESUMEN

Dietary sphingomyelin (SM) has been reported to favorably modulate postprandial lipemia. Mechanisms underlying these beneficial effects on cardiovascular risk markers are not fully elucidated. Rodent studies showed that tritiated SM was hydrolyzed in the intestinal lumen into ceramides (Cer) and further to sphingosine (SPH) and fatty acids (FA) that were absorbed by the intestine. Our objective was to investigate the uptake and metabolism of SPH and/or tricosanoic acid (C23:0), the main FA of milk SM, as well as lipid secretion in Caco-2/TC7 cells cultured on semipermeable inserts. Mixed micelles (MM) consisting of different digested lipids and taurocholate were prepared without or with SPH, SPH and C23:0 (SPH+C23:0), or C23:0. Triglycerides (TG) were quantified in the basolateral medium, and sphingolipids were analyzed by tandem mass spectrometry. TG secretion increased 11-fold in all MM-incubated cells compared with lipid-free medium. Apical supply of SPH-enriched MM led to increased concentrations of total Cer in cells, and coaddition of C23:0 in SPH-enriched MM led to a preferential increase of C23:0 Cer and C23:0 SM. Complementary experiments using deuterated SPH demonstrated that SPH-d9 was partly converted to sphingosine-1-phosphate-d9, Cer-d9, and SM-d9 within cells incubated with SPH-enriched MM. A few Cer-d9 (2% of added SPH-d9) was recovered in the basolateral medium of (MM+SPH)-incubated cells, especially C23:0 Cer-d9 in (MM+SPH+C23:0)-enriched cells. In conclusion, present results indicate that MM enriched with (SPH+C23:0), such as found in postprandial micelles formed after milk SM ingestion, directly impacts sphingolipid endogenous metabolism in enterocytes, resulting in the secretion of TG-rich particles enriched with C23:0 Cer.


Asunto(s)
Ceramidas , Absorción Intestinal , Esfingosina , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Humanos , Ceramidas/metabolismo , Células CACO-2 , Micelas , Triglicéridos/metabolismo , Marcaje Isotópico , Animales
12.
J Proteome Res ; 23(6): 2288-2297, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38805445

RESUMEN

In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.


Asunto(s)
Exosomas , Leche , Proteómica , Ultracentrifugación , Animales , Bovinos , Exosomas/química , Exosomas/metabolismo , Proteómica/métodos , Leche/química , Ultracentrifugación/métodos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteínas de la Leche/análisis , Proteínas de la Leche/metabolismo , Proteínas de la Leche/química , Espectrometría de Masas/métodos
13.
Glycobiology ; 34(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39115362

RESUMEN

α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.


Asunto(s)
Calostro , Lactalbúmina , Leche , Lactalbúmina/metabolismo , Lactalbúmina/química , Animales , Glicosilación , Calostro/química , Calostro/metabolismo , Bovinos , Leche/química , Leche/metabolismo , Femenino , Lactancia/metabolismo , Amino Azúcares/química , Amino Azúcares/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/química , Glicopéptidos/análisis , Lactosa/metabolismo , Lactosa/química
14.
BMC Genomics ; 25(1): 323, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561663

RESUMEN

BACKGROUND: Cow milk fat is an essential indicator for evaluating and measuring milk quality and cow performance. Growing research has identified the molecular functions of circular RNAs (circRNAs) necessary for mammary gland development and lactation in mammals. METHOD: The present study analyzed circRNA expression profiling data in mammary epithelial cells (MECs) from cows with highly variable milk fat percentage (MFP) using differential expression analysis and weighted gene co-expression network analysis (WGCNA). RESULTS: A total of 309 differentially expressed circRNAs (DE-circRNAs) were identified in the high and low MFP groups. WGCNA analysis revealed that the pink module was significantly associated with MFP (r = - 0.85, P = 0.007). Parental genes of circRNAs in this module were enriched mainly in lipid metabolism-related signaling pathways, such as focal adhesion, ECM-receptor interaction, adherens junction and AMPK. Finally, six DE-circRNAs were screened from the pink module: circ_0010571, circ_0007797, circ_0002746, circ_0003052, circ_0004319, and circ_0012840. Among them, circ_0002746, circ_0003052, circ_0004319, and circ_0012840 had circular structures and were highly expressed in mammary tissues. Subcellular localization revealed that these four DE-circRNAs may play a regulatory role in the mammary glands of dairy cows, mainly as competitive endogenous RNAs (ceRNAs). Seven hub target genes (GNB1, GNG2, PLCB1, PLCG1, ATP6V0C, NDUFS4, and PIGH) were obtained by constructing the regulatory network of their ceRNAs and then analyzed by CytoHubba and MCODE plugins in Cytoscape. Functional enrichment analysis revealed that these genes are crucial and most probable ceRNA regulators in milk fat metabolism. CONCLUSIONS: Our study identified several vital circRNAs and ceRNAs affecting milk fat synthesis, providing new research ideas and a theoretical basis for cow lactation, milk quality, and breed improvement.


Asunto(s)
MicroARNs , ARN Circular , Femenino , Bovinos , Animales , ARN Circular/genética , ARN Circular/metabolismo , Leche/metabolismo , ARN Endógeno Competitivo , Lactancia/genética , Metabolismo de los Lípidos/genética , Redes Reguladoras de Genes , MicroARNs/genética , Mamíferos/genética
15.
BMC Genomics ; 25(1): 265, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461236

RESUMEN

BACKGROUND: Over the last decades, it was subject of many studies to investigate the genomic connection of milk production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits and the accuracies of genomic prediction, especially in small populations and across-breed settings. Still, little is known about the contribution of different functional and evolutionary genome partitioning subsets to milk production and dairy health. Thus, we performed a uni- and a bivariate analysis of milk yield (MY) and eight health traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, eight trait-combinations were observed that contrasted MY with each health trait. Two genomic relationship matrices (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations were estimated applying merely the 50K GRM. RESULTS: In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correlations were negative, subset genetic correlations were both, positive and negative (ranging from -0.9324 between MY and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked highest in terms of their contribution to the traits` genetic variance. We were able to show that linkage disequilibrium between subset variants and adjacent variants did not cause these subsets` high effect. CONCLUSION: Our results confirm the connection of milk production and health traits in dairy cattle via the animals` metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, which helps to dissect the extent and direction of the observed traits` connection in more detail.


Asunto(s)
Leche , Polimorfismo de Nucleótido Simple , Animales , Femenino , Bovinos/genética , Fenotipo , Genotipo , Genómica/métodos , Sitios de Carácter Cuantitativo , Lactancia/genética
16.
Immunology ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108003

RESUMEN

Group 2 innate lymphoid cells (ILC2s) play a crucial role in the progression of asthma, yet the regulatory mechanisms modulating ILC2 responses in asthma remain underexplored. Human milk oligosaccharides (HMOs), vital non-nutritive components of breast milk, are known to significantly shape immune system development and influence the incidence of allergic diseases. However, their impact on ILC2-driven asthma is not fully understood. Our research reveals that dietary HMOs act as potent inhibitors of ILC2 responses and allergic airway inflammation. Treatment with 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL) significantly reduced ILC2-related airway inflammation induced by papain or Alternaria alternata in mice, evidenced by decreased eosinophil (EOS) infiltration and lower IL-5 and IL-13 levels in BALF. Notably, while ILC2 expresses HMO receptors, HMO did not act directly on ILC2 but potentially modulated their activity through alterations in gut microbiota derived SCFAs. HMO treatments alleviated airway inflammation in SCFA-dependent manners, with SCFA depletion or receptor blocking reversing these beneficial effects. This study reveals the potential of dietary HMOs in managing asthma through modulation of ILC2 activity and the gut-lung axis, proposing a new therapeutic avenue that utilises the immunomodulatory capacities of nutritional components to combat respiratory diseases.

17.
Emerg Infect Dis ; 30(8): 1721-1723, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914418

RESUMEN

Examining the persistence of highly pathogenic avian influenza A(H5N1) from cattle and human influenza A(H1N1)pdm09 pandemic viruses in unpasteurized milk revealed that both remain infectious on milking equipment materials for several hours. Those findings highlight the risk for H5N1 virus transmission to humans from contaminated surfaces during the milking process.


Asunto(s)
Industria Lechera , Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Gripe Humana , Leche , Animales , Leche/virología , Bovinos , Humanos , Industria Lechera/instrumentación , Gripe Humana/transmisión , Gripe Humana/virología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología
18.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G659-G675, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38591132

RESUMEN

Probiotic-containing fermented dairy foods have the potential to benefit human health, but the importance of the dairy matrix for efficacy remains unclear. We investigated the capacity of Lacticaseibacillus paracasei BL23 in phosphate-buffered saline (BL23-PBS), BL23-fermented milk (BL23-milk), and milk to modify intestinal and behavioral responses in a dextran sodium sulfate (DSS, 3% wt/vol) mouse model of colitis. Significant sex-dependent differences were found such that female mice exhibited more severe colitis, greater weight loss, and higher mortality rates. Sex differences were also found for ion transport ex vivo, colonic cytokine and tight junction gene expression, and fecal microbiota composition. Measurements of milk and BL23 effects showed BL23-PBS consumption improved weight recovery in females, whereas milk resulted in better body weight recovery in males. Occludin and Claudin-2 gene transcript levels indicated barrier function was impaired in males, but BL23-milk was still found to improve colonic ion transport in those mice. Proinflammatory and anti-inflammatory gene expression levels were increased in both male and female mice fed BL23, and to a more variable extent, milk, compared with controls. The female mouse fecal microbiota contained high proportions of Akkermansia (average of 18.1%) at baseline, and females exhibited more changes in gut microbiota composition following BL23 and milk intake. Male fecal microbiota harbored significantly more Parasutterella and less Blautia and Roseburia after DSS treatment, independent of BL23 or milk consumption. These findings show the complex interplay between dietary components and sex-dependent responses in mitigating inflammation in the digestive tract.NEW & NOTEWORTHY Sex-dependent responses to probiotic Lacticaseibacillus paracasei and milk and the potential of the dairy matrix to enhance probiotic protection against colitis in this context have not been previously explored. Female mice were more sensitive than males to colonic injury, and neither treatment effectively alleviated inflammation in both sexes. These sex-dependent responses may result from differences in the higher baseline proportions of Akkermansia in the gut microbiome of female mice.


Asunto(s)
Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Leche , Probióticos , Animales , Femenino , Probióticos/farmacología , Masculino , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Ratones , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Colon/metabolismo , Colon/microbiología , Factores Sexuales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
19.
Biochem Biophys Res Commun ; 696: 149505, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219490

RESUMEN

Exosomes are small extracellular vesicles (EVs) found in culture supernatants, blood, and breast milk. The size of these nanocomplexes limits the methods of EV analyses. In this study, nitrobenzoxadiazole (NBD), a fluorophore, conjugated endosome-lysosome imager, GIF-2250 and its derivative, GIF-2276, were evaluated for exosome analyses. A correlation was established between GIF-2250 intensity and protein maker levels in bovine milk exosomes. We found that high-temperature sterilization milk may not contain intact exosomes. For precise analysis, we synthesized GIF-2276, which allows for the covalent attachment of NBD to the Lys residue of exosome proteins, and labeled milk exosomes were separated using a gel filtration system. GIF-2276 showed chromatographic peaks of milk exosomes containing >3 ng protein. The area (quantity) and retention time (size) of the exosome peaks were correlated to biological activity (NO synthesis suppression in RAW264.7 murine macrophages). Heat denaturation of purified milk-derived exosomes disrupted these indicators. Proteome analyses revealed GIF-2276-labeled immunomodulators, such as butyrophilin subfamily 1 member A1 and polymeric immunoglobulin receptor. The immunogenicity and quantity of these factors decreased by heat denaturation. When milk exosomes were purified from market-sourced milk we found that raw and low-temperature sterilization milk samples, contained exosomes (none in high-temperature sterilization milk). These results were also supported by transmission electron microscopy analyses. We also found that GIF-2276 could monitor exosome transportation into HEK293 cells. These results suggested that GIF-2250/2276 may be helpful to evaluate milk exosomes.


Asunto(s)
Exosomas , Vesículas Extracelulares , Femenino , Humanos , Ratones , Animales , Leche/metabolismo , Exosomas/metabolismo , Células HEK293 , Leche Humana , Proteoma/metabolismo
20.
BMC Med ; 22(1): 89, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424524

RESUMEN

BACKGROUND: Dairy contains a complex mixture of lipids, proteins, and micronutrients. Whether habitual dairy consumption is associated with health benefits is not well established. Since dairy is high in nutrients that are potentially protective against frailty, the association between dairy products and the risk of frailty is of interest. METHODS: We analyzed data from 85,280 women aged ≥ 60 years participating in the Nurses' Health Study. Consumption of milk, yogurt, and cheese was obtained from repeated food frequency questionnaires administered between 1980 and 2010. Frailty was defined as having at least three of the following five criteria from the FRAIL scale: fatigue, low strength, reduced aerobic capacity, having ≥ 5 chronic illnesses, and a weight loss of ≥ 5%. The occurrence of frailty was assessed every four years from 1992 to 2018. Cox proportional hazard models were used to examine the association between the intake of dairy foods and frailty. RESULTS: During follow-up we identified 15,912 incident cases of frailty. Consumption of milk or yogurt was not associated with the risk of frailty after adjustment for lifestyle factors, medication use, and overall diet quality. Cheese consumption was positively associated with risk of frailty [relative risk (95% confidence interval) for one serving/day increment in consumption: 1.10 (1.05, 1.16)]. Replacing one serving/day of milk, yogurt, or cheese with one serving/day of whole grains, nuts, or legumes was associated with a significant lower risk of frailty, while replacing milk, yogurt, or cheese with red meat or eggs was associated with an increased risk. When milk was replaced with a sugar-sweetened or artificially sweetened beverage, a greater risk of frailty was observed, while replacing milk with orange juice was associated with a lower risk of frailty. CONCLUSIONS: The results suggest that the association between milk, yogurt, and cheese and frailty partly depends on the replacement product. Habitual consumption of milk or yogurt was not associated with risk of frailty, whereas cheese consumption may be associated with an increased risk.


Asunto(s)
Fragilidad , Humanos , Femenino , Anciano , Animales , Estudios Prospectivos , Fragilidad/epidemiología , Edulcorantes , Productos Lácteos , Leche , Dieta , Factores de Riesgo , Yogur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA