Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Planta ; 259(3): 70, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345645

RESUMEN

MAIN CONCLUSION: The Aegilops tauschii resistant accession prevented the pathogen colonization by controlling the sugar flow and triggering the hypersensitive reaction. This study suggested that NBS-LRRs probably induce resistance through bHLH by controlling JA- and SA-dependent pathways. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst) is one of wheat's most destructive fungal diseases that causes a severe yield reduction worldwide. The most effective and economically-friendly strategy to manage this disease is genetic resistance which can be achieved through deploying new and effective resistance genes. Aegilops tauschii, due to its small genome and co-evolution with Pst, can provide detailed information about underlying resistance mechanisms. Hence, we used RNA-sequencing approach to identify the transcriptome variations of two contrasting resistant and susceptible Ae. tauschii accessions in interaction with Pst and differentially expressed genes (DEGs) for resistance to stripe rust. Gene ontology, pathway analysis, and search for functional domains, transcription regulators, resistance genes, and protein-protein interactions were used to interpret the results. The genes encoding NBS-LRR, CC-NBS-kinase, and phenylalanine ammonia-lyase, basic helix-loop-helix (bHLH)-, basic-leucine zipper (bZIP)-, APETALA2 (AP2)-, auxin response factor (ARF)-, GATA-, and LSD-like transcription factors were up-regulated exclusively in the resistant accession. The key genes involved in response to salicylic acid, amino sugar and nucleotide sugar metabolism, and hypersensitive response contributed to plant defense against stripe rust. The activation of jasmonic acid biosynthesis and starch and sucrose metabolism pathways under Pst infection in the susceptible accession explained the colonization of the host. Overall, this study can fill the gaps in the literature on host-pathogen interaction and enrich the Ae. tauschii transcriptome sequence information. It also suggests candidate genes that could guide future breeding programs attempting to develop rust-resistant cultivars.


Asunto(s)
Aegilops , Basidiomycota , Aegilops/genética , Triticum/genética , Fitomejoramiento , Basidiomycota/fisiología , Transcriptoma , Perfilación de la Expresión Génica , Azúcares , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética
2.
Mol Genet Genomics ; 293(1): 17-31, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28900732

RESUMEN

STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.


Asunto(s)
Proteínas AAA/genética , Resistencia a la Enfermedad/genética , Evolución Molecular , Genoma de Planta/genética , Adenosina Trifosfatasas/genética , Genómica , Oryza/enzimología , Oryza/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Homología de Secuencia de Aminoácido
3.
Physiol Mol Biol Plants ; 19(1): 1-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24381433

RESUMEN

Plants are under strong evolutionary pressure in developing new and noble R genes to recognize pathogen avirulence (avr) determinants and bring about stable defense for generation after generations. Duplication, sequence variation by mutation, disparity in the length and structure of leucine rich repeats etc., causes tremendous variations within and among R genes in a plant thereby developing diverse recognitional specificity suitable enough for defense against new pathogens. Recent studies on genome sequencing, diversity and population genetics in different plants have thrown new insights on the molecular evolution of these genes. Tandem and segmental duplication are important factors in R gene abundance as inferred from the distribution of major nucleotide binding site-leucine rich repeats (NBS-LRRs) type R-genes in plant genomes. Likewise, R-gene evolution is also thought to be facilitated by cluster formation thereby causing recombination and sequence exchange and resulting in haplotypic diversity. Population studies have further proven that balancing selection is responsible for the maintenance of allelic diversity in R genes. In this review, we emphasize and discuss on improved perspectives towards the molecular mechanisms and selection pressure responsible for the evolution of NBS-LRR class resistance genes in plants.

4.
Front Plant Sci ; 14: 1216795, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965025

RESUMEN

Introduction: As key-players of plant immunity, the proteins encoded by resistance genes (R-genes) recognize pathogens and initiate pathogen-specific defense responses. The expression of some R-genes carry fitness costs and therefore inducible immune responses are likely advantageous. To what degree inducible resistance driven by R-genes is triggered by pathogen infection is currently an open question. Methods: In this study we analyzed the expression of 940 R-genes of tomato and potato across 315 transcriptome libraries to investigate how interspecific interactions with microbes influence R-gene expression in plants. Results: We found that most R-genes are expressed at a low level. A small subset of R-genes had moderate to high levels of expression and were expressed across many independent libraries, irrespective of infection status. These R-genes include members of the class of genes called NRCs (NLR required for cell death). Approximately 10% of all R-genes were differentially expressed during infection and this included both up- and down-regulation. One factor associated with the large differences in R-gene expression was host tissue, reflecting a considerable degree of tissue-specific transcriptional regulation of this class of genes. Discussion: These results call into question the widespread view that R-gene expression is induced upon pathogen attack. Instead, a small core set of R-genes is constitutively expressed, imparting upon the plant a ready-to-detect and defend status.

5.
Front Plant Sci ; 9: 411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692788

RESUMEN

The tomato resistance gene Tm-22 encodes a coiled coil-nucleotide binding site-leucine rich repeat type resistance protein and confers effective immune response against tobamoviruses by detecting the presence of viral movement proteins (MPs). In this study, we show that the Nicotiana benthamiana Heat shock protein 90-kD (Hsp90) interacts with Tm-22. Silencing of Hsp90 reduced Tm-22-mediated resistance to Tobacco mosaic virus (TMV) and the steady-state levels of Tm-22 protein. Further, Hsp90 associates with SGT1 in yeast and in plant cells. These results suggest that Hsp90-SGT1 complex takes part in Tm-22-mediated TMV resistance by functioning as chaperone to regulate Tm-22 stability.

6.
Gene ; 536(2): 254-64, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24368332

RESUMEN

The present study aims to investigate small RNA interactions with putative disease response genes in the model grass species Brachypodium distachyon. The fungal pathogen Fusarium culmorum (Fusarium herein) and phytohormone salicylic acid treatment were used to induce the disease response in Brachypodium. Initially, 121 different putative disease response genes were identified using bioinformatic and homology based approaches. Computational prediction was used to identify 33 candidate new miRNA coding sequences, of which 9 were verified by analysis of small RNA sequence libraries. Putative Brachypodium miRNA target sites were identified in the disease response genes, and a subset of which were screened for expression and possible miRNA interactions in 5 different Brachypodium lines infected with Fusarium. An NBS-LRR family gene, 1g34430, was polymorphic among the lines, forming two major genotypes, one of which has its miRNA target sites deleted, resulting in altered gene expression during infection. There were siRNAs putatively involved in regulation of this gene, indicating a role of small RNAs in the B. distachyon disease response.


Asunto(s)
Brachypodium/genética , Fusariosis/genética , Genes prv/genética , MicroARNs/genética , ARN Interferente Pequeño/genética , Secuencia de Bases , Brachypodium/microbiología , Biología Computacional/métodos , Fusariosis/microbiología , Fusarium , Datos de Secuencia Molecular , Polimorfismo Genético/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA