Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(24): e2309769, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155589

RESUMEN

Complicated oxygen evolution reaction (OER) poses the bottleneck in improving the efficiency of hydrogen production through water electrolysis. Herein, an integrated strategy to modulate the electronic structure of NiFe layered double hydroxide (NiFe-LDH) is reported by constructing Ag-incorporated NiCo-PBA@NiFe-LDH heterojunction with a hierarchical hollow structure. This "double heterojunction" facilitates local charge polarization at the interface, thereby promoting electron transfer and reducing the adsorption energy of intermediates, ultimately enhancing the intrinsic activity of the catalyst. It is noteworthy that an exchange bias field is observed between NiCo-PBA and NiFe-LDH, which will be conducive to regulating the electron spin states of metals and facilitating the production of triplet oxygen. Additionally, the unique hierarchical nanoboxes provide a large specific surface area that ensures adequate exposure to adsorption sites and active sites. Profiting from the synergistic advantages, the overpotential is as low as 190 mV at a current density of 10 mA cm-2, with a low Tafel slope of 21 mV dec-1. Moreover, density functional theory (DFT) calculation further substantiated that the incorporation of Ag in the heterojunction can effectively reduce the adsorption energy of reactant intermediates and enhance the conductivity.

2.
Small ; 20(24): e2311180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38174602

RESUMEN

The practical application of the room-temperature sodium-sulfur (RT Na-S) batteries is currently limited by low reversible capacity and serious capacity decay due to the sluggish reaction kinetics and shuttle effect. It is necessary to design a suitable sulfur host integrated with electrocatalysts to realize effective chemisorption and catalysis of sodium polysulfides (NaPSs). Herein, under the guidance of theoretical calculation, the Mott-Schottky heterojunction with a built-in electric field composed of iron (Fe) and iron disulfide (FeS2) components anchored on a porous carbon matrix (Fe/FeS2-PC) is designed and prepared. The enhanced chemisorption effect of Fe, the fast electrocatalytic effect of FeS2, and the fast transfer effect of the built-in electric field within the Fe/FeS2 heterojunction in the cathode of RT Na-S batteries work together to effectively improve the electrochemical performance. As a result, the Fe/FeS2-PC@S cathode exhibits high reversible capacity (815 mAh g-1 after 150 cycles at 0.2 A g-1) and excellent stability (516 mAh g-1 after 600 cycles at 5 A g-1, with only 0.07% decay per cycle). The design of the Fe/FeS2 heterojunction electrocatalyst provides a new strategy for the development of highly stable RT Na-S batteries.

3.
Angew Chem Int Ed Engl ; : e202415492, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373244

RESUMEN

The development of bifunctional photogenerated carrier-assisted electrocatalytic (PCA-EC) electrodes that operate with stability at large current-density remains a significant challenge. Herein, we demonstrate a simple sputtering-deposition process to synthesize a novel MnWO4/FeCoNi Mott-Schottky heterojunction coating and deposit it on a pure Ti substrate to prepare high-performance PCA-EC electrodes, which exhibits enhanced light absorption range/intensity and rapidly separated photogenerated electron-hole pairs. This design allows photogenerated electrons to directly participate in the hydrogen evolution reaction (HER), while the strong oxidation of photogenerated holes significantly reduces the defect formation energy of active metals, thereby facilitating the rapid reconstruction of highly active Ni(FeCo)OOH/MnOOH species for the oxygen evolution reaction (OER). As expected, the as-prepared electrode demonstrates the overpotentials of 64 mV for the HER and 204 mV for the OER at 10 mA cm-2 under illumination. Benefiting from the stable interface with Fe/Co/Ni-O-Mn/W bonding units, the dual-electrode photoassisted electrolytic cell achieves long-term stability at current densities of 500 and 1000 mA cm-2. This work provides detailed insights into the enhancement mechanism of PCA-EC and contributes to the development of photo-assisted water splitting electrodes for large current-density applications.

4.
Small ; 19(15): e2207474, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36604992

RESUMEN

Developing bifunctional catalysts for oxygen electrochemical reactions is essential for high-performance electrochemical energy devices. Here, a Mott-Schottky heterojunction composed of porous cobalt-nitrogen-carbon (Co-N-C) polyhedra containing abundant metal-phosphides for reversible oxygen electrocatalysis is reported. As a demonstration, this catalyst shows excellent activity in the oxygen electrocatalysis and thus delivers outstanding performance in rechargeable zinc-air batteries (ZABs). The built-in electric field in the Mott-Schottky heterojunction can promote electron transfer in oxygen electrocatalysis. More importantly, an appropriate d-band center of the heterojunction catalyst also endows oxygen intermediates with a balanced adsorption/desorption capability, thus enhancing oxygen electrocatalysis and consequently improving the performance of ZABs. The work demonstrates an important design principle for preparing efficient multifunctional catalysts in energy conversion technologies.

5.
J Colloid Interface Sci ; 674: 677-685, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38950466

RESUMEN

The construction and regulation of built-in electric field (BIEF) are considered effective strategies for enhancing the oxygen evolution reaction (OER) performance of transition metal-based electrocatalysts. Herein, we present a strategy to regulate the electronic structure of nickel-iron layered double hydroxide (NiFe-LDH) by constructing and enhancing the BIEF induced by in-situ heterojunction transformation. This concept is demonstrated through the design and synthesis of Ag2S@S/NiFe-LDH (p-n heterojunction) and Ag@S/NiFe-LDH (Mott-Schottky heterojunction). Benefiting from the larger BIEF of Mott-Schottky heterojunction, efficient electron transfer occurs at the interface between silver (Ag) and NiFe-LDH. As a result, Ag@S/NiFe-LDH exhibits excellent OER performance, requiring only a 232 mV overpotential at 1 M KOH to achieve a current density of 100 mA cm-2, with a small Tafel slope of 73 mV dec-1, as well as excellent electrocatalytic durability. Density functional theory (DFT) calculations further verified that stronger BIEF in Mott-Schottky heterojunction enhances the electron interaction at the interfaces, reduces the energy barrier for the rate-determining step (RDS), and accelerates the OER kinetics. This work provides an effective strategy for designing catalyst with larger BIEF to enhance electrocatalytic activity.

6.
J Colloid Interface Sci ; 672: 642-653, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865878

RESUMEN

Photo-thermal co-catalytic reduction of CO2 to synthesize value-added chemicals presents a promising approach to addressing environmental issues. Nevertheless, traditional catalysts exhibit low light utilization efficiency, leading to the generation of a reduced number of electron-hole pairs and rapid recombination, thereby limiting catalytic performance enhancement. Herein, a Mott-Schottky heterojunction catalyst was developed by incorporating nitrogen-doped carbon coated TiO2 supported nickel (Ni) nanometallic particles (Ni/x-TiO2@NC). The optimal Ni/0.5-TiO2@NC sample displayed a conversion rate of 71.6 % and a methane (CH4) production rate of 65.3 mmol/(gcat·h) during photo-thermal co-catalytic CO2 methanation under full-spectrum illumination, with a CH4 selectivity exceeding 99.6 %. The catalyst demonstrates good stability as it shows no decay after two reaction cycles. The Mott-Schottky heterojunction catalysts display excellent efficiency in separating photo-generated electron-hole pairs and elevate the catalysts' temperature, thus accelerating the reaction rate. The in-situ experiments revealed that light-induced electron transfer effectively facilitates H2 dissociation and enhances surface defects, thereby promoting CO2 adsorption. This study introduces a novel approach for developing photo-thermal catalysts for CO2 reduction, aiming to enhance solar energy utilization and facilitate interface electron transfer.

7.
Adv Sci (Weinh) ; 11(13): e2304349, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38243637

RESUMEN

Cost-effective non-noble metal-based catalysts for selective hydrogenation with excellent activity, selectivity, and durability are still the holy grail. Herein, an oxygen-doped carbon (OC) chainmail encapsulated dilute Cu-Ni alloy is developed by simple pyrolysis of Cu/Ni-metal-organic framework. The CuNi0.05@OC catalyst displays superior performance for atmospheric pressure transfer hydrogenation of p-chloronitrobenzene and p-nitrophenol, and for hydrogenation of furfural, all in water and with exceptional durability. Comprehensive characterizations confirm the close interactions between the diluted Ni sites, the base Cu, and optimized three-layered graphene chainmail. Theoretical calculations demonstrate that the properly tuned lattice strain and Schottky junction can adjust electron density to facilitate specific adsorption on the active centers, thus enhancing the catalytic activity and selectivity, while the OC shell also offers robust protection. This work provides a simple and environmentally friendly strategy for developing practical heterogeneous catalysts that bring the synergistic effect into play between dilute alloy and functional carbon wrapping.

8.
J Hazard Mater ; 445: 130510, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36493645

RESUMEN

In this work, a novel reduction-accelerated quenching of manganese porphyrin (MnPP) based signal-off cathode photochemical (PEC) biosensor by using Au nano-flower/organic polymer (PTB7-Th) heterojunction as platform was proposed for ultrasensitive detection of Hg2+. Firstly, the photoactive PTB7-Th with Au nano-flower on electrode could form a typical Mott-Schottky heterojunction for acquiring an extremely high cathode signal. Meanwhile, the presence of target Hg2+ could bring in the formation of T-Hg2+-T based scissor-like DNA walker, which thus activated efficient Mg2+-specific DNAzyme based cleavage recycling to shear hairpin H2 on electrode to exposure abundant trigger sites of hybridization chain reaction (HCR) for in-situ decoration of quencher MnPP. Here, besides the steric hinderance and light competition effect of MnPP decorated DNA nanowires attributing to signal decrease, we for the first time testified the MnPP reduction-accelerated quenching that constantly consumed the photo-generated electron by using cyclic voltammetry (CV). As a result, the proposed biosensor had excellent sensitivity and selectivity to Hg2+ in the range of 1 fM-10 nM with a detection limit of 0.48 fM. The actual sample analysis showed that the biosensor could reliably and quantitatively identify Hg2+, indicating an excellent application prospect in routine detection.


Asunto(s)
Técnicas Biosensibles , Mercurio , Porfirinas , Manganeso , Técnicas Electroquímicas , ADN , Electrodos , Mercurio/análisis , Límite de Detección , Oro
9.
J Colloid Interface Sci ; 650(Pt B): 1350-1360, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480650

RESUMEN

The advancement of bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is imperative yet challenging for the optimization of Zn-air batteries. In this study, we reported the successful incorporation of a novel Mott-Schottky catalytic site within a MnO-FeCo heterojunction into an N-doping carbon nanobox, taking into consideration the effects of the intrinsic electric field and hollow/porous support carriers for electrocatalyst design. As expected, the resulting heterogeneous catalyst exhibited an encouraging half-wave potential of 0.88 V and an impressive limiting-current density of 5.62 mA/cm2 for the ORR, as well as a minimal overpotential of 271 mV at 10 mA/cm2 for the OER, both in alkaline conditions. Furthermore, the Zn-air battery constructed with the heterojunction nanobox product displayed a decent potential gap of 0.621 V, an outstanding power density of 253 mW/cm2, a considerable specific capacity of 761 mAh/gZn, and exceptional stability, with up to 336 h of cycling charging and discharging operation. Consequently, this method of modulating the catalyst's surface charge distribution through an internal electric field at the interface and facilitating mass transport offers a novel avenue for the development of robust bifunctional oxygen catalysts.

10.
J Colloid Interface Sci ; 642: 439-446, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023515

RESUMEN

Due to the poor bifunctional electrocatalytic performances of electrocatalysts in zinc-air battery, herein, we first synthesized Ni/Ni12P5@CNx Mott-Schottky heterojunction to ameliorate the high-cost and instability of precious metals. We modulated the different contents of Ni and Ni12P5 in the Ni/Ni12P5@CNx Mott-Schottky heterojunction, and found that 0.6 Ni/Ni12P5@CNx has outstanding electrocatalytic performances, with half-wave potential of 0.83 V, and OER potential of 1.49 V at 10 mA cm-2. Also, the ΔE value is only 0.66 V. Moreover, 0.6 Ni/Ni12P5@CNx is assembled into ZAB, which has a high power density of 181 mW cm-2 and a high specific capacity of 710 mAh g-1. This indicates it has a good cycle stability. The density functional theory (DFT) calculations reveal that electrons spontaneously flow from Ni to Ni12P5 through the formed buffer layer in the Ni/Ni12P5@CNx Mott-Schottky heterojunction. The Schottky barrier formed modulates the electrocatalytic pathway to have good bifunctional electrocatalytic activity for ORR and OER.

11.
J Colloid Interface Sci ; 581(Pt B): 619-626, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814187

RESUMEN

Developing an effective photocatalytic denitrification technology for NO3- and NO2- in water is urgently needed. In this paper, we synthesized a nitrogen-rich g-C3N4, and in-situ grown AgPd nanowires (NWs) on the surface of nitrogen-rich g-C3N4 to build AgyPd10-y/g-CxN4 Mott-Schottky heterojunction. Compared with g-CxN4, AgyPd10-y/g-CxN4 exhibits the enhanced photocatalytic hydrogen production from water and tandem reduction of NO3- and NO2- without the addition of other hydrogen source under 365 nm irradiation. The catalytic activity and selectivity of AgyPd10-y/g-CxN4 were studied by combination of the nitrogen-rich g-C3N4 and the different component of AgyPd10-y nanowires (NWs). Among the AgyPd10-y/g-CxN4 catalyst, the Ag3Pd7/g-C1.95N4 catalyst exhibited the highest photocatalytic activity and selectivity for photocatalytic reduction of NO3- and NO2-, and the removal rate of NO3- and NO2- are 87.4% and 61.8% under 365 nm irradiation at 25 °C, respectively. The strategy opens a new way for making the photocatalytic hydrogen production in tandem with reduction of NO3- and NO2- in water, also extending it to remove metal ion.

12.
J Hazard Mater ; 389: 121876, 2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-31874754

RESUMEN

This work exploited one novel power of the Mott-Schottky heterojunction interface in activating the palladium (Pd) in electrocatalytic hydrodechlorination reaction (EHDC, one reaction targeted for the abatement of chlorinated organic pollutants from water). By forming a Mott-Schottky contact with polymer carbon nitride (Pd-PCN), the Pd nanoparticles enable a relatively complete and pseudo-first-order conversion of 2,4-dichlorophenol (2,4-DCP) to phenol and Cl- with the reaction rate constant (kobs) triple that of the conventional Pd-C (0.68 vs. 0.26 min-1 molPd-1). Further comparison in kobs of Pd-PCN and the Pd catalysts reported in literatures revealed that our Pd-PCN was among the top active catalysts for EHDC. The robust performance of Pd-PCN was attributed to the strong metal-support interactions at the Mott-Schottky heterojunction interface, which enriched the electron on Pd and improved its anti-poisoning ability against phenol. The strong support-metal interactions also endowed Pd-PCN with high activity/structure stability in EHDC. The presence of some anions in water body including NO3-, NO2- and Cl- exerted little effect on EHDC, while the reduced sulfur compounds (S2- and SO32-), even in a very low concentration (1 mM), could significantly deactivate the catalyst. This work provides a facile and efficient strategy to activate noble metals in catalytic reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA