Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(19): 3992-4007.e10, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34562373

RESUMEN

ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.


Asunto(s)
Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos , Citidina Trifosfato/metabolismo , ADN Bacteriano/metabolismo , Myxococcus xanthus/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Hidrólisis , Mutación , Myxococcus xanthus/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo
2.
EMBO J ; 42(1): e111661, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36345779

RESUMEN

In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.


Asunto(s)
Proteínas Bacterianas , Myxococcus xanthus , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Myxococcus xanthus/metabolismo , Fimbrias Bacterianas/química
3.
Proc Natl Acad Sci U S A ; 121(30): e2402559121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012831

RESUMEN

Microbes face many physical, chemical, and biological insults from their environments. In response, cells adapt, but whether they do so cooperatively is poorly understood. Here, we use a model social bacterium, Myxococcus xanthus, to ask whether adapted traits are transferable to naïve kin. To do so we isolated cells adapted to detergent stresses and tested for trait transfer. In some cases, strain-mixing experiments increased sibling fitness by transferring adaptation traits. This cooperative behavior depended on a kin recognition system called outer membrane exchange (OME) because mutants defective in OME could not transfer adaptation traits. Strikingly, in mixed stressed populations, the transferred trait also benefited the adapted (actor) cells. This apparently occurred by alleviating a detergent-induced stress response in kin that otherwise killed actor cells. Additionally, this adaptation trait when transferred also conferred resistance against a lipoprotein toxin delivered to targeted kin. Based on these and other findings, we propose a model for stress adaptation and how OME in myxobacteria promotes cellular cooperation in response to environmental stresses.


Asunto(s)
Adaptación Fisiológica , Myxococcus xanthus , Myxococcus xanthus/fisiología , Myxococcus xanthus/metabolismo , Estrés Fisiológico , Interacciones Microbianas/fisiología
4.
Mol Microbiol ; 121(5): 1002-1020, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38525557

RESUMEN

Upon starvation, rod-shaped Myxococcus xanthus bacteria form mounds and then differentiate into round, stress-resistant spores. Little is known about the regulation of late-acting operons important for spore formation. C-signaling has been proposed to activate FruA, which binds DNA cooperatively with MrpC to stimulate transcription of developmental genes. We report that this model can explain regulation of the fadIJ operon involved in spore metabolism, but not that of the spore coat biogenesis operons exoA-I, exoL-P, and nfsA-H. Rather, a mutation in fruA increased the transcript levels from these operons early in development, suggesting negative regulation by FruA, and a mutation in mrpC affected transcript levels from each operon differently. FruA bound to all four promoter regions in vitro, but strikingly each promoter region was unique in terms of whether or not MrpC and/or the DNA-binding domain of Nla6 bound, and in terms of cooperative binding. Furthermore, the DevI component of a CRISPR-Cas system is a negative regulator of all four operons, based on transcript measurements. Our results demonstrate complex regulation of sporulation genes by three transcription factors and a CRISPR-Cas component, which we propose produces spores suited to withstand starvation and environmental insults.


Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , Regulación Bacteriana de la Expresión Génica , Myxococcus xanthus , Operón , Regiones Promotoras Genéticas , Esporas Bacterianas , Factores de Transcripción , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/crecimiento & desarrollo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Operón/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
5.
Appl Environ Microbiol ; : e0166024, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365039

RESUMEN

Environmental microorganisms have evolved a variety of strategies to survive fluctuations in environmental conditions, including the production of biofilms and differentiation into spores. Myxococcus xanthus are ubiquitous soil bacteria that produce starvation-induced multicellular fruiting bodies filled with environmentally resistant spores (a specialized biofilm). Isolated spores have been shown to be more resistant than vegetative cells to heat, ultraviolet radiation, and desiccation. The evolutionary advantage of producing spores inside fruiting bodies is not clear. Here, we examine a hypothesis that the fruiting body provides additional protection from environmental insults. We developed a high-throughput method to compare the recovery (outgrowth) of distinct cell types (vegetative cells, free spores, and spores within intact fruiting bodies) after exposure to ultraviolet radiation or desiccation. Our data indicate that haystack-shaped fruiting bodies protect spores from extended UV radiation but do not provide additional protection from desiccation. Perturbation of fruiting body morphology strongly impedes recovery from both UV exposure and desiccation. These results hint that the distinctive fruiting bodies produced by different myxobacterial species may have evolved to optimize their persistence in distinct ecological niches.IMPORTANCEEnvironmental microorganisms play an important role in the production of greenhouse gases that contribute to changing climate conditions. It is imperative to understand how changing climate conditions feedback to influence environmental microbial communities. The myxobacteria are environmentally ubiquitous social bacteria that influence the local microbial community composition. Defining how these bacteria are affected by environmental insults is a necessary component of predicting climatic feedback effects. When starved, myxobacteria produce multicellular fruiting bodies filled with spores. As spores are resistant to a variety of environmental insults, the evolutionary advantage of building a fruiting body is not clear. Using the model myxobacterium, Myxococcus xanthus, we demonstrate that the tall, haystack-shaped fruiting body morphology enables significantly more resistance to UV exposure than the free spores. In contrast, fruiting bodies are slightly detrimental to recovery from extended desiccation, an effect that is strongly exaggerated if fruiting body morphology is perturbed. These results suggest that the variety of fruiting body morphologies observed in the myxobacteria may dictate their relative resistance to changing climate conditions.

6.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37494115

RESUMEN

Myxobacteria are social microbial predators that use cell-cell contacts to identify bacterial or fungal prey and to differentiate kin relatives to initiate cellular responses. For prey killing, they assemble Tad-like and type III-like secretion systems at contact sites. For kin discrimination (KD), they assemble outer membrane exchange complexes composed of the TraA and TraB receptors at contacts sites. A type VI secretion system and Rhs proteins also mediate KD. Following cellular recognition, these systems deliver appropriate effectors into target cells. For prey, this leads to cell death and lysis for nutrient consumption by myxobacteria. In KD, a panel of effectors are delivered, and if adjacent cells are clonal cells, resistance ensues because they express a cognate panel of immunity factors; while nonkin lack complete immunity and are intoxicated. This review compares and contrasts recent findings from these systems in myxobacteria.


Asunto(s)
Myxococcales , Myxococcus xanthus , Animales , Myxococcales/genética , Conducta Predatoria , Myxococcus xanthus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
7.
Chembiochem ; 24(5): e202200635, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484355

RESUMEN

Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.


Asunto(s)
Myxococcus xanthus , Streptomyces , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Streptomyces/metabolismo , Benzoxazoles/química , Benzoxazoles/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Appl Microbiol Biotechnol ; 107(15): 4833-4843, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37300712

RESUMEN

In our previous work, a recombinant aflatoxin-degrading enzyme derived from Myxococcus fulvus (MADE) was reported. However, the low thermal stability of the enzyme had limitations for its use in industrial applications. In this study, we obtained an improved variant of recombinant MADE (rMADE) with enhanced thermostability and catalytic activity using error-prone PCR. Firstly, we constructed a mutant library containing over 5000 individual mutants. Three mutants with T50 values higher than the wild-type rMADE by 16.5 °C (rMADE-1124), 6.5 °C (rMADE-1795), and 9.8 °C (rMADE-2848) were screened by a high-throughput screening method. Additionally, the catalytic activity of rMADE-1795 and rMADE-2848 was improved by 81.5% and 67.7%, respectively, compared to the wild-type. Moreover, structural analysis revealed that replacement of acidic amino acids with basic amino acids by a mutation (D114H) in rMADE-2848 increased the polar interactions with surrounding residues and resulted in a threefold increase in the t1/2 value of the enzyme and made it more thermaltolerate. KEY POINTS: • Mutant libraries construction of a new aflatoxins degrading enzyme by error-prone PCR. • D114H/N295D mutant improved enzyme activity and thermostability. • The first reported enhanced thermostability of aflatoxins degrading enzyme better for its application.


Asunto(s)
Aflatoxinas , Aflatoxinas/genética , Estabilidad de Enzimas , Reacción en Cadena de la Polimerasa , Mutación , Clonación Molecular , Temperatura
9.
Proc Natl Acad Sci U S A ; 117(45): 28366-28373, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33093210

RESUMEN

Type IV pili (Tfp) are highly conserved macromolecular structures that fulfill diverse cellular functions, such as adhesion to host cells, the import of extracellular DNA, kin recognition, and cell motility (twitching). Outstandingly, twitching motility enables a poorly understood process by which highly coordinated groups of hundreds of cells move in cooperative manner, providing a basis for multicellular behaviors, such as biofilm formation. In the social bacteria Myxococcus xanthus, we know that twitching motility is under the dependence of the small GTPase MglA, but the underlying molecular mechanisms remain elusive. Here we show that MglA complexed to GTP recruits a newly characterized Tfp regulator, termed SgmX, to activate Tfp machines at the bacterial cell pole. This mechanism also ensures spatial regulation of Tfp, explaining how MglA switching provokes directional reversals. This discovery paves the way to elucidate how polar Tfp machines are regulated to coordinate multicellular movements, a conserved feature in twitching bacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Myxococcus xanthus/fisiología , Proteínas Bacterianas/genética , Polaridad Celular/fisiología , Myxococcus xanthus/citología , Myxococcus xanthus/genética , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
10.
Genes Dev ; 29(18): 1903-14, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26338420

RESUMEN

Myxococcus xanthus development requires CsgA, a member of the short-chain alcohol dehydrogenase (SCAD) family of proteins. We show that CsgA and SocA, a protein that can replace CsgA function in vivo, oxidize the 2'-OH glycerol moiety on cardiolipin and phosphatidylglycerol to produce diacylglycerol (DAG), dihydroxyacetone, and orthophosphate. A lipid extract enriched in DAGs from wild-type cells initiates development and lipid body production in a csgA mutant to bypass the mutational block. This novel phospholipase C-like reaction is widespread. SCADs that prevent neurodegenerative disorders, such as Drosophila Sniffer and human HSD10, oxidize cardiolipin with similar kinetic parameters. HSD10 exhibits a strong preference for cardiolipin with oxidized fatty acids. This activity is inhibited in the presence of the amyloid ß peptide. Three HSD10 variants associated with neurodegenerative disorders are inactive with cardiolipin. We suggest that HSD10 protects humans from reactive oxygen species by removing damaged cardiolipin before it induces apoptosis.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Drosophila/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Oxidorreductasas de Alcohol/genética , Animales , Proteínas Bacterianas/genética , Cardiolipinas/metabolismo , Diglicéridos/metabolismo , Dihidroxiacetona/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Escherichia coli/genética , Humanos , Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Myxococcus/enzimología , Oxidación-Reducción , Fosfatos/metabolismo , Fosfatidilgliceroles/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
11.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958645

RESUMEN

The co-culturing of microorganisms is a well-known strategy to study microbial interactions in the laboratory. This approach facilitates the identification of new signals and molecules produced by one species that affects other species' behavior. In this work, we have studied the effects of the interaction of nine Streptomyces species (S. albidoflavus, S. ambofaciens, S. argillaceus, S. griseus, S. lividans, S. olivaceus, S. parvulus, S. peucetius, and S. rochei) with the predator bacteria Myxococcus xanthus, five of which (S. albidoflavus, S. griseus, S. lividans, S. olivaceus, and S. argillaceus) induce mound formation of M. xanthus on complex media (Casitone Yeast extract (CYE) and Casitone tris (CTT); media on which M. xanthus does not form these aggregates under normal culture conditions. An in-depth study on S. griseus-M. xanthus interactions (the Streptomyces strain producing the strongest effect) has allowed the identification of two siderophores produced by S. griseus, demethylenenocardamine and nocardamine, responsible for this grouping effect over M. xanthus. Experiments using pure commercial nocardamine and different concentrations of FeSO4 show that iron depletion is responsible for the behavior of M. xanthus. Additionally, it was found that molecules, smaller than 3 kDa, produced by S. peucetius can induce the production of DK-xanthenes by M. xanthus.


Asunto(s)
Myxococcus xanthus , Myxococcus , Streptomyces , Interacciones Microbianas , Hierro
12.
J Biol Chem ; 296: 100308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33493516

RESUMEN

The δ-proteobacteria Myxococcus xanthus displays social (S) and adventurous (A) motilities, which require pole-to-pole reversal of the motility regulator proteins. Mutual gliding motility protein C (MglC), a paralog of GTPase-activating protein Mutual gliding motility protein B (MglB), is a member of the polarity module involved in regulating motility. However, little is known about the structure and function of MglC. Here, we determined ∼1.85 Å resolution crystal structure of MglC using Selenomethionine Single-wavelength anomalous diffraction. The crystal structure revealed that, despite sharing <9% sequence identity, both MglB and MglC adopt a Regulatory Light Chain 7 family fold. However, MglC has a distinct ∼30° to 40° shift in the orientation of the functionally important α2 helix compared with other structural homologs. Using isothermal titration calorimetry and size-exclusion chromatography, we show that MglC binds MglB in 2:4 stoichiometry with submicromolar range dissociation constant. Using small-angle X-ray scattering and molecular docking studies, we show that the MglBC complex consists of a MglC homodimer sandwiched between two homodimers of MglB. A combination of size-exclusion chromatography and site-directed mutagenesis studies confirmed the MglBC interacting interface obtained by molecular docking studies. Finally, we show that the C-terminal region of MglB, crucial for binding its established partner MglA, is not required for binding MglC. These studies suggest that the MglB uses distinct interfaces to bind MglA and MglC. Based on these data, we propose a model suggesting a new role for MglC in polarity reversal in M. xanthus.


Asunto(s)
Proteínas Bacterianas/química , Polaridad Celular/genética , Proteínas Motoras Moleculares/química , Myxococcus xanthus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Mutación , Myxococcus xanthus/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
13.
Proteins ; 90(8): 1547-1560, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35277888

RESUMEN

Glutathione (GSH) is synthesized in two ATP-dependent reactions by glutamate-cysteine ligase (Gcl) and glutathione synthetase (Gs). Myxococcus xanthus, a gram-negative bacterium belonging to δ-proteobacteria, possesses mxGcl and mxGs, which have high sequence identity with the enzymes from plants and bacteria, respectively. MxGcl2 was activated by Mn2+ , but not by Mg2+ , and stabilized in the presence of 5 mM Mn2+ or Mg2+ . Sequence comparison of mxGcl2 and Brassica juncea Gcl indicated that they have the same active site residues, except for Tyr330, which interacts with Cys and which in mxGcl2 is represented by Leu267. The substitution of Leu267 with Tyr resulted in the loss of mxGcl2 activity, but that with Met (found in cyanobacterial Gcls) increased the mxGcl2 affinity for Cys. GSH and its oxidized form GSSG equally inhibited the activity of mxGcl2; the inhibition was augmented by ATP at concentrations >3 mM. Buthionine sulfoximine inactivated mxGcl2 with Ki  = 2.1 µM, which was lower than those for Gcls from other organisms. The mxGcl2 activity was also suppressed by pyrophosphate and polyphosphates. MxGs was a dimer, and its activity was induced by Mg2+ but strongly inhibited by Mn2+ even in the presence of 10 mM Mg2+ . MxGs was inhibited by GSSG at Ki  = 3.6 mM. Approximately 1 mM GSH was generated with 3 units of mxGcl2 and 6 units of mxGs from 5 mM Glu, Cys, and Gly, and 10 mM ATP. Our results suggest that GSH production in M. xanthus mostly depends on mxGcl2 activity.


Asunto(s)
Glutamato-Cisteína Ligasa , Myxococcus xanthus , Adenosina Trifosfato , Glutamato-Cisteína Ligasa/química , Glutamato-Cisteína Ligasa/genética , Glutatión/química , Disulfuro de Glutatión , Glutatión Sintasa/química , Glutatión Sintasa/genética
14.
Anal Bioanal Chem ; 414(4): 1691-1698, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850244

RESUMEN

Myxococcus xanthus is a common soil bacterium with a complex life cycle, which is known for production of secondary metabolites. However, little is known about the effects of nutrient availability on M. xanthus metabolite production. In this study, we utilize confocal Raman microscopy (CRM) to examine the spatiotemporal distribution of chemical signatures secreted by M. xanthus and their response to varied nutrient availability. Ten distinct spectral features are observed by CRM from M. xanthus grown on nutrient-rich medium. However, when M. xanthus is constrained to grow under nutrient-limited conditions, by starving it of casitone, it develops fruiting bodies, and the accompanying Raman microspectra are dramatically altered. The reduced metabolic state engendered by the absence of casitone in the medium is associated with reduced, or completely eliminated, features at 1140 cm-1, 1560 cm-1, and 1648 cm-1. In their place, a feature at 1537 cm-1 is observed, this feature being tentatively assigned to a transitional phase important for cellular adaptation to varying environmental conditions. In addition, correlating principal component analysis heat maps with optical images illustrates how fruiting bodies in the center co-exist with motile cells at the colony edge. While the metabolites responsible for these Raman features are not completely identified, three M. xanthus peaks at 1004, 1151, and 1510 cm-1 are consistent with the production of lycopene. Thus, a combination of CRM imaging and PCA enables the spatial mapping of spectral signatures of secreted factors from M. xanthus and their correlation with metabolic conditions.


Asunto(s)
Myxococcus xanthus/metabolismo , Técnicas de Cultivo de Célula , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Metaboloma , Myxococcus xanthus/química , Myxococcus xanthus/crecimiento & desarrollo , Espectrometría Raman
15.
Bioessays ; 42(8): e1900246, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32363627

RESUMEN

The outer membrane (OM) is an essential barrier that guards Gram-negative bacteria from diverse environmental insults. Besides functioning as a chemical gatekeeper, the OM also contributes towards the strength and stiffness of cells and allows them to sustain mechanical stress. Largely influenced by studies of Escherichia coli, the OM is viewed as a rigid barrier where OM proteins and lipopolysaccharides display restricted mobility. Here the discussion is extended to other bacterial species, with a focus on Myxococcus xanthus. In contrast to the rigid OM paradigm, myxobacteria possess a relatively fluid OM. It is concluded that the fluidity of the OM varies across environmental species, which is likely linked to their evolution and adaptation to specific ecological niches. Importantly, a fluid OM can endow bacteria with distinct functions for cell-cell and cell-environment interactions.


Asunto(s)
Membrana Externa Bacteriana , Myxococcus xanthus , Proteínas de la Membrana Bacteriana Externa , Membrana Celular , Escherichia coli , Estilo de Vida , Lipopolisacáridos
16.
J Bacteriol ; 203(23): e0030621, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34543101

RESUMEN

Myxococcus xanthus is a bacterium that lives on surfaces as a predatory biofilm called a swarm. As a growing swarm feeds on prey and expands, it displays dynamic multicellular patterns such as traveling waves called ripples and branching protrusions called flares. The rate at which a swarm expands across a surface, and the emergence of the coexisting patterns, are all controlled through coordinated cell movement. M. xanthus cells move using two motility systems known as adventurous (A) and social (S). Both are involved in swarm expansion and pattern formation. In this study, we describe a set of M. xanthus swarming genotype-to-phenotype associations that include both genetic and environmental perturbations. We identified new features of the swarming phenotype, recorded and measured swarm expansion using time-lapse microscopy, and compared the impact of mutations on different surfaces. These observations and analyses have increased our ability to discriminate between swarming phenotypes and provided context that allows us to identify some phenotypes as improbable outliers within the M. xanthus swarming phenome. IMPORTANCE Myxococcus xanthus grows on surfaces as a predatory biofilm called a swarm. In nature, a feeding swarm expands by moving over and consuming prey bacteria. In the laboratory, a swarm is created by spotting cell suspension onto nutrient agar in lieu of prey. The suspended cells quickly settle on the surface as the liquid is absorbed into the agar, and the new swarm then expands radially. An assay that measures the expansion rate of a swarm of mutant cells is the first, and sometimes only, measurement used to decide whether a particular mutation impacts swarm motility. We have broadened the scope of this assay by increasing the accuracy of measurements and introducing prey, resulting in new identifiable and quantifiable features that can be used to improve genotype-to-phenotype associations.


Asunto(s)
Técnicas Bacteriológicas , Movimiento/fisiología , Myxococcus xanthus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Medios de Cultivo , Regulación Bacteriana de la Expresión Génica/fisiología , Mutación , Myxococcus xanthus/genética
17.
J Bacteriol ; 203(13): e0012621, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875546

RESUMEN

In bacteria, the nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pilus-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pilus-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth, while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system, likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA, and PixB act in independent pathways and have distinct functions in regulation of motility. IMPORTANCE c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain, while the intact protein and c-di-GMP binding are essential for PixB to support development. In contrast, PixA acts in a Frz-independent manner to regulate motility. Taking our results together with previous observations, we conclude that PilZ domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Dominios Proteicos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Fimbrias Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Unión Proteica
18.
J Exp Zool B Mol Dev Evol ; 336(3): 300-314, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32419346

RESUMEN

Development and evolution are dynamical processes under the continuous control of organismic and environmental factors. Generic physical processes, associated with biological materials and certain genes or molecules, provide a morphological template for the evolution and development of organism forms. Generic dynamical behaviors, associated with recurring network motifs, provide a temporal template for the regulation and coordination of biological processes. The role of generic physical processes and their associated molecules in development is the topic of the dynamical patterning module (DPM) framework. The role of generic dynamical behaviors in biological regulation is studied via the identification of the associated network motifs (NMs). We propose a joint DPM-NM perspective on the emergence and regulation of multicellularity focusing on a multicellular aggregative bacterium, Myxococcus xanthus. Understanding M. xanthus development as a dynamical process embedded in a physical substrate provides novel insights into the interaction between developmental regulatory networks and generic physical processes in the evolutionary transition to multicellularity.


Asunto(s)
Evolución Biológica , Myxococcus xanthus/crecimiento & desarrollo , Tipificación del Cuerpo , Morfogénesis
19.
Appl Environ Microbiol ; 87(18): e0091921, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34190612

RESUMEN

Bacteria have two pathways to restart stalled replication forks caused by environmental stresses, error-prone translesion DNA synthesis (TLS) catalyzed by TLS polymerase and error-free template switching catalyzed by RecA, and their competition on the arrested fork affects bacterial SOS mutagenesis. DnaE2 is an error-prone TLS polymerase, and its functions require ImuA and ImuB. Here, we investigated the transcription of imuA, imuB, and dnaE2 in UV-C-irradiated Myxococcus xanthus and found that the induction of imuA occurred significantly earlier than that of the other two genes. Mutant analysis showed that unlike that of imuB or dnaE2, the deletion of imuA significantly delayed bacterial regrowth and slightly reduced the bacterial mutation frequency and UV resistance. Transcriptomic analysis revealed that the absence of ImuA released the expression of some known SOS genes, including recA1, recA2, imuB, and dnaE2. Yeast two-hybrid and pulldown analyses proved that ImuA interacts physically with RecA1 besides ImuB. Protein activity analysis indicated that ImuA had no DNA-binding activity but inhibited the DNA-binding and recombinase activity of RecA1. These findings indicate the new role of ImuA in SOS mutagenesis; that is, ImuA inhibits the recombinase activity of RecA1, thereby facilitating SOS mutagenesis in M. xanthus. IMPORTANCE DnaE2 is responsible for bacterial SOS mutagenesis in nearly one-third of sequenced bacterial strains. However, its mechanism, especially the function of one of its accessory proteins, ImuA, is still unclear. Here, we report that M. xanthus ImuA could affect SOS mutagenesis by inhibiting the recombinase activity of RecA1, which helps to explain the mechanism of DnaE2-dependent TLS and the selection of the two restart pathways to repair the stalled replication fork.


Asunto(s)
Proteínas Bacterianas/genética , Myxococcus xanthus/genética , Rec A Recombinasas/genética , Respuesta SOS en Genética , ADN/metabolismo , Mutagénesis , Myxococcus xanthus/crecimiento & desarrollo , Técnicas del Sistema de Dos Híbridos
20.
Appl Environ Microbiol ; 87(9)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33608292

RESUMEN

Bacterial proline-alanine-alanine-arginine (PAAR) proteins are located at the top of the type VI secretion system (T6SS) nanomachine and carry and deliver effectors into neighboring cells. Many PAAR proteins are fused with a variable C-terminal extended domain (CTD). Here, we report that two paar-ctd genes (MXAN_RS08765 and MXAN_RS36995) located in two homologous operons are involved in different ecological functions of Myxococcus xanthusMXAN_RS08765 inhibited the growth of plant-pathogenic fungi, while MXAN_RS36995 was associated with the colony-merger incompatibility of M. xanthus cells. These two PAAR-CTD proteins were both toxic to Escherichia coli cells, while MXAN_RS08765, but not MXAN_RS36995, was also toxic to Saccharomyces cerevisiae cells. Their downstream adjacent genes, i.e., MXAN_RS08760 and MXAN_RS24590, protected against the toxicities. The MXAN_RS36995 protein was demonstrated to have nuclease activity, and the activity was inhibited by the presence of MXAN_RS24590. Our results highlight that the PAAR proteins diversify the CTDs to play divergent roles in M. xanthusIMPORTANCE The type VI secretion system (T6SS) is a bacterial cell contact-dependent weapon capable of delivering protein effectors into neighboring cells. The PAAR protein is located at the top of the nanomachine and carries an effector for delivery. Many PAAR proteins are extended with a diverse C-terminal sequence with an unknown structure and function. Here, we report two paar-ctd genes located in two homologous operons involved in different ecological functions of Myxococcus xanthus; one has antifungal activity, and the other is associated with the kin discrimination phenotype. The PAAR-CTD proteins and the proteins encoded by their downstream genes form two toxin-immunity protein pairs. We demonstrated that the C-terminal diversification of the PAAR-CTD proteins enriches the ecological functions of bacterial cells.


Asunto(s)
Proteínas Bacterianas/genética , Myxococcus xanthus/genética , Proteínas Bacterianas/fisiología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Sitios Genéticos , Operón , Fenotipo , Dominios Proteicos , Sistemas de Secreción Tipo VI
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA