RESUMEN
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Asunto(s)
Enfermedad Celíaca , Proteínas en la Dieta , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos , Tolerancia Inmunológica , Animales , Humanos , Ratones , Hipersensibilidad a los Alimentos/inmunología , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/etiología , Enfermedad Celíaca/metabolismo , Proteínas en la Dieta/inmunología , Proteínas en la Dieta/metabolismo , Células Th2/inmunología , Autoinmunidad , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismoRESUMEN
The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.
Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN , Paraparesia Espástica , Factores de Transcripción , Paraparesia Espástica/genética , Humanos , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Femenino , Linaje , Alelos , Lactante , Preescolar , Niño , Adolescente , Estructura Secundaria de Proteína , ARN Nuclear Pequeño/genéticaRESUMEN
Apicobasal epithelial polarity controls the functional properties of most organs. Thus, there has been extensive research on the molecular intricacies governing the establishment and maintenance of cell polarity. Whereas loss of apicobasal polarity is a well-documented phenomenon associated with multiple diseases, less is known regarding another type of apicobasal polarity alteration - the inversion of polarity. In this Review, we provide a unifying definition of inverted polarity and discuss multiple scenarios in mammalian systems and human health and disease in which apical and basolateral membrane domains are interchanged. This includes mammalian embryo implantation, monogenic diseases and dissemination of cancer cell clusters. For each example, the functional consequences of polarity inversion are assessed, revealing shared outcomes, including modifications in immune surveillance, altered drug sensitivity and changes in adhesions to neighboring cells. Finally, we highlight the molecular alterations associated with inverted apicobasal polarity and provide a molecular framework to connect these changes with the core cell polarity machinery and to explain roles of polarity inversion in health and disease. Based on the current state of the field, failure to respond to extracellular matrix (ECM) cues, increased cellular contractility and membrane trafficking defects are likely to account for most cases of inverted apicobasal polarity.
Asunto(s)
Polaridad Celular , Células Epiteliales , Animales , Humanos , Células Epiteliales/metabolismo , Membrana Celular/metabolismo , Polaridad Celular/genética , MamíferosRESUMEN
Predicting the effect of a mutated gene before the onset of symptoms of genetic diseases would greatly facilitate diagnosis and potentiate early intervention. There have been myriad attempts to predict the effects of single-nucleotide variants. However, the applicability of these efforts does not scale to co-occurring variants. Furthermore, an increasing number of protein therapeutics contain co-occurring nucleotide variations, adding uncertainty during development to the safety and efficiency of these drugs. Co-occurring nucleotide variants may often have synergistic, additive, or antagonistic effects on protein attributes, further complicating the task of outcome prediction. We tested four models based on the cooperative and antagonistic effects of co-occurring variants to predict pathogenicity and effectiveness of protein therapeutics. A total of 30 attributes, including amino acid and nucleotide features, as well as existing single-variant effect prediction tools, were considered on the basis of previous studies on single-nucleotide variants. Importantly, the effects of synonymous variants, often seen in protein therapeutics, were also included in our models. We used 12 datasets of people with monogenic diseases and controls with co-occurring genetic variants to evaluate the accuracy of our models, accomplishing a degree of accuracy comparable to that of prediction tools for single-nucleotide variants. More importantly, our framework is generalizable to new, well-curated datasets of monogenic diseases and new variant scoring tools. This approach successfully assists in addressing the challenging task of predicting the effect of co-occurring variants on pathogenicity and protein effectiveness and is applicable for a wide range of protein therapeutics and genetic diseases.
Asunto(s)
Biología Computacional/métodos , Enfermedad/genética , Genoma Humano , Mutación , Polimorfismo de Nucleótido Simple , Proteoma/análisis , Humanos , Proteoma/metabolismoRESUMEN
This guideline was prepared by the Turkish Society of Reproductive Medicine to define the conditions and requirements for an outsourced preimplantation genetic testing (PGT) programme in line with the experience and needs of practitioners. This guideline is intended to be a reference document for assisted reproductive technology centres, genetic diagnosis centres, non-governmental organizations working on reproductive health, legal experts, consultants working on laboratory accreditation, academicians specializing in ethical issues, and policy makers. The Consortium aims to provide recommendations addressing the challenges of genetic testing, especially PGT for monogenic diseases (PGT-M) due to the high rate of consanguineous marriage in Turkey. For this purpose, this summary document specifically includes challenges and recommendations regarding PGT-M practice, and aims to identify and aid in prevention of errors leading to misdiagnosis. The recommendations can be modified to fit other locations.
RESUMEN
In the field of circulating cell-free DNA, most of the studies have focused on short DNA molecules (e.g., <500 bp). The existence of long cell-free DNA molecules has been poorly explored. In this study, we demonstrated that single-molecule real-time sequencing allowed us to detect and analyze a substantial proportion of long DNA molecules from both fetal and maternal sources in maternal plasma. Such molecules were beyond the size detection limits of short-read sequencing technologies. The proportions of long cell-free DNA molecules in maternal plasma over 500 bp were 15.5%, 19.8%, and 32.3% for the first, second, and third trimesters, respectively. The longest fetal-derived plasma DNA molecule observed was 23,635 bp. Long plasma DNA molecules demonstrated predominance of A or G 5' fragment ends. Pregnancies with preeclampsia demonstrated a reduction in long maternal plasma DNA molecules, reduced frequencies for selected 5' 4-mer end motifs ending with G or A, and increased frequencies for selected motifs ending with T or C. Finally, we have developed an approach that employs the analysis of methylation patterns of the series of CpG sites on a long DNA molecule for determining its tissue origin. This approach achieved an area under the curve of 0.88 in differentiating between fetal and maternal plasma DNA molecules, enabling the determination of maternal inheritance and recombination events in the fetal genome. This work opens up potential clinical utilities of long cell-free DNA analysis in maternal plasma including noninvasive prenatal testing of monogenic diseases and detection/monitoring of pregnancy-associated disorders such as preeclampsia.
Asunto(s)
Ácidos Nucleicos Libres de Células/sangre , Ácidos Nucleicos Libres de Células/genética , Adulto , Cromosomas/genética , Simulación por Computador , Femenino , Feto , Humanos , Embarazo , Imagen Individual de MoléculaRESUMEN
PURPOSE: To evaluate whether a second biopsy, following a first diagnostic failure on blastocysts tested for preimplantation genetic testing for monogenic diseases (PGT-M), allows to obtain genetic diagnosis and to what extent this procedure can influence clinical pregnancy and live birth rates compared to the PGT-M process with a successful genetic diagnosis from the first biopsy. METHODS: Embryos from women who underwent PGT-M in an infertility centre and who had been transferred after two biopsies for genetic analysis (n = 27) were matched in a 1:1 ratio accordingly to women's age (± 1 year) and fertility status (fertile vs infertile), as well as with the study period, with embryos who were transferred after receiving a conclusive PGT result straight after the first biopsy (n = 27). The main evaluated outcome was clinical pregnancy rate following embryo transfers in which healthy embryos were transferred after only one biopsy and those in which an embryo was transferred after being re-biopsied. Live birth rate was the secondary outcome. RESULTS: Clinical pregnancy rate was 52% (95% CI: 34-69) following the transfer of a single-biopsy blastocyst and 30% (95% CI: 16-48) following the transfer of a re-biopsied blastocyst. The likelihood to have a healthy baby was 33% (95% CI: 19-52) following the transfer of a blastocyst biopsied once and 22% (95% CI: 11-41) following the transfer of a re-biopsied blastocyst. CONCLUSIONS: The re-biopsy intervention seems to considerably reduce the pregnancy potential of a blastocyst. However, a greater sample size is necessary to clarify this issue definitively.
Asunto(s)
Embrión de Mamíferos , Humanos , Biopsia , Embrión de Mamíferos/metabolismo , Implantación del Embrión , Pruebas Genéticas , Embarazo , Adulto , Técnicas Reproductivas Asistidas , Estudios de Casos y Controles , Resultado del Embarazo , Infertilidad FemeninaRESUMEN
PURPOSE: In clinical practice, the success of preimplantation genetic testing for monogenic diseases (PGT-M) for thalassemia was hindered by the absence of probands, incomplete family members, or failure in detecting embryonic gene mutation sites. This study aimed to address these issues. METHODS: This retrospective study included 342 couples undergoing PGT-M for α- or ß-thalassemia at three reproductive medicine centers from 2019 to 2022. Various methods were used to construct parental haplotypes. A total of 1778 embryos were analyzed and selected for transfer based on chromosomal ploidy and PGT-M results. Follow-up involved amniocentesis results and clinical outcomes. RESULTS: Haplotypes were established using DNA samples from probands or parents, as well as sibling blood samples, single sperm, and affected embryos, achieving an overall success rate was 99.4% (340/342). For α-thalassemia and ß-thalassemia, the concordance between embryo single nucleotide polymorphism (SNP) haplotype analysis results and mutation loci detection results was 93.8% (1011/1078) and 98.2% (538/548), respectively. Multiple annealing and looping-based amplification cycles (MALBAC) showed a higher whole genome amplification success rate than multiple displacement amplification (MDA) (98.8% (1031/1044) vs. 96.2% (703/731), p < 0.001). Amniocentesis confirmed PGT-M outcomes in 100% of cases followed up (99/99). CONCLUSION: This study summarizes feasible solutions to various challenging scenarios encountered in PGT-M for thalassemia, providing valuable insights to enhance success rate of PGT-M in clinical practice.
RESUMEN
PURPOSE: To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS: PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS: Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION: Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.
Asunto(s)
Ataxina-1 , Repeticiones de Microsatélite , Diagnóstico Preimplantación , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/diagnóstico , Femenino , Ataxina-1/genética , Masculino , Adulto , Embarazo , Repeticiones de Microsatélite/genética , Pruebas Genéticas , Hibridación Genómica Comparativa , Aneuploidia , Fertilización In Vitro , Transferencia de EmbriónRESUMEN
BACKGROUND: Prime editing (PE) is the most recent gene editing technology able to introduce targeted alterations to the genome, including single base pair changes, small insertions, and deletions. Several improvements to the PE machinery have been made in the past few years, and these have been tested in a range of model systems including immortalized cell lines, stem cells, and animal models. While double nicking RNA (dncRNA) PE systems PE3 and PE5 currently show the highest editing rates, they come with reduced accuracy as undesired indels or SNVs arise at edited loci. Here, we aimed to improve single ncRNA (sncRNA) systems PE2 and PE4max by generating novel all-in-one (pAIO) plasmids driven by an EF-1α promoter, which is especially suitable for human-induced pluripotent stem cell (hiPSC) models. RESULTS: pAIO-EF1α-PE2 and pAIO-EF1α-PE4max were used to edit the voltage gated potassium channel gene KCNQ2 and voltage gated sodium channel gene SCN1A. Two clinically relevant mutations were corrected using pAIO-EF1α-PE2 including the homozygous truncating SCN1A R612* variant in HEK293T cells and the heterozygous gain-of-function KCNQ2 R201C variant in patient-derived hiPSC. We show that sncRNA PE yielded detectable editing rates in hiPSC ranging between 6.4% and 9.8%, which was further increased to 41% after a GFP-based fluorescence-activated cell sorting (FACS) cell sorting step. Furthermore, we show that selecting the high GFP expressing population improved editing efficiencies up to 3.2-fold compared to the low GFP expressing population, demonstrating that not only delivery but also the number of copies of the PE enzyme and/or pegRNA per cell are important for efficient editing. Edit rates were not improved when an additional silent protospacer-adjacent motif (PAM)-removing alteration was introduced in hiPSC at the target locus. Finally, there were no genome-wide off-target effects using pAIO-EF1α-PE2 and no off-target editing activity near the edit locus highlighting the accuracy of snc prime editors. CONCLUSION: Taken together, our study shows an improved efficacy of EF-1α driven sncRNA pAIO-PE plasmids in hiPSC reaching high editing rates, especially after FACS sorting. Optimizing these sncRNA PE systems is of high value when considering future therapeutic in vivo use, where accuracy will be extremely important.
Asunto(s)
Sistemas CRISPR-Cas , ARN Pequeño no Traducido , Animales , Humanos , Células HEK293 , Factor 1 de Elongación Peptídica/genética , Plásmidos/genética , Canal de Potasio KCNQ2/genética , Canal de Sodio Activado por Voltaje NAV1.1/genéticaRESUMEN
PURPOSE: Cohort building is a powerful foundation for improving clinical care, performing biomedical research, recruiting for clinical trials, and many other applications. We set out to build a cohort of all monogenic patients with a definitive causal gene diagnosis in a 3-million patient hospital system. METHODS: We define a subset (4461) of OMIM diseases that have at least 1 known monogenic causal gene. We then introduce MonoMiner, a natural language processing framework to identify molecularly confirmed monogenic patients from free-text clinical notes. RESULTS: We show that ICD-10-CM codes cover only a fraction of monogenic diseases and that even where available, ICD-10-CM codeâbased patient retrieval offers 0.14 precision. Searching by causal gene symbol offers great recall but has an even worse 0.07 precision. MonoMiner achieves 6 to 11 times higher precision (0.80), with 0.87 precision on disease diagnosis alone, tagging 4259 patients with 560 monogenic diseases and 534 causal genes, at 0.48 recall. CONCLUSION: MonoMiner enables the discovery of a large, high-precision cohort of patients with monogenic diseases with an established molecular diagnosis, empowering numerous downstream uses. Because it relies solely on clinical notes, MonoMiner is highly portable, and its approach is adaptable to other domains and languages.
Asunto(s)
Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Estudios de Cohortes , HumanosRESUMEN
BACKGROUND: This study aimed to evaluate the ability of next-generation sequencing (NGS) to conduct preimplantation genetic testing (PGT) for thalassemia using affected embryos. METHODS: This study included data from 36 couples who underwent PGT for thalassemia without probands and relative pedigrees. NGS results were compared with prenatal diagnosis results. RESULTS: Thirty-six couples (29 α-thalassemia and 7 ß-thalassemia) underwent 41 PGT cycles (31 α-thalassemia and 10 ß-thalassemia). Analysis using NGS produced conclusive results for all biopsied blastocysts (100%, 217/217). One hundred and sixty (73.7%, 160/217) were unaffected by thalassemia. Preimplantation genetic testing for aneuploidy revealed that 112 (70.0%, 112/160) were euploid. Single blastocysts were transferred into the uteri of 34 women (53 frozen embryo transfer [FET] cycles). Thirty-two cycles resulted in clinical pregnancies, with a clinical pregnancy rate of 60.1% (32/53) per FET cycle. Twenty-two cycles (22 couples) resulted in 23 live births, with a live birth rate of 43.4% (23/53; 3 cycles were ongoing pregnancies). All 25 embryos' prenatal diagnosis results and/or thalassemia gene analyses after delivery were concordant with the NGS-PGT results. Seven embryos (21.9%, 7/32) were miscarried before 12 weeks' gestation, and the abortion villus in four showed a normal karyotype and thalassemia results consistent with the NGS-PGT results. Aborted fetus samples from 3 cycles were not available because the pregnancy lasted less than 5 weeks. CONCLUSION: NGS can be used to conduct PGT for thalassemia using affected embryos as a reference. TRIAL REGISTRATION: Retrospectively registered.
Asunto(s)
Diagnóstico Preimplantación , Talasemia alfa , Talasemia beta , Transferencia de Embrión , Femenino , Pruebas Genéticas/métodos , Humanos , Masculino , Embarazo , Diagnóstico Preimplantación/métodos , Talasemia alfa/genética , Talasemia beta/diagnóstico , Talasemia beta/genéticaRESUMEN
The overall diagnostic yield of massively parallel sequencing-based tests in patients with chronic kidney disease (CKD) is 30% for paediatric cases and 6-30% for adult cases. These figures should encourage nephrologists to frequently use genetic testing as a diagnostic means for their patients. However, in reality, several barriers appear to hinder the implementation of massively parallel sequencing-based diagnostics in routine clinical practice. In this article we aim to support the nephrologist to overcome these barriers. After a detailed discussion of the general items that are important to genetic testing in nephrology, namely genetic testing modalities and their indications, clinical information needed for high-quality interpretation of genetic tests, the clinical benefit of genetic testing and genetic counselling, we describe each of these items more specifically for the different groups of genetic kidney diseases and for CKD of unknown origin.
Asunto(s)
Nefrología , Insuficiencia Renal Crónica , Adulto , Niño , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Riñón , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/genéticaRESUMEN
Inborn errors of immunity (IEI), also referred to as primary immunodeficiencies (PID), are disorders that, for the most part, result from mutations in genes involved in immune host defense and immune regulation. With the increased availability of high-throughput DNA sequencing and improved genomic data interpretation, the number of newly identified genes associated with IEI has exponentially increased over the last decade. Here, we focus on the newly described IEI associated with severe COVID-19 and SASH3 deficiency, the most recently reported IEI with impaired T-cell receptor (TCR) signaling.
Asunto(s)
COVID-19 , Enfermedades de Inmunodeficiencia Primaria , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , SARS-CoV-2RESUMEN
PURPOSE: This study aimed to evaluate the value of long-read sequencing for preimplantation haplotype linkage analysis. METHODS: The genetic material of the three ß-thalassemia mutation carrier couples was sequenced using single-molecule real-time sequencing in the 7.7-kb region of the HBB gene and a 7.4-kb region that partially overlapped with it to detect the presence of 17 common HBB gene mutations in the Chinese population and the haplotypes formed by the continuous array of single-nucleotide polymorphisms linked to these mutations. By using the same method to analyze multiple displacement amplification products of embryos from three families and comparing the results with those of the parents, it could be revealed whether the embryos carry disease-causing mutations without the need for a proband. RESULTS: The HBB gene mutations of the three couples were accurately detected, and the haplotype linked to the pathogenic site was successfully obtained without the need for a proband. A total of 68.75% (22/32) of embryos from the three families successfully underwent haplotype linkage analysis, and the results were consistent with the results of NGS-based mutation site detection. CONCLUSION: This study supports long-read sequencing as a potential tool for preimplantation haplotype linkage analysis.
Asunto(s)
Diagnóstico Preimplantación , Talasemia beta , Femenino , Ligamiento Genético/genética , Pruebas Genéticas/métodos , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación/genética , Embarazo , Diagnóstico Preimplantación/métodos , Talasemia beta/diagnóstico , Talasemia beta/genética , Talasemia beta/patologíaRESUMEN
PURPOSE: To investigate the clinical factors that could be used predict the number of transferable blastocysts in preimplantation genetic testing (PGT) cycles based on next-generation sequencing (NGS) and formed form a mathematical model to predict the chance likelihood of obtaining one transferable blastocyst, which is helpful for genetic counseling. METHODS: This retrospective study enrolled couples undergoing PGT cycles for chromosomal structural rearrangement (PGT-SR, n = 363, 202 with reciprocal translocation carriers, 131 with Robertsonian translocation carriers, 30 with inversion carriers), monogenic diseases (PGT-M, n = 47), and for Aneuploidies (PGT-A, n = 132) from January 2015 to October 2018. Stepwise multiple linear regression analysis was used to identify the factors relevant for obtaining at least one transferable blastocyst. The factors that predict the number of biopsied blastocysts were further analyzed. RESULTS: The transferable blastocyst rates were 29.94, 41.99, 49.09, 41.42, and 44.37% in the reciprocal translocation carrier, Robertsonian translocation carrier, inversion carrier, PGT-M, and PGT-A cycles, respectively. The number of transferable blastocysts in these cycles were 0.3004 × the number of biopsied blastocysts (NBB) - 0.0031, 0.4063 × NBB + 0.0460, 0.5762 × NBB - 0.3128, 0.3611 × NBB + 0.1910, and 0.4831 × NBB - 0.0970, respectively. Furthermore, the number of MII oocytes and female age were clinical predictors of NBB in reciprocal translocation and PGT-A couples, while the number of MII oocytes was the only clinical predictor in Robertsonian translocation carriers, inversion carriers, and PGT-M couples. CONCLUSIONS: The number of biopsied blastocysts was the only clinical predictor of the ability to obtain a transferable blastocyst in PGT cycles; therefore, for clinical practice, theoretically the minimum numbers of biopsied blastocysts is 4 in reciprocal translocation carrier and 3 in couples undergoing PGT for other reasons. The number of MII oocytes and female age were clinical predictors of the number of biopsied blastocysts. With the mathematical models in our study as a reference, in clinical practice, clinicians will be able to conduct a more targeted genetic consultation for different kinds of PGT patients.
Asunto(s)
Diagnóstico Preimplantación , Aneuploidia , Blastocisto , Femenino , Fertilización In Vitro , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Teóricos , Embarazo , Estudios RetrospectivosRESUMEN
Aim: We evaluated the diagnostic accuracy of ultrasound, postmortem and genetic studies in classifying skeletal dysplasias in the first vs second trimester of pregnancy. Methods: We retrospectively gathered data from a 15 year period of all the prenatal ultrasounds, autopsies, and available genetic studies on fetuses with skeletal dysplasias from our institution. Results: Five (23%) and 17 (77%) fetuses were diagnosed during the first and second trimester of pregnancy respectively. Only partial characterization was possible with ultrasound in the first trimester. Complete characterization was established in five cases (30%) in the second trimester with ultrasound alone. Pathology provided an additional diagnostic yield of 40% and 47% and genetics an additional 40% and 11% in the first and second trimesters respectively. Conclusion: Ultrasound is an effective screening but not a diagnostic tool. Complete characterizations of dysplasia increased from 22% by ultrasound alone to 86% with pathology and genetics.
Asunto(s)
Osteocondrodisplasias , Ultrasonografía Prenatal , Femenino , Feto , Humanos , Embarazo , Segundo Trimestre del Embarazo , Estudios RetrospectivosRESUMEN
Very early onset inflammatory bowel disease (VEO-IBD) represents approximately 25% of cases of IBD-like colitis occurring during childhood and, by definition, it is characterized by an onset prior to 6 years of age. This subgroup of patients presents significant differences from IBD occurring in older children and in adults, including a more severe clinical course, a reduced responsiveness to conventional IBD therapy, and a greater proportion of cases featuring an underlying monogenic disorder. Histological findings from gastro-intestinal (GI) biopsies are characterized by an IBD-like, apoptotic or enterocolitis-like pattern, complicating the differential diagnosis with other pediatric diseases involving GI tract. Moreover, individuals with monogenic disorders may develop significant comorbidities, such as primary immunodeficiency (PID), impacting treatment options. Without an appropriate diagnosis, the clinical course of VEO-IBD has greater potential for escalated treatment regimens involving extensive surgery, more intensive medical therapies and, even more important, inadequate recognition of underlying monogenic defect that may lead to inappropriate (sometimes fatal) therapy. For these reasons, an adequate context leading to an appropriate diagnosis is imperative, calling for a close collaboration between pediatricians, pathologists, geneticists, and immunologists.
Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Adulto , Edad de Inicio , Niño , Colitis/diagnóstico , Diagnóstico Diferencial , Humanos , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/terapia , FenotipoRESUMEN
The high clinical and genetic heterogeneity makes it difficult to reach a confirmative diagnosis of suspected pediatric respiratory inherited diseases. Many patients with monogenic respiratory disorders could be missed without genetic testing. We performed a single-center study in Beijing Children's Hospital to demonstrate the clinical utility of exome sequencing (ES) as a first-tier test by evaluating the diagnostic yields of ES for inherited diseases with respiratory symptoms. A total of 107 patients were recruited in this study. We identified 51 pathogenic or likely pathogenic variants in 37 patients by ES (with or without copy number variants sequencing). The overall diagnostic yield was 34.6% (37/107). The most frequent disorders in our cohort were primary immunodeficiency disease (PIDs) (18/37, 48.6%) and primary ciliary dyskinesia (PCD) (9/37, 24.3%). We further reviewed the directive outcomes of genetic testing on the 37 positive cases. Our study demonstrated the effectiveness of ES as a first-tier test in China for diagnosing monogenic diseases of the respiratory system. In the era of precision medicine, ES as a first-tier test can rapidly make a molecular diagnosis and direct the intervention of the positive cases in pediatric respiratory medicine.
Asunto(s)
Exoma , Pruebas Genéticas , Niño , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Exoma/genética , Humanos , Secuenciación del ExomaRESUMEN
PURPOSE: The purpose of this research is to study the clinical outcomes using a next-generation sequencing-based protocol allowing for simultaneous testing of mutations in the beta thalassemia (HBB) gene, including single nucleotide polymorphism (SNP) markers for PGT-M along with low-pass whole genome analysis of chromosome aneuploidies for PGT-A. METHODS: A combined PGT-M (thalassemia) plus PGT-A system was developed for patients undergoing IVF in Vietnam. Here we developed a system for testing numerous thalassemia mutations plus SNP-based testing for backup mutation analysis and contamination control using next-generation sequencing (NGS). Low -pass next-generation sequencing was used to assess aneuploidy in some of the clinical PGT cases. Patients underwent IVF followed by embryo biopsy at the blastocyst stage for combined PGT-A/M. RESULTS: Two cases have completed the entire process including transfer of embryos, while a further nine cases have completed the IVF and PGT-M/A analysis but have not completed embryo transfer. In the two cases with embryo transfer, both patients achieved pregnancy with an unaffected, euploid embryo confirmed through prenatal diagnosis. In the further nine cases, 39 embryos were biopsied and all passed QC for amplification. There were 8 unaffected embryos, 31 carrier embryos, and 11 affected embryos. A subset of 24 embryos also had PGT-A analysis with 22 euploid embryos and 2 aneuploid embryos. CONCLUSIONS: Here we report the development and clinical application of a combined PGT-M for HBB and PGT-A for gross chromosome aneuploidies from 11 patients with detailed laboratory findings along with 2 cases that have completed embryo transfer.