Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Struct Biol ; 216(4): 108126, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244170

RESUMEN

The global crystallographic texture of calcite and aragonite in the shells of the bivalves Bathymodiolus thermophilus, Mytilus galloprovincialis, M. edulis and M. trossulus was studied by means of neutron diffraction. It was revealed that the general appearance of pole figures isolines of both minerals coincides for the studied species. The crystallographic texture sharpness evaluated by means of pole density on the calcite pole figures ((0006), (101¯4)) and aragonite pole figures ((012)/(121), (040)/(221)) coincides or has close values for deep-sea hydrothermal species B. thermophilus and the studied shallow-water species of the genus Mytilus. The calcite pole figures (0006) and (101¯4) of B. thermophilus show a shift in the position of texture maximum values compared to corresponding pole figures of other mussels. The shell microstructure of all studied mollusks is similar, only the shape of the fibers of B. thermophilus differs. Global crystallographic texture is a stable feature of the family Mytilidae. The extreme habitat conditions of the hydrothermal biotope do not significantly affect the crystallographic texture of B. thermophilus.

2.
BMC Genomics ; 25(1): 314, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532358

RESUMEN

BACKGROUND: Apoptosis is involved (directly and indirectly) in several physiological processes including tissue remodeling during the development, the turnover of immune cells, and a defense against harmful stimuli. The disordered apoptotic process participates in the pathogenesis of various diseases, such as neoplasms, and chronic inflammatory or systemic autoimmune diseases, which are associated with its inadequate regulation. Caspases are vital components of the apoptotic pathway that are involved in developmental and immune processes. However, genome-wide identification and functional analysis of caspase have not been conducted in Mytilus coruscus, which is an economically important bivalve. RESULTS: Here, 47 caspase genes were identified from the genomes of M. coruscus, and the expansion of caspase-2/9 and caspase-3/6/7 genes were observed. Tandem duplication acts as an essential driver of gene expansion. The expanded caspase genes were highly diverse in terms of sequence, domain structure, and spatiotemporal expression profiles, suggesting their functional differentiation. The high expression of the expanded caspase genes at the pediveliger larvae stage and the result of apoptosis location in the velum suggest that the apoptosis mediated by them plays a critical role in the metamorphosis of M. coruscus larvae. In gill, caspase genes respond differently to the challenge of different strains, and most caspase-2/9 and caspase-3/6/7 genes were induced by copper stress, whereas caspase-8/10 genes were suppressed. Additionally, most caspase genes were upregulated in the mantle under ocean acidification which could weaken the biomineralization capacity of the mantle tissue. CONCLUSIONS: These results provide a comprehensive overview of the evolution and function of the caspase family and enhanced the understanding of the biological function of caspases in M. coruscus larval development and response to biotic and abiotic challenges.


Asunto(s)
Caspasas , Mytilus , Animales , Caspasas/genética , Mytilus/genética , Caspasa 2 , Caspasa 3 , Concentración de Iones de Hidrógeno , Agua de Mar
3.
Proc Biol Sci ; 291(2017): 20232541, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38378149

RESUMEN

Inter-individual transmission of cancer cells represents a unique form of microparasites increasingly reported in marine bivalves. In this study, we sought to understand the ecology of the propagation of Mytilus trossulus Bivalve Transmissible Neoplasia 2 (MtrBTN2), a transmissible cancer affecting four Mytilus mussel species worldwide. We investigated the prevalence of MtrBTN2 in the mosaic hybrid zone of M. edulis and M. galloprovincialis along the French Atlantic coast, sampling contrasting natural and anthropogenic habitats. We observed a similar prevalence in both species, probably due to the spatial proximity of the two species in this region. Our results showed that ports had higher prevalence of MtrBTN2, with a possible hotspot observed at a shuttle landing dock. No cancer was found in natural beds except for two sites close to the hotspot, suggesting spillover. Ports may provide favourable conditions for the transmission of MtrBTN2, such as high mussel density, stressful conditions, sheltered and confined shores or buffered temperatures. Ships may also spread the disease through biofouling. Our results suggest ports may serve as epidemiological hubs, with maritime routes providing artificial gateways for MtrBTN2 propagation. This highlights the importance of preventing biofouling on docks and ship hulls to limit the spread of marine pathogens hosted by fouling species.


Asunto(s)
Mytilus , Neoplasias , Animales , Neoplasias/epidemiología
4.
Mol Ecol ; 33(9): e17333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597343

RESUMEN

Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.


Asunto(s)
Hibridación Genética , Animales , Temperatura , Cambio Climático , Estrés Fisiológico/genética , Expresión Génica/genética , Fenotipo , Mytilus/genética , Transcriptoma
5.
Fish Shellfish Immunol ; 149: 109546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614412

RESUMEN

Histones and their N-terminal or C-terminal derived peptides have been studied in vertebrates and presented as potential antimicrobial agents playing important roles in the innate immune defenses. Although histones and their derived peptides had been reported as components of innate immunity in invertebrates, the knowledge about the histone derived antimicrobial peptides (HDAPs) in invertebrates are still limited. Using a peptidomic technique, a set of peptide fragments derived from the histones was identified in this study from the serum of microbes challenged Mytilus coruscus. Among the 85 identified histone-derived-peptides with high confidence, 5 HDAPs were chemically synthesized and the antimicrobial activities were verified, showing strong growth inhibition against Gram-positive bacteria, Gram-negative bacteria, and fungus. The gene expression level of the precursor histones matched by representative HDAPs were further tested using q-PCR, and the results showed a significant upregulation of the histone gene expression levels in hemocytes, gill, and mantle of the mussel after immune stress. In addition, three identified HDAPs were selected for preparation of specific antibodies, and the corresponding histones and their derived C-terminal fragments were detected by Western blotting in the blood cell and serum of immune challenged mussel, respectively, indicating the existence of HDAPs in M. coruscus. Our findings revealed the immune function of histones in Mytilus, and confirmed the existence of HDAPs in the mussel. The identified Mytilus HDAPs represent a new source of immune effector with antimicrobial function in the innate immune system, and thus provide promising candidates for the treatment of microbial infections in aquaculture and medicine.


Asunto(s)
Péptidos Antimicrobianos , Histonas , Inmunidad Innata , Mytilus , Animales , Mytilus/inmunología , Mytilus/genética , Histonas/inmunología , Histonas/genética , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/química , Inmunidad Innata/genética , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/efectos de los fármacos
6.
Fish Shellfish Immunol ; 144: 109301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110106

RESUMEN

Mytilus unguiculatus is an important economic bivalve species with wide consumption and aquaculture value. Disease is one of the primary limiting factors in mussel aquaculture, thus understanding the response of different tissues of M. unguiculatus to pathogens is crucial for disease prevention and control. In this study, we investigated the physiological and transcriptomic responses of the gills, adductor muscle, and mantle of M. unguiculatus infected with Vibrio alginolyticus. The results showed that V. alginolyticus infection caused inflammation and tissue structure changes in the gill, adductor muscle and mantle of M. unguiculatus. Meanwhile, the activities of superoxide dismutase and catalase in the three tissues increased, while the total antioxidant capacity decreased, suggesting that M. unguiculatus have an activated defense mechanism against infection-induced oxidative stress, despite a compromised total antioxidant capacity. Transcriptomic studies reveal that infected M. unguiculatus exhibits upregulation of endocytosis, lysosome activity, cellular apoptosis, and immune-related signaling pathways, indicating that M. unguiculatus responds to pathogen invasion by upregulating efferocytosis. Compared with the gill and adductor muscle, the mantle had a higher level of mytimycin, mytilin and myticin, and the three tissues also increased the expression of mytimycin to cope with the invasion of pathogens. In addition, the analysis of genes related to taste transduction pathways and muscle contraction and relaxation found that after infection with V. alginolyticus, M. unguiculatus may reduce appetite by inhibiting taste transduction in the gill, while improving muscle contraction of the adductor muscle and keeping the shell closed, to resist further invasion of pathogens and reduce the risk of pathogen transmission in the population.


Asunto(s)
Mytilus , Vibriosis , Vibrio , Animales , Mytilus/genética , Vibrio alginolyticus/fisiología , Antioxidantes , Vibriosis/veterinaria , Perfilación de la Expresión Génica/veterinaria , Vibrio/fisiología
7.
Dis Aquat Organ ; 159: 209-214, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324593

RESUMEN

Marteilia pararefringens is a protistan parasite that mainly infects the digestive gland of mussels Mytilus spp. Despite observations of marteiliosis in mussels since the 1970s, the reported host species has generally not been verified by molecular methods. The 3 closely related mussels Mytilus edulis, M. galloprovincialis, and M. trossulus cannot be distinguished morphologically and hybridise in regions where they overlap. Norway is the only country where both M. pararefringens and M. trossulus are known to occur. Here, we report the first detection of marteiliosis, caused by M. pararefringens, in M. trossulus and an M. edulis-M. trossulus hybrid in a heliothermic oyster pond-a poll-in Hardangerfjorden, Norway. The observed infections were severe, containing early, intermediate, and advanced (sporulating) stages present in the digestive epithelium. There was no host reaction associated with the infections. This finding confirms that all known Mytilus species present in Europe are susceptible to M. pararefringens.


Asunto(s)
Mytilus , Animales , Mytilus/parasitología , Noruega , Interacciones Huésped-Parásitos
8.
Dis Aquat Organ ; 158: 157-172, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813856

RESUMEN

Norway had historically been considered free of marteiliosis in bivalves since the disease surveillance programme began in 1995. However, in 2016, Marteilia pararefringens, a protistan parasite of mussels Mytilus spp., was described in a heliothermic lagoon-a poll-previously used to produce flat oyster spat. To study whether the parasite was introduced, and possibly spread, via the historical flat oyster networks on the south and west coast, we sampled aquaculture polls that were part of different networks of farmers and wild, natural polls with no aquaculture activity. Additionally, we sampled mussel banks influenced by polls and sheltered bays that could have a similar environment to that of polls. We identified 7 sites with M. pararefringens-infected mussel populations: 5 were polls used in flat oyster production and 2 were in fjord areas with no known connection to any bivalve aquaculture. Prevalence ranged between 2 and 88%. At one site, Trysfjorden, we found M. pararefringens in atypical organs, including the gills, mantle, and intestine. Marteilia-like cells were also observed in the epithelium, lumen, and surrounding connective tissue of metanephridia and in the sinus of the anterior retractor muscle. Our results demonstrate that the parasite is more widespread than previously thought and is neither isolated to polls nor connected directly to aquaculture activity. Lastly, our findings highlight the need for an improved sampling strategy in surveillance programmes to detect marteiliosis in mussels.


Asunto(s)
Acuicultura , Animales , Noruega/epidemiología , Mytilus/parasitología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38908680

RESUMEN

The effect of water acidification in combination with normoxia or hypoxia on the antioxidant capacity and oxidative stress markers in gills and hemolymph of the Mediterranean mussel (Mytilus galloprovincialis), as well as on gill microstructure, has been evaluated through an in vivo experiment. Mussels were exposed to a low pH (7.3) under normal dissolved oxygen (DO) conditions (8 mg/L), and hypoxia (2 mg/L) for 8 days, and samples were collected on days 1, 3, 6, and 8 to evaluate dynamic changes of physiological responses. Cytoplasmic concentrations of reactive oxygen species (ROS) and levels of DNA damage were measured in hemocytes, while the activity of catalase (CAT) and superoxide dismutase (SOD) and histopathological changes were assessed in gills. The results revealed that while water acidification did not significantly affect the activity of SOD and CAT in gills under normoxic and hypoxic conditions, there was a trend towards suppression of CAT activity at the end of the experimental period (day 8). Similarly, we did not observe increased formation of ROS in hemocytes or changes in the levels of DNA damage during the experimental period. These results strongly suggest that the oxidative stress response system in mussels is relatively stable to experimental conditions of acidification and hypoxia. Experimental acidification under normoxia and hypoxia caused changes to the structure of the gills, leading to various histopathological alterations, including dilation, hemocyte infiltration into the hemal sinuses, intercellular edema, vacuolization of epithelial cells in gill filaments, lipofuscin accumulation, changes in the shape and adjacent gill filaments, hyperplasia, exfoliation of the epithelial layer, necrosis, swelling, and destruction of chitinous layers (chitinous rods). Most of these alterations were reversible, non-specific changes that represent a general inflammatory response and changes in the morphology of the gill filaments. The dynamics of histopathological alterations suggests an active adaptive response of gills to environmental stresses. Taken together, our data indicate that Mediterranean mussels have a relative tolerance to water acidification and hypoxia at tissue and cellular levels.


Asunto(s)
Antioxidantes , Catalasa , Daño del ADN , Branquias , Mytilus , Estrés Oxidativo , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Animales , Branquias/metabolismo , Branquias/patología , Antioxidantes/metabolismo , Mytilus/metabolismo , Concentración de Iones de Hidrógeno , Catalasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Hemocitos/metabolismo , Agua/metabolismo , Hipoxia/metabolismo
10.
Parasitol Res ; 123(7): 265, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985332

RESUMEN

Perkinsus, a parasitic pathogen of marine bivalves, is widely distributed among various mollusks in numerous countries. However, the prevalence and diversity of Perkinsus species in the two economically important mussels, Mytilus coruscus and M. galloprovincialis, in China remain unknown. The presence of the Perkinsus species was identified in the two mussels sampled along the coast of the East China Sea and the Yellow Sea, using both the alternative Ray's fluid thioglycolate medium (ARFTM) and conventional polymerase chain reaction (PCR). The ARFTM test indicated the presence of Perkinsus-like hypnospores in the two mussels. The diameter of the hypnospores in M. coruscus was significantly smaller than that in M. galloprovincialis. The prevalence of Perkinsus in M. galloprovincialis and M. coruscus ranged from 0 to 37.5% and 0 to 25%, respectively. The mean intensity of Perkinsus in M. galloprovincialis and M. coruscus ranged from 0 to 5.14 and 0 to 4.92, respectively. The PCR assay showed that the prevalence of Perkinsus spp. in M. galloprovincialis and M. coruscus was 0 to 25.0% and 0 to 12.5%, respectively. The homology analysis of the newly obtained internal transcribed spacer (ITS) sequences of Perkinsus revealed the highest identity of 100% with P. beihaiensis. The phylogenetic analysis indicated that the Perkinsus isolates from the two mussels were clustered with P. beihaiensis. The results of the molecular biology indicated that only P. beihaiensis was detected in the two mussels. The highest prevalence of P. beihaiensis was observed in Liaoning province (Dalian, 20.83%), followed by Shandong province, Zhejiang province and Fujian province. Consequently, it is recommended that surveillance should be conducted in Dalian, where the prevalence and mean intensity of P. beihaiensis in M. galloprovincialis are the highest.


Asunto(s)
Mytilus , Animales , Mytilus/parasitología , China/epidemiología , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN , Alveolados/genética , Alveolados/aislamiento & purificación , Alveolados/clasificación , ADN Protozoario/genética , Datos de Secuencia Molecular , Prevalencia , Océanos y Mares
11.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339176

RESUMEN

Growth is a fundamental aspect of aquaculture breeding programs, pivotal for successful cultivation. Understanding the mechanisms that govern growth and development differences across various stages can significantly boost seedling production of economically valuable species, thereby enhancing aquaculture efficiency and advancing the aquaculture industry. Mytilus coruscus, a commercially vital marine bivalve, underscores this importance. To decipher the intricate molecular mechanisms dictating growth and developmental disparities in marine shellfish, we conducted transcriptome sequencing and meticulously analyzed gene expression variations and molecular pathways linked to growth traits in M. coruscus. This study delved into the molecular and gene expression variations across five larval development stages, with a specific focus on scrutinizing the differential expression patterns of growth-associated genes using RNA sequencing and quantitative real-time PCR analysis. A substantial number of genes-36,044 differentially expressed genes (DEGs)-exhibited significant differential expression between consecutive developmental stages. These DEGs were then categorized into multiple pathways (Q value < 0.05), including crucial pathways such as the spliceosome, vascular smooth muscle contraction, DNA replication, and apoptosis, among others. In addition, we identified two pivotal signaling pathways-the Hedgehog (Hh) signaling pathway and the TGF-beta (TGF-ß) signaling pathway-associated with the growth and development of M. coruscus larvae. Ten key growth-related genes were pinpointed, each playing crucial roles in molecular function and the regulation of growth traits in M. coruscus. These genes and pathways associated with growth provide deep insights into the molecular basis of physiological adaptation, metabolic processes, and growth variability in marine bivalves.


Asunto(s)
Proteínas Hedgehog , Mytilus , Animales , Proteínas Hedgehog/genética , Mytilus/genética , Larva/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Factor de Crecimiento Transformador beta/genética
12.
Environ Monit Assess ; 196(3): 316, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416228

RESUMEN

Nature-based solutions, such as shellfish reefs, can support natural coastal defence and be a potential solution for climate-resilient shorelines in the future. In the Belgian Part of the North Sea, the "Coastbusters" projects aim to develop nature-based coastal protection by favouring subtidal mussel bed establishment on the seafloor through typical longline aquaculture techniques. Mussel beds are dependent on environmental conditions, and both influence the physical and biogeochemical features in a soft-sediment environment. Therefore, a comprehensive ecological monitoring program is essential to assess the success of future mussel bed development and its influence on the surrounding ecosystem. For establishing a monitoring baseline of the two experimental areas, a combination of conventional benthic assessment methods (grab sampling and granulometry) and non-invasive techniques (sediment profile imaging and transect diving video surveys) were utilised. Although mussel reefs did not yet develop by the time of this study, clear differences in ecological and sedimentological characteristics were found between two experimental areas (sheltered and exposed), subjected to slightly different hydrodynamic conditions. The one sheltered by coastal sandbanks was dominated by fine-muddy sand, higher species richness, biomass, and higher biological activity (burrows, fauna, and biological beds) as observed by all methods in one or another way. Moreover, functional diversity indices revealed a higher partitioning of the total available resources, suggesting more complex ecological processes in the sheltered area. Conversely, the area more exposed to the open sea was dominated by more sandy sediments, and fewer organisms were found. The combination of those different monitoring tools provides an integrated, complementary view, from different perspectives, on the biological, physical and functional characteristics of the study areas.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Acuicultura , Biomasa , Clima , Arena
13.
Mol Ecol ; 32(21): 5724-5741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37795906

RESUMEN

Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.


Asunto(s)
Mytilus edulis , Mytilus , Neoplasias , Animales , Mytilus edulis/genética , Bahías , Mytilus/genética , ADN Mitocondrial/genética
14.
Mutagenesis ; 38(1): 3-12, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36082791

RESUMEN

In this study, the possible 'vector effect' within the exposure of Mediterranean mussels (Mytilus galloprovincialis) to polystyrene microplastics with adsorbed fluoranthene was investigated by applying the multibiomarker approach. The major focus was placed on genotoxicological endpoints as to our knowledge there are no literature data on the genotoxicity of polystyrene microparticles alone or with adsorbed fluoranthene in the selected experimental organisms. DNA damage was assessed in haemocytes by comet assay and micronucleus test. For the assessment of neurotoxicity, acetylcholinesterase activity was measured in gills. Glutathione S-transferase was assessed in gills and hepatopancreas since these enzymes are induced for biotransformation and excretion of lipophilic compounds such as hydrocarbons. Finally, differences in physiological response within the exposure to polystyrene particles, fluoranthene, or particles with adsorbed fluoranthene were assessed by the variation of heart rate patterns studied by the noninvasive laser fibre-optic method. The uniform response of individual biomarkers within the exposure groups was not recorded. There was no clear pattern in variation of acetylcholinesterase or glutathione S-transferase activity which could be attributed to the treatment. Exposure to polystyrene increased DNA damage which was detected by the comet assay but was not confirmed by micronucleus formation. Data of genotoxicity assays indicated differential responses among the groups exposed to fluoranthene alone and fluoranthene adsorbed to polystyrene. Change in the heart rate patterns within the studied groups supports the concept of the Trojan horse effect within the exposure to polystyrene particles with adsorbed fluoranthene.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/metabolismo , Poliestirenos/toxicidad , Poliestirenos/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Plásticos/metabolismo , Plásticos/farmacología , Daño del ADN , Glutatión Transferasa/genética , Contaminantes Químicos del Agua/farmacología , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/metabolismo
15.
J Exp Biol ; 226(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37902141

RESUMEN

Organismal responses to stressful environments are influenced by numerous transcript- and protein-level mechanisms, and the relationships between expression changes at these levels are not always straightforward. Here, we used paired transcriptomic and proteomic datasets from two previous studies from gill of the California mussel, Mytilus californianus, to explore how simultaneous transcript and protein abundance patterns may diverge under different environmental scenarios. Field-acclimatized mussels were sampled from two disparate intertidal sites; individuals from one site were subjected to three further treatments (common garden, low-intertidal or high-intertidal outplant) that vary in temperature and feeding time. Assessing 1519 genes shared between the two datasets revealed that both transcript and protein expression patterns differentiated the treatments at a global level, despite numerous underlying discrepancies. There were far more instances of differential expression between treatments in transcript only (1451) or protein only (226) than of the two levels shifting expression concordantly (68 instances). Upregulated expression of cilium-associated transcripts (likely related to feeding) was associated with relatively benign field treatments. In the most stressful treatment, transcripts, but not proteins, for several molecular chaperones (including heat shock proteins and endoplasmic reticulum chaperones) were more abundant, consistent with a threshold model for induction of translation of constitutively available mRNAs. Overall, these results suggest that the relative importance of transcript- and protein-level regulation (translation and/or turnover) differs among cellular functions and across specific microhabitats or environmental contexts. Furthermore, the degree of concordance between transcript and protein expression can vary across benign versus acutely stressful environmental conditions.


Asunto(s)
Multiómica , Mytilus , Humanos , Animales , Proteómica , Temperatura , Mytilus/genética , Temperatura Corporal
16.
Fish Shellfish Immunol ; 135: 108654, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36868539

RESUMEN

Biomonitoring at the scale of the aquatic continuum and based on biomarkers, requires various representative species and a knowledge of their sensitivity to contaminants. Mussel immunomarkers are established tools for evaluating immunotoxic stress, but little is known about the consequences of an immune activation by local microorganisms on their response to pollution. This study aims to compare the sensitivity of cellular immunomarkers in two mussel species from different environments, the marine mussel Mytilus edulis (blue mussel) and the freshwater mussel Dreissena polymorpha (zebra mussel), to chemical stressors combined with bacterial challenge. Haemocytes were exposed ex vivo to the contaminants (bisphenol A, caffeine, copper chloride, oestradiol, ionomycin) for 4 h. The chemical exposures were coupled with simultaneous bacterial challenges (Vibrio splendidus and Pseudomonas fluorescens) to trigger activation of the immune response. Cellular mortality, phagocytosis efficiency and phagocytosis avidity were then measured by flow cytometry. The two mussel species had different basal levels since D. polymorpha showed higher cell mortality than M. edulis (23.9 ± 11% and 5.5 ± 3% dead cells respectively), and lower phagocytosis efficiency (52.6 ± 12% and 62.2 ± 9%), but similar phagocytosis avidity (17.4 ± 5 and 13.4 ± 4 internalised beads). Both bacterial strains led to an increase in cellular mortality (+8.4% dead cells in D. polymorpha, +4.9% in M. edulis), as well an activation of phagocytosis (+9.2% of efficient cells in D. polymorpha, +6.2% efficient cells and +3 internalised beads per cell in M. edulis). All chemicals triggered an increase in haemocyte mortality and/or phagocytotic modulations, except for bisphenol A. The two species differed in the amplitude of their response. The addition of a bacterial challenge significantly altered cell responses to chemicals with synergetic and antagonistic variations compared to a single exposure, depending on the compound used and the mussel species. This work highlights the species-specific sensitivity of mussel immunomarkers to contaminants, with or without bacterial challenge, and the necessity of considering the presence of in natura non-pathogenic microorganisms for future in situ applications of immunomarkers.


Asunto(s)
Dreissena , Mytilus edulis , Contaminantes Químicos del Agua , Animales , Fagocitosis , Agua Dulce , Contaminantes Químicos del Agua/toxicidad
17.
Fish Shellfish Immunol ; 142: 109112, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751644

RESUMEN

The Nuclear factor Erythroid 2-related factor 2 (Nrf2) is the most important endogenous antioxidant factor in organisms, and it has been demonstrated that it exerts extensive control over the immune response by interacting with crucial innate immunity components directly or indirectly. Although Nrf2 has been widely confirmed to be involved in stress resistance in mammals and some fish, its contribution to mollusks oxidative stress resistance has not frequently been documented. In this investigation, total RNA was taken from the digestive gland of M. coruscus, and a cDNA library was constructed and screened using the GATEWAY recombination technology. The Nrf2 cDNA sequence of M. coruscus was cloned into the pGBKT7 vector to prepare the bait plasmid. Using yeast two-hybrid system, after auxotrophic medium screening, sequencing, and bioinformatics analysis, 13 binding proteins that interacted with Nrf2 were finally identified. They were QM-like protein, 40S ribosomal protein S4 (RPS4), ribosomal protein S2 (RPS2), ribosomal protein L12 (RPL12), EF1-alpha mRNA for elongation factor 1 alpha (eEF1-alpha), ferritin, alpha-amylase, trypsin, vdg3, period clock protein, cyclophilin A isoform 1 (CYP A), serine protease CFSP2, histone variant H2A.Z (H2A.Z). For a better understanding the physiological function of Nrf2 in animals and as a potential target for future research on protein roles in Nrf2 interactions, it is crucial to clarify these protein interactions.


Asunto(s)
Mytilus , Factor 2 Relacionado con NF-E2 , Animales , Técnicas del Sistema de Dos Híbridos , Factor 2 Relacionado con NF-E2/genética , Mytilus/genética , Biblioteca de Genes , ADN Complementario/genética , Mamíferos
18.
Fish Shellfish Immunol ; 138: 108868, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37263550

RESUMEN

Toll-like receptors (TLRs) are crucial players in immune recognition and regulation, with aberrant activation leading to autoimmune, chronic inflammatory, and infectious diseases. MicroRNAs (miRNAs) have been shown to regulate gene expression at transcriptional and post-transcriptional levels. While miRNA-mediated regulation of TLR signaling has been studied in mammals, the underlying mechanisms of TLR-miRNA interactions in molluscs remain unclear. In a previous study, one of the TLR genes potentially targeted by miRNAs was identified and named McTLR-like1. McTLR-like1 was later found to be targeted by miRNA Mc-novel_miR_196 through bioinformatic prediction. In this study, we aim to experimentally determine the interaction between McTLR-like1 and Mc-novel_miR_196, as well as their functional role in the innate immune response of molluscs. The results showed that the expression of Mc-novel_miR_196 was suppressed, while the expression of McTLR-like1 was enhanced in M. coruscus hemocytes treated with lipopolysaccharide (LPS). Moreover, in vitro assays demonstrated that Mc-novel_miR_196 directly targets the 5' UTR of McTLR-like1 and leads to the down-regulation of proinflammatory cytokines in hemocytes. In addition, co-transfection experiments confirmed that Mc-novel_miR_196 inhibits McTLR-like1 and inhibits the expression of proinflammatory cytokines. The Tunel assay also showed that Mc-novel_miR_196 inhibited apoptosis in hemocytes induced by LPS. Our findings suggest that microRNA Mc-novel_miR_196 acts as a regulator of innate immunity in M. coruscus by targeting McTLR-like1 and inhibiting inflammatory response and apoptosis. These results provide further insights into the complex molecular mechanisms underlying TLR signaling in molluscs.


Asunto(s)
MicroARNs , Mytilus , Animales , MicroARNs/genética , Lipopolisacáridos/farmacología , Inmunidad Innata/genética , Citocinas , Apoptosis , Mamíferos
19.
Fish Shellfish Immunol ; 136: 108713, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36990258

RESUMEN

In shellfish aquaculture, antibiotics are commonly used to address Vibrio infections. However, antibiotic abuse has increased the risk of environment pollution, which has also raised food safety concerns. Antimicrobial peptides (AMPs) are considered safe and sustainable alternatives to antibiotics. Hence, in this study, we aimed to develop a transgenic Tetraselmis subcordiformis line harboring AMP-PisL9K22WK for reducing the use of antibiotics in mussel aquaculture. Toward this, pisL9K22WK was assembled into nuclear expression vectors of T. subcordiformis. Post particle bombardment, several stable transgenic lines were selected after 6 months of herbicide resistance culture. Subsequently, Vibrio-infected mussels (Mytilus sp.) were orally fed transgenic T. subcordiformis to test the efficacy of this drug delivery system. The results showed that the transgenic line as an oral antimicrobial agent significantly improved the resistance of mussels to Vibrio. The growth rate of the mussels fed transgenic T. subcordiformis was considerably higher than that of mussels fed wild-type algae (10.35% versus 2.44%). In addition, the possibility of using the lyophilized powder of the transgenic line as drug delivery system was also evaluated; however, compared to that observed after feeding with live cells, the lyophilized powder did not improve the low growth rate caused by Vibrio infection, suggesting that fresh microalgae are more beneficial for the delivery of the PisL9K22WK to mussels than the lyophilized powder. In summary, this is a promising step toward the development of safe and environment-friendly antimicrobial baits.


Asunto(s)
Microalgas , Mytilus , Vibriosis , Vibrio , Animales , Péptidos Antimicrobianos , Polvos , Animales Modificados Genéticamente , Antibacterianos/farmacología
20.
Eur J Nutr ; 62(7): 3097-3111, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37505286

RESUMEN

PURPOSE: The purpose of this study was to prepare the novel mussel-derived ACE inhibitory peptides (MEPs) by enzymatic hydrolysis of Mytilus edulis and investigate their antihypertensive effects in vivo. METHODS: After assessing the stability of MEPs in vitro, we investigated the effect of MEPs on hypertension using spontaneously hypertensive rats (SHRs). Subsequently, MEPs were purified and identified by ultrafiltration, gel filtration chromatography and liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Our study demonstrated that MEPs could keep stable ACE inhibitory activity after treatment with heat, acid, alkali, metal ions and simulated gastrointestinal digestive fluid. Additionally, the animal experiments showed that both short-term and long-term treatment with MEPs resulted in a significant reduction in systolic and diastolic blood pressure in SHRs. Mechanistically, the results suggested that MEPs could reduce vascular remodeling, regulate renin-angiotensin system (RAS), and inhibit kidney and myocardial fibrosis. Finally, we isolated and identified five peptides from MEPs, with the peptide Ile-Leu-Thr-Glu-Arg showed the highest ACE inhibition rate. CONCLUSION: Our findings demonstrate the potential use of MEPs as active components in functional foods designed to lower blood pressure.


Asunto(s)
Bivalvos , Hipertensión , Ratas , Animales , Ratas Endogámicas SHR , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Inhibidores de la Enzima Convertidora de Angiotensina/química , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Antihipertensivos/química , Péptidos/farmacología , Hipertensión/tratamiento farmacológico , Presión Sanguínea , Bivalvos/química , Peptidil-Dipeptidasa A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA