Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(5): e2305964, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759425

RESUMEN

Hosts hold great prospects for addressing the dendrite growth and volume expansion of the Li metal anode, but Li dendrites are still observable under the conditions of high deposition capacity and/or high current density. Herein, a nitrogen-doped graphene mesh (NGM) is developed, which possesses a conductive and lithiophilic scaffold for efficient Li deposition. The abundant nanopores in NGM can not only provide sufficient room for Li deposition, but also speed up Li ion transport to achieve a high-rate capability. Moreover, the evenly distributed N dopants on the NGM can guide the uniform nucleation of Li so that to inhibit dendrite growth. As a result, the composite NGM@Li anode shows satisfactory electrochemical performances for Li-S batteries, including a high capacity of 600 mAh g-1 after 300 cycles at 1 C and a rate capacity of 438 mAh g-1 at 3 C. This work provides a new avenue for the fabrication of graphene-based hosts with large areal capacity and high-rate capability for Li metal batteries.

2.
Small ; 20(23): e2306425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38150634

RESUMEN

N doping is an essential strategy to prolong electron diffusion length and improve the photovoltaic performance of p-i-n structured perovskite solar devices, but current n-dopants generally suffer from air instability, poor compatibility with perovskites, and the compensation from perovskite intrinsic defects, thus limiting their doping effectiveness. To address these issues, in this work, a new perovskite n-doping strategy is developed by incorporating an air-stable n-dopant (1-ethyl-3-methylimidazolium-2-carboxylate, EMIC) that has no detrimental effects on perovskite crystallinity and morphology. EMIC is soluble in most polar solvents and can be readily introduced into perovskite precursor solutions. Upon thermal annealing of perovskite films, the decarboxylation of EMIC releases imidazolylidene, a reactive species that highly tends to donate electrons and thus efficiently prolongs the electron diffusion length from 0.57 µm to over 1.21 µm. As a result, the blade-coated perovskite solar cells and modules realize high power conversion efficiencies of 24.3% and 20.6% at 7.4 mm2 and 25.0 cm2 aperture areas, respectively.

3.
Adv Mater ; 35(22): e2300084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36929089

RESUMEN

Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.

4.
Chem Asian J ; 18(1): e202200994, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36269572

RESUMEN

Dopants and defects are crucial for multifunctional carbon-based metal-free electrocatalysts, but the rational design and facile production remain as a big challenge. Herein, we report a novel strategy using salt-assisted pyrolysis of derivatized fullerenes to fabricate defect-rich and N-doped carbon nanosheets. Molecular level modification of C60 via amination and hydroxylation gives rise to well-defined fullerol molecules bearing N-containing groups (FNG). Subsequent calcination of FNG and NaCl at 750 °C generates porous carbon nanosheets (FNCNs-750) and turns the N-containing groups into high-level N dopants (12.43 at.%). Further pyrolysis of FNCNs-750 at 900 °C (FNCNs-900) leads to a reduced N content populated by graphitic-N. Meanwhile, abundant intrinsic defects (e. g., topological defects and edges) are created due to the breakdown of fullerene cages and partial removal of edged N atoms. These structural features endow FNCNs-900 with outstanding trifunctional catalytic performance, better than or close to the noble metal-based benchmark catalysts.

5.
ACS Appl Mater Interfaces ; 14(1): 2381-2389, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34978787

RESUMEN

Doping has proven to be a critical tool for enhancing the performance of organic semiconductors in devices like organic light-emitting diodes. However, the challenge in working with high-ionization-energy (IE) organic semiconductors is to find p-dopants with correspondingly high electron affinity (EA) that will improve the conductivity and charge carrier transport in a film. Here, we use an oxidant that has been recently recognized to be a very strong p-type dopant, hexacyano-1,2,3-trimethylene-cyclopropane (CN6-CP). The EA of CN6-CP has been previously estimated via cyclic voltammetry to be 5.87 eV, almost 300 meV higher than other known high-EA organic molecular oxidants. We measure the frontier orbitals of CN6-CP using ultraviolet and inverse photoemission spectroscopy techniques and confirm a high EA value of 5.88 eV in the condensed phase. The introduction of CN6-CP in a film of large-band-gap, large-IE phenyldi(pyren-1-yl)phosphine oxide (POPy2) leads to a significant shift of the Fermi level toward the highest occupied molecular orbital and a 2 orders of magnitude increase in conductivity. Using CN6-CP and n-dopant (pentamethylcyclopentadienyl)(1,3,5-trimethylbenzene)ruthenium (RuCp*Mes)2, we fabricate a POPy2-based rectifying p-i-n homojunction diode with a 2.9 V built-in potential. Blue light emission is achieved under forward bias. This effect demonstrates the dopant-enabled hole injection from the CN6-CP-doped layer and electron injection from the (RuCp*Mes)2-doped layer in the diode.

6.
ACS Biomater Sci Eng ; 8(3): 1166-1180, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35195404

RESUMEN

Ti6Al4V artificial implants are increasingly demanded for addressing human dysfunction caused by an aging population and major diseases. However, they are restricted due to the release of vanadium and aluminum ions in the process of corrosion and wear. This work is aimed to provide a protective film for Ti6Al4V artificial implants, and then, a Si-incorporated diamond-like carbon (Si-DLC) film and Si- and N-incorporated DLC (SiN-DLC) film were deposited on the surface of Ti6Al4V by plasma-enhanced chemical vapor deposition. Results suggest that the thickness of the as-deposited DLC film is approximately 2 µm, and the SiN-DLC film shows the lowest surface roughness (53.0 ± 3.6 nm) compared with the Ti6Al4V and DLC films. The above DLC film possesses high mechanical properties compared with Ti6Al4V, and the SiN-DLC film shows the best resistance to plastic deformation. In addition, the DLC film exhibits high adhesive strength (>13 N) with Ti6Al4V, which is a prerequisite for service in liquid environments. Whether in SBF solution or SBF + BSA solution, the friction coefficient and wear rate of the above DLC film are much lower than those of Ti6Al4V, and the SiN-DLC film displays the optimal tribological properties (0.072 and 1.82 × 10-7 mm3·N-1·m-1, respectively). Moreover, Si-DLC and SiN-DLC films possess similar corrosion resistance but are far better than Ti6Al4V. Cytotoxicity test results show that the SiN-DLC film can significantly improve cell viability and promote cell proliferation to a certain extent. Consequently, the SiN-DLC film is a protective film with more potential for artificial implants.


Asunto(s)
Carbono , Prótesis e Implantes , Anciano , Aleaciones , Carbono/química , Corrosión , Humanos , Ensayo de Materiales , Propiedades de Superficie , Titanio
7.
ACS Appl Mater Interfaces ; 13(2): 2447-2454, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33399444

RESUMEN

The spin state of antibonding orbital (eg) occupancy in LaCoO3 is recognized as a descriptor for its oxygen electrocatalysis. However, the Co(III) cation in typical LaCoO3 (LCO) favors low spin state, which is mediocre for absorbing oxygen-containing groups involved in oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), thus hindering its further development in electrocatalysis. Herein, both experimental and theoretical results reveal the enhancement of bifunctional electrocatalytic activity in LaCoO3 by N doping. More specifically, electron energy loss spectroscopy and superconducting quantum interference devices magnetic analysis demonstrate that the Co(III) cation in N-doped LaCoO3 (LCON) achieves a moderate eg occupancy (≈1) compared with its low spin state in LaCO3. First-principle calculation results reveal that N dopants play a bifunctional role of tuning the spin-state transition of Co(III) cations and increasing the electrical conductivity of LCO. Thus, the optimized LCON exhibits an OER overpotential of 1.69 V at the current density of 50 mA/cm2 (1.94 V for pristine LCO) and yields an ORR limiting current density of 5.78 mA/cm2 (4.01 mA/cm2 for pristine LCO), which offers a new strategy to simultaneously modulate the magnetic and electronic structures of LCO to further enhance its electrocatalytic activity.

8.
ACS Appl Mater Interfaces ; 10(1): 1340-1346, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29236472

RESUMEN

Efficient n-doping of organic semiconductors requires electron-donating molecules with small ionization energies, making such n-dopants usually sensitive to degradation under air exposure. A workaround consists in the usage of air-stable precursor molecules containing the actual n-doping species. Here, we systematically analyze the doping mechanism of the small-molecule precursor o-MeO-DMBI-Cl, which releases a highly reducing o-MeO-DMBI radical upon thermal evaporation. n-Doping of N,N-bis(fluoren-2-yl)-naphthalene tetracarboxylic diimide yields air-stable and highly conductive films suitable for application as electron transport layer in organic solar cells. By photoelectron spectroscopy, we determine a reduced doping efficiency at high doping concentrations. We attribute this reduction to a change of the precursor decomposition mechanism with rising crucible temperature, yielding an undesired demethylation at high evaporation rates. Our results do not only show the possibility of efficient and air-stable n-doping, but also support the design of novel air-stable precursor molecules of strong n-dopants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA