RESUMEN
Protein aggregation causes a wide range of neurodegenerative diseases. Targeting and removing aggregates, but not the functional protein, is a considerable therapeutic challenge. Here, we describe a therapeutic strategy called "RING-Bait," which employs an aggregating protein sequence combined with an E3 ubiquitin ligase. RING-Bait is recruited into aggregates, whereupon clustering dimerizes the RING domain and activates its E3 function, resulting in the degradation of the aggregate complex. We exemplify this concept by demonstrating the specific degradation of tau aggregates while sparing soluble tau. Unlike immunotherapy, RING-Bait is effective against both seeded and cell-autonomous aggregation. RING-Bait removed tau aggregates seeded from Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) brain extracts and was also effective in primary neurons. We used a brain-penetrant adeno-associated virus (AAV) to treat P301S tau transgenic mice, reducing tau pathology and improving motor function. A RING-Bait strategy could be applied to other neurodegenerative proteinopathies by replacing the Bait sequence to match the target aggregate.
Asunto(s)
Enfermedad de Alzheimer , Ratones Transgénicos , Neuronas , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Neuronas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Parálisis Supranuclear Progresiva/metabolismo , Agregación Patológica de Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Dependovirus/metabolismo , Dependovirus/genética , Femenino , Células HEK293 , Masculino , Agregado de Proteínas , Actividad MotoraRESUMEN
Heterotrimeric G-proteins (Gαßγ) are the main transducers of signals from GPCRs, mediating the action of countless natural stimuli and therapeutic agents. However, there are currently no robust approaches to directly measure the activity of endogenous G-proteins in cells. Here, we describe a suite of optical biosensors that detect endogenous active G-proteins with sub-second resolution in live cells. Using a modular design principle, we developed genetically encoded, unimolecular biosensors for endogenous Gα-GTP and free Gßγ: the two active species of heterotrimeric G-proteins. This design was leveraged to generate biosensors with specificity for different heterotrimeric G-proteins or for other G-proteins, such as Rho GTPases. Versatility was further validated by implementing the biosensors in multiple contexts, from characterizing cancer-associated G-protein mutants to neurotransmitter signaling in primary neurons. Overall, the versatile biosensor design introduced here enables studying the activity of endogenous G-proteins in live cells with high fidelity, temporal resolution, and convenience.
Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia/instrumentación , Transferencia de Energía por Resonancia de Bioluminiscencia/métodos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Guanosina Trifosfato/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Guanosina Trifosfato/química , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neuronas/química , Neuronas/metabolismo , Neuronas/fisiología , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
Hippocampal theta oscillations were proposed to be important for multiple functions, including memory and temporal coding of position. However, previous findings from bats have questioned these proposals by reporting absence of theta rhythmicity in bat hippocampal formation. Does this mean that temporal coding is unique to rodent hippocampus and does not generalize to other species? Here, we report that, surprisingly, bat hippocampal neurons do exhibit temporal coding similar to rodents, albeit without any continuous oscillations at the 1-20 Hz range. Bat neurons exhibited very strong locking to the non-rhythmic fluctuations of the field potential, such that neurons were synchronized together despite the absence of oscillations. Further, some neurons exhibited "phase precession" and phase coding of the bat's position-with spike phases shifting earlier as the animal moved through the place field. This demonstrates an unexpected type of neural coding in the mammalian brain-nonoscillatory phase coding-and highlights the importance of synchrony and temporal coding for hippocampal function across species.
Asunto(s)
Sincronización Cortical , Hipocampo/fisiología , Animales , Evolución Biológica , Quirópteros , Hipocampo/citología , Interneuronas/fisiología , Masculino , Ratas , Ritmo TetaRESUMEN
Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts.
Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Animales , Blastocisto/citología , Blastocisto/metabolismo , Femenino , Ácidos Hidroxámicos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Macaca fascicularis , EmbarazoRESUMEN
Ant physiology has been fashioned by 100 million years of social evolution. Ants perform many sophisticated social and collective behaviors yet possess nervous systems similar in schematic and scale to that of the fruit fly Drosophila melanogaster, a popular solitary model organism. Ants are thus attractive complementary subjects to investigate adaptations pertaining to complex social behaviors that are absent in flies. Despite research interest in ant behavior and the neurobiological foundations of sociality more broadly, our understanding of the ant nervous system is incomplete. Recent technical advances have enabled cutting-edge investigations of the nervous system in a fashion that is less dependent on model choice, opening the door for mechanistic social insect neuroscience. In this review, we revisit important aspects of what is known about the ant nervous system and behavior, and we look forward to how functional circuit neuroscience in ants will help us understand what distinguishes solitary animals from highly social ones.
Asunto(s)
Hormigas , Conducta Animal , Conducta Social , Animales , Hormigas/fisiología , Conducta Animal/fisiología , Neurociencias , Encéfalo/fisiologíaRESUMEN
Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field.
Asunto(s)
Drosophila , Morinda , Animales , Drosophila/genética , Drosophila melanogaster/genética , Modelos Genéticos , Morinda/genética , Especificidad de la EspecieRESUMEN
Alcohol use disorder (AUD) afflicts over 29 million individuals and causes more than 140,000 deaths annually in the United States. A heuristic framework for AUD includes a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that provides a starting point for exploring the heterogeneity of AUD with regard to treatment. Effective behavioral health treatments and US Food and Drug Administration-approved medications are available but greatly underutilized, creating a major treatment gap. This review outlines challenges that face the alcohol field in closing this treatment gap and offers solutions, including broadening end points for the approval of medications for the treatment of AUD; increasing the uptake of screening, brief intervention, and referral to treatment; addressing stigma; implementing a heuristic definition of recovery; engaging early treatment; and educating health-care professionals and the public about challenges that are associated with alcohol misuse. Additionally, this review focuses on broadening potential targets for the development of medications for AUD by utilizing the three-stage heuristic model of addiction that outlines domains of dysfunction in AUD and the mediating neurobiology of AUD.
Asunto(s)
Alcoholismo , Conducta Adictiva , Estados Unidos , Humanos , Etanol , Transporte Biológico , United States Food and Drug AdministrationRESUMEN
Substance use disorder is a major concern, with few therapeutic options. Heparan sulfate (HS) and chondroitin sulfate (CS) interact with a plethora of growth factors and their receptors and have profound effects on cellular signaling. Thus, targeting these dynamic interactions might represent a potential novel therapeutic modality. In the present study, we performed mass spectrometry-based glycomic and proteomic analysis to understand the effects of cocaine and methamphetamine (METH) on HS, CS, and the proteome of two brain regions critically involved in drug addiction: the lateral hypothalamus and the striatum. We observed that cocaine and METH significantly alter HS and CS abundances as well as sulfate contents and composition. In particular, repeated METH or cocaine treatments reduced CS 4-O-sulfation and increased CS 6-O-sulfation. Since C4S and C6S exercise differential effects on axon growth, regeneration, and plasticity, these changes likely contribute to drug-induced neural plasticity in these brain regions. Notably, we observed that restoring these alterations by increasing CS 4-0 levels in the lateral hypothalamus by adeno-associated virus delivery of an shRNA to arylsulfatase B (N-acetylgalactosamine-4-sulfatase) ameliorated anxiety and prevented the expression of preference for cocaine in a novelty induced conditioned place preference test during cocaine withdrawal. Finally, proteomics analyses revealed a number of aberrant proteins in METH- and cocaine-treated versus saline-treated mice, including myelin proteolipid protein, calcium/calmodulin-dependent protein kinase type II subunit alpha, synapsin-2, tenascin-R, calnexin, annexin A7, hepatoma-derived growth factor, neurocan, and CSPG5, and oxidative phosphorylation among the top perturbed pathway. Taken together, these data support the role of HS, CS, and associated proteins in stimulants abuse and suggest that manipulation of HSPGs can represent a novel therapeutic strategy.
Asunto(s)
Cocaína , Cuerpo Estriado , Glicómica , Metanfetamina , Ratones Endogámicos C57BL , Proteómica , Animales , Cocaína/farmacología , Metanfetamina/farmacología , Masculino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/efectos de los fármacos , Ratones , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Heparitina Sulfato/metabolismo , Proteoma/metabolismoRESUMEN
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Asunto(s)
Trastornos Migrañosos , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Trastornos Migrañosos/genética , Trastornos Migrañosos/metabolismo , Ratones , Masculino , Femenino , Ratones Noqueados , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/metabolismo , Ratones Endogámicos C57BL , Variación Genética/genéticaRESUMEN
The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.
Asunto(s)
Miocimia , Proteínas del Tejido Nervioso , Animales , Autoanticuerpos , Axones , Genómica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Mamíferos/genética , Ratones , Proteínas del Tejido Nervioso/genética , Fenotipo , Genética InversaRESUMEN
Placodes are embryonic structures originating from the rostral ectoderm that give rise to highly diverse organs and tissues, comprising the anterior pituitary gland, paired sense organs and cranial sensory ganglia. Their development, including the underlying gene regulatory networks and signalling pathways, have been for the most part characterised in animal models. In this Review, we describe how placode development can be recapitulated by the differentiation of human pluripotent stem cells towards placode progenitors and their derivatives, highlighting the value of this highly scalable platform as an optimal in vitro tool to study the development of human placodes, and identify human-specific mechanisms in their development, function and pathology.
Asunto(s)
Ectodermo , Células Madre Pluripotentes , Animales , Diferenciación Celular , Ectodermo/metabolismo , Ganglios Sensoriales , Regulación del Desarrollo de la Expresión Génica , Humanos , Órganos de los SentidosRESUMEN
Significant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11â weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures. This approach reveals that 3D cultures are superior to monolayer conditions for their ability to generate and maintain mature DA neurons; hence, they have the potential to be used for studying human VM development. These results provide a unique transcriptional profile of the developing human fetal VM and functionally mature human DA neurons that can be used to guide stem cell-based therapies and disease modeling approaches in Parkinson's disease.
Asunto(s)
Enfermedad de Parkinson , Células Madre Pluripotentes , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Neuronas Dopaminérgicas , Mesencéfalo , Diferenciación Celular/genéticaRESUMEN
A neuronal ensemble represents the concomitant activity of a specific group of neurons that could encompass a broad repertoire of brain functions such as motor, perceptual, memory or cognitive states. On the other hand, a memory engram portrays the physical manifestation of memory or the changes that enable learning and retrieval. Engram studies focused for many years on finding where memories are stored as in, which cells or brain regions represent a memory trace, and disregarded the investigation of how neuronal activity patterns give rise to such memories. Recent experiments suggest that the association and reactivation of specific neuronal groups could be the main mechanism underlying the brain's ability to remember past experiences and envision future actions. Thus, the growing consensus is that the interaction between neuronal ensembles could allow sequential activity patterns to become memories and recurrent memories to compose complex behaviors. The goal of this review is to propose how the neuronal ensemble framework could be translated and useful to understand memory processes.
Asunto(s)
Memoria , Neuronas , Encéfalo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Neuronas/fisiologíaRESUMEN
Wnt signaling plays a key role in the mature CNS by regulating trafficking of NMDA-type glutamate receptors and intrinsic properties of neurons. The Wnt receptor ROR2 has been identified as a necessary component of the neuronal Wnt5a/Ca2+ signaling pathway that regulates synaptic and neuronal function. Since ROR2 is considered a pseudokinase, its mechanism for downstream signaling upon ligand binding has been controversial. It has been suggested that its role is to function as a coreceptor of a G-protein-coupled Wnt receptor of the Frizzled family. We show that chemically induced homodimerization of ROR2 is sufficient to recapitulate key signaling events downstream of receptor activation in neurons, including PKC and JNK kinases activation, elevation of somatic and dendritic Ca2+ levels, and increased trafficking of NMDARs to synapses. In addition, we show that homodimerization of ROR2 induces phosphorylation of the receptor on Tyr residues. Point mutations in the conserved but presumed nonfunctional ATP-binding site of the receptor prevent its phosphorylation, as well as downstream signaling. This suggests an active kinase domain. Our results indicate that ROR2 can signal independently of Frizzled receptors to regulate the trafficking of a key synaptic component. Additionally, they suggest that homodimerization can overcome structural conformations that render the tyrosine kinase inactive. A better understanding of ROR2 signaling is crucial for comprehending the regulation of synaptic and neuronal function in normal brain processes in mature animals.
Asunto(s)
Receptores Huérfanos Similares al Receptor Tirosina Quinasa , Vía de Señalización Wnt , Animales , Calcio/metabolismo , Señalización del Calcio , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Neuronas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , DimerizaciónRESUMEN
BACKGROUND: Autism spectrum disorder (ASD) has been associated with disrupted brain connectivity, yet a comprehensive understanding of the dynamic neural underpinnings remains lacking. This study employed concurrent electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) techniques to investigate dynamic functional connectivity (dFC) patterns and neurovascular characteristics in children with ASD. We also explored associations between neurovascular characteristics and the developmental trajectory of adaptive behavior in individuals with ASD. METHODS: Resting-state EEG and fNIRS data were simultaneously recorded from 58 ASD and 63 TD children. We implemented a k-means clustering approach to extract the dFC states for each modality. In addition, a multimodal covariance network (MCN) was constructed from the EEG and fNIRS dFC features to capture the neurovascular characteristics linked to ASD. RESULTS: EEG analyses revealed atypical properties of dFC states in the beta and gamma bands in children with ASD compared to TD children. For fNIRS, the ASD group exhibited atypical properties of dFC states such as duration and transitions relative to the TD group. The MCN analysis revealed significantly suppressed functional covariance between right superior temporal and left Broca's areas, alongside enhanced right dorsolateral prefrontal-left Broca covariance in ASD. Notably, we found that early neurovascular characteristics can predict the developmental progress of adaptive functioning in ASD. CONCLUSION: The multimodal investigation revealed distinct dFC patterns and neurovascular characteristics associated with ASD, elucidating potential neural mechanisms underlying core symptoms and their developmental trajectories. Our study highlights that integrating complementary neuroimaging modalities may aid in unraveling the complex neurobiology of ASD.
RESUMEN
Neuroscience attracted increasing attention in mass media during the last decades. Indeed, neuroscience advances raise high expectations in society concerning major societal issues such as mental health and learning difficulties. Unfortunately, according to leading experts, neuroscience advances have not yet benefited patients, students and socially deprived families. Yet, neuroscience findings are widely overstated and misrepresented in the media. Academic studies, briefly described here, showed that most data misrepresentations were already present in the neuroscience literature before spreading in mass media. This triumphalist neuroscience discourse reinforces a neuro-essentialist conception of mental disorders and of learning difficulties. By emphasizing brain plasticity, this discourse fuels the neoliberal ethics that overvalue autonomy, rationality, flexibility and individual responsibility. According to this unrealistic rhetoric, neuroscience-based techniques will soon bring inexpensive private solutions to enduring social problems. When considering the social consequences of this rhetoric, neuroscientists should refrain from overstating the interpretation of their observations in their scientific publications and in their exchanges with journalists.
Asunto(s)
Discapacidades para el Aprendizaje , Trastornos Mentales , Neurociencias , Humanos , Neurociencias/métodos , Trastornos Mentales/fisiopatología , Discapacidades para el Aprendizaje/fisiopatología , Salud Mental , Medios de Comunicación de MasasRESUMEN
Clinically, women appear to be more susceptible to certain aspects of substance use disorders (SUDs). The steroid hormones 17ß-estradiol (E2) and progesterone (Pg) have been linked to women-specific drug behaviors. Here, we review clinical and preclinical studies investigating how cycling ovarian hormones affect nicotine-, cocaine-, and opioid-related behaviors. We also highlight gaps in the literature regarding how synthetic steroid hormone use may influence drug-related behaviors. In addition, we explore how E2 and Pg are known to interact in brain reward pathways and provide evidence of how these interactions may influence drug-related behaviors. The synthesis of this review demonstrates the critical need to study women-specific factors that may influence aspects of SUDs, which may play important roles in addiction processes in a sex-specific fashion. It is important to understand factors that impact women's health and may be key to moving the field forward toward more efficacious and individualized treatment strategies.
Asunto(s)
Progesterona , Trastornos Relacionados con Sustancias , Masculino , Femenino , Humanos , Progesterona/metabolismo , Estradiol , Salud de la MujerRESUMEN
Psychoactive substances obtained from botanicals have been applied for a wide variety of purposes in the rituals of different cultures for thousands of years. Classical psychedelics from N,N'-dimethyltryptamine, psilocybin, mescaline and various lysergamides cause specific alterations in perception, emotion and cognition by acting through serotonin 5-HT2A receptor activation. Lysergic acid diethylamide, the first famous breakthrough in the field, was discovered by chance by Albert Hoffman in the Zurich Sandoz laboratory in 1943, and studies on its psychoactive effects began to take place in the literature. Studies in this area were blocked after the legislation controlling the use and research of psychedelic drugs came into force in 1967, but since the 1990s, it has started to be a matter of scientific curiosity again by various research groups. In particular, with the crucial reports of psychotherapy-assisted psilocybin applications for life-threatening cancer-related anxiety and depression, a new avenues have been opened in the treatment of psychiatric diseases such as treatment-resistant depression and substance addictions. An increasing number of studies show that psychedelics have a very promising potential in the treatment of neuropsychiatric diseases where the desired efficiency cannot be achieved with conventional treatment methods. In this context, we discuss psychedelic therapy, encompassing its historical development, therapeutic applications and potential treatment effects-especially in depression, trauma disorders and substance use disorders-within the framework of ethical considerations.
Asunto(s)
Alucinógenos , Trastornos Relacionados con Sustancias , Alucinógenos/uso terapéutico , Alucinógenos/farmacología , Humanos , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Depresión/tratamiento farmacológico , Animales , Dietilamida del Ácido Lisérgico/uso terapéutico , Dietilamida del Ácido Lisérgico/farmacología , Psilocibina/uso terapéutico , Psilocibina/farmacología , Trastorno Depresivo/tratamiento farmacológicoRESUMEN
Tinnitus is a widespread public health issue that imposes a significant social burden. The occurrence and maintenance of tinnitus have been shown to be associated with abnormal neuronal activity in the auditory pathway. Based on this view, neurobiological and pharmacological developments in tinnitus focus on ion channels and synaptic neurotransmitter receptors in neurons in the auditory pathway. With major breakthroughs in the pathophysiology and research methodology of tinnitus in recent years, the role of the largest family of ion channels, potassium ion channels, in modulating the excitability of neurons involved in tinnitus has been increasingly demonstrated. More and more potassium channels involved in the neural mechanism of tinnitus have been discovered, and corresponding drugs have been developed. In this article, we review animal (mouse, rat, hamster, and guinea-pig), human, and genetic studies on the different potassium channels involved in tinnitus, analyze the limitations of current clinical research on potassium channels, and propose future prospects. The aim of this review is to promote the understanding of the role of potassium ion channels in tinnitus and to advance the development of drugs targeting potassium ion channels for tinnitus.
Asunto(s)
Canales de Potasio , Acúfeno , Cricetinae , Humanos , Animales , Cobayas , Ratones , Ratas , Acúfeno/tratamiento farmacológico , Neurobiología , Vías Auditivas , NeuronasRESUMEN
Advances of in vitro culture models have allowed unprecedented insights into human neurobiology. At the same time genetic screening has matured into a robust and accessible experimental strategy allowing for the simultaneous study of many genes in parallel. The combination of both technologies is a newly emerging tool for neuroscientists, opening the door to identifying causal cell- and tissue-specific developmental and disease mechanisms. However, with complex experimental genetic screening set-ups new challenges in data interpretation and experimental scope arise that require a deep understanding of the benefits and challenges of individual approaches. In this review, we summarize the literature that applies genetic screening to in vitro brain models, compare experimental strengths and weaknesses and point towards future directions of these promising approaches.