Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.869
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729112

RESUMEN

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Asunto(s)
Drosophila melanogaster , Microscopía Electrónica , Neurotransmisores , Sinapsis , Animales , Encéfalo/ultraestructura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestructura , Drosophila melanogaster/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Microscopía Electrónica/métodos , Redes Neurales de la Computación , Neuronas/metabolismo , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Sinapsis/ultraestructura , Sinapsis/metabolismo
2.
Annu Rev Neurosci ; 47(1): 277-301, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38669478

RESUMEN

It has long been argued that only humans could produce and understand language. But now, for the first time, artificial language models (LMs) achieve this feat. Here we survey the new purchase LMs are providing on the question of how language is implemented in the brain. We discuss why, a priori, LMs might be expected to share similarities with the human language system. We then summarize evidence that LMs represent linguistic information similarly enough to humans to enable relatively accurate brain encoding and decoding during language processing. Finally, we examine which LM properties-their architecture, task performance, or training-are critical for capturing human neural responses to language and review studies using LMs as in silico model organisms for testing hypotheses about language. These ongoing investigations bring us closer to understanding the representations and processes that underlie our ability to comprehend sentences and express thoughts in language.


Asunto(s)
Encéfalo , Lenguaje , Humanos , Encéfalo/fisiología , Animales , Inteligencia Artificial , Modelos Neurológicos
3.
Proc Natl Acad Sci U S A ; 121(28): e2400213121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954546

RESUMEN

The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury. Using this model, we demonstrate that ChP ablation causes rapid and permanent CSF volume loss in both aged and young adult brains, accompanied by disruption of ependymal cilia bundles. Surprisingly, ChP ablation did not result in overt neurological deficits at 1 mo postablation. However, we observed a pronounced decrease in the pool of SVZ neuroblasts (NBs) following ChP ablation, which occurs due to their enhanced migration into the olfactory bulb. In the middle cerebral artery occlusion model of ischemic stroke, NB migration into the lesion site was also reduced in the CSF-depleted mice. Thus, our study establishes an important role of ChP/CSF in regulating the regenerative capacity of the adult brain under normal conditions and after ischemic stroke.


Asunto(s)
Plexo Coroideo , Ventrículos Laterales , Neurogénesis , Animales , Plexo Coroideo/metabolismo , Neurogénesis/fisiología , Ratones , Ventrículos Laterales/metabolismo , Ventrículos Laterales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Masculino , Movimiento Celular , Ventrículos Cerebrales/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(14): e2319313121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38551834

RESUMEN

Optimal feedback control provides an abstract framework describing the architecture of the sensorimotor system without prescribing implementation details such as what coordinate system to use, how feedback is incorporated, or how to accommodate changing task complexity. We investigate how such details are determined by computational and physical constraints by creating a model of the upper limb sensorimotor system in which all connection weights between neurons, feedback, and muscles are unknown. By optimizing these parameters with respect to an objective function, we find that the model exhibits a preference for an intrinsic (joint angle) coordinate representation of inputs and feedback and learns to calculate a weighted feedforward and feedback error. We further show that complex reaches around obstacles can be achieved by augmenting our model with a path-planner based on via points. The path-planner revealed "avoidance" neurons that encode directions to reach around obstacles and "placement" neurons that make fine-tuned adjustments to via point placement. Our results demonstrate the surprising capability of computationally constrained systems and highlight interesting characteristics of the sensorimotor system.


Asunto(s)
Aprendizaje , Músculos , Retroalimentación , Neuronas , Retroalimentación Sensorial/fisiología
5.
Proc Natl Acad Sci U S A ; 121(25): e2310433121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857402

RESUMEN

Pleasure and pain are two fundamental, intertwined aspects of human emotions. Pleasurable sensations can reduce subjective feelings of pain and vice versa, and we often perceive the termination of pain as pleasant and the absence of pleasure as unpleasant. This implies the existence of brain systems that integrate them into modality-general representations of affective experiences. Here, we examined representations of affective valence and intensity in an functional MRI (fMRI) study (n = 58) of sustained pleasure and pain. We found that the distinct subpopulations of voxels within the ventromedial and lateral prefrontal cortices, the orbitofrontal cortex, the anterior insula, and the amygdala were involved in decoding affective valence versus intensity. Affective valence and intensity predictive models showed significant decoding performance in an independent test dataset (n = 62). These models were differentially connected to distinct large-scale brain networks-the intensity model to the ventral attention network and the valence model to the limbic and default mode networks. Overall, this study identified the brain representations of affective valence and intensity across pleasure and pain, promoting a systems-level understanding of human affective experiences.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Dolor , Placer , Humanos , Placer/fisiología , Masculino , Femenino , Dolor/fisiopatología , Dolor/psicología , Adulto , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Adulto Joven , Amígdala del Cerebelo/fisiología , Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Corteza Prefrontal/fisiología , Corteza Prefrontal/diagnóstico por imagen , Afecto/fisiología
6.
Proc Natl Acad Sci U S A ; 121(4): e2317773121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38227668

RESUMEN

The retina and primary visual cortex (V1) both exhibit diverse neural populations sensitive to diverse visual features. Yet it remains unclear how neural populations in each area partition stimulus space to span these features. One possibility is that neural populations are organized into discrete groups of neurons, with each group signaling a particular constellation of features. Alternatively, neurons could be continuously distributed across feature-encoding space. To distinguish these possibilities, we presented a battery of visual stimuli to the mouse retina and V1 while measuring neural responses with multi-electrode arrays. Using machine learning approaches, we developed a manifold embedding technique that captures how neural populations partition feature space and how visual responses correlate with physiological and anatomical properties of individual neurons. We show that retinal populations discretely encode features, while V1 populations provide a more continuous representation. Applying the same analysis approach to convolutional neural networks that model visual processing, we demonstrate that they partition features much more similarly to the retina, indicating they are more like big retinas than little brains.


Asunto(s)
Corteza Visual , Animales , Ratones , Corteza Visual/fisiología , Percepción Visual/fisiología , Redes Neurales de la Computación , Neuronas/fisiología , Retina/fisiología , Estimulación Luminosa
7.
Proc Natl Acad Sci U S A ; 121(29): e2401420121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38995966

RESUMEN

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aß/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.


Asunto(s)
Enfermedad de Alzheimer , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , Humanos , Placa Amiloide/patología , Placa Amiloide/inmunología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Encéfalo/patología , Encéfalo/inmunología , Masculino , Interferón gamma/metabolismo , Interferón gamma/inmunología , Envejecimiento/inmunología , Memoria Inmunológica , Células T de Memoria/inmunología , Perforina/metabolismo , Perforina/genética , Femenino
8.
Proc Natl Acad Sci U S A ; 121(14): e2401959121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547065

RESUMEN

The contents and dynamics of spontaneous thought are important factors for personality traits and mental health. However, assessing spontaneous thoughts is challenging due to their unconstrained nature, and directing participants' attention to report their thoughts may fundamentally alter them. Here, we aimed to decode two key content dimensions of spontaneous thought-self-relevance and valence-directly from brain activity. To train functional MRI-based predictive models, we used individually generated personal stories as stimuli in a story-reading task to mimic narrative-like spontaneous thoughts (n = 49). We then tested these models on multiple test datasets (total n = 199). The default mode, ventral attention, and frontoparietal networks played key roles in the predictions, with the anterior insula and midcingulate cortex contributing to self-relevance prediction and the left temporoparietal junction and dorsomedial prefrontal cortex contributing to valence prediction. Overall, this study presents brain models of internal thoughts and emotions, highlighting the potential for the brain decoding of spontaneous thought.


Asunto(s)
Mapeo Encefálico , Encéfalo , Humanos , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Emociones , Corteza Prefrontal , Giro del Cíngulo , Imagen por Resonancia Magnética/métodos
9.
Proc Natl Acad Sci U S A ; 121(18): e2312992121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648479

RESUMEN

Cortical neurons exhibit highly variable responses over trials and time. Theoretical works posit that this variability arises potentially from chaotic network dynamics of recurrently connected neurons. Here, we demonstrate that chaotic neural dynamics, formed through synaptic learning, allow networks to perform sensory cue integration in a sampling-based implementation. We show that the emergent chaotic dynamics provide neural substrates for generating samples not only of a static variable but also of a dynamical trajectory, where generic recurrent networks acquire these abilities with a biologically plausible learning rule through trial and error. Furthermore, the networks generalize their experience in the stimulus-evoked samples to the inference without partial or all sensory information, which suggests a computational role of spontaneous activity as a representation of the priors as well as a tractable biological computation for marginal distributions. These findings suggest that chaotic neural dynamics may serve for the brain function as a Bayesian generative model.


Asunto(s)
Modelos Neurológicos , Neuronas , Neuronas/fisiología , Teorema de Bayes , Red Nerviosa/fisiología , Dinámicas no Lineales , Humanos , Aprendizaje/fisiología , Animales , Encéfalo/fisiología
10.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38493340

RESUMEN

Translational bioinformatics and data science play a crucial role in biomarker discovery as it enables translational research and helps to bridge the gap between the bench research and the bedside clinical applications. Thanks to newer and faster molecular profiling technologies and reducing costs, there are many opportunities for researchers to explore the molecular and physiological mechanisms of diseases. Biomarker discovery enables researchers to better characterize patients, enables early detection and intervention/prevention and predicts treatment responses. Due to increasing prevalence and rising treatment costs, mental health (MH) disorders have become an important venue for biomarker discovery with the goal of improved patient diagnostics, treatment and care. Exploration of underlying biological mechanisms is the key to the understanding of pathogenesis and pathophysiology of MH disorders. In an effort to better understand the underlying mechanisms of MH disorders, we reviewed the major accomplishments in the MH space from a bioinformatics and data science perspective, summarized existing knowledge derived from molecular and cellular data and described challenges and areas of opportunities in this space.


Asunto(s)
Investigación Biomédica , Salud Mental , Humanos , Ciencia de los Datos , Biología Computacional , Biomarcadores
11.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38719449

RESUMEN

Decreased neuronal specificity of the brain in response to cognitive demands (i.e., neural dedifferentiation) has been implicated in age-related cognitive decline. Investigations into functional connectivity analogs of these processes have focused primarily on measuring segregation of nonoverlapping networks at rest. Here, we used an edge-centric network approach to derive entropy, a measure of specialization, from spatially overlapping communities during cognitive task fMRI. Using Human Connectome Project Lifespan data (713 participants, 36-100 years old, 55.7% female), we characterized a pattern of nodal despecialization differentially affecting the medial temporal lobe and limbic, visual, and subcortical systems. At the whole-brain level, global entropy moderated declines in fluid cognition across the lifespan and uniquely covaried with age when controlling for the network segregation metric modularity. Importantly, relationships between both metrics (entropy and modularity) and fluid cognition were age dependent, although entropy's relationship with cognition was specific to older adults. These results suggest entropy is a potentially important metric for examining how neurological processes in aging affect functional specialization at the nodal, network, and whole-brain level.


Asunto(s)
Envejecimiento , Encéfalo , Cognición , Conectoma , Entropía , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Femenino , Masculino , Anciano , Persona de Mediana Edad , Adulto , Envejecimiento/fisiología , Envejecimiento/psicología , Cognición/fisiología , Anciano de 80 o más Años , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen
12.
J Neurosci ; 44(26)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38760163

RESUMEN

Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuropsychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral modeling only. Participants performed a visuospatial delayed match-to-sample task under systematic manipulation of the delay and distance between sample and test stimuli. Their behavior (match/nonmatch decisions) was fit with a computational model permitting the dissociation of noise in the internal operations underlying the working memory performance from a strategic decision threshold. Task accuracy decreased with delay duration and sample/test proximity. When sample/test distances were small, older adults committed more false alarms than younger adults. The computational model explained the participants' behavior well. The model parameters reflecting internal noise (not decision threshold) correlated with the precision of stimulus-selective cortical activity measured with MEG during the delay interval. The model uncovered an increase specifically in working memory noise in older compared with younger participants. Furthermore, in the MCI group, but not in the older healthy controls, internal noise correlated with the participants' clinically assessed cognitive integrity. Our results are consistent with the idea that the stability of working memory contents deteriorates in aging, in a manner that is specifically linked to the overall cognitive integrity of individuals diagnosed with MCI.


Asunto(s)
Envejecimiento , Encéfalo , Magnetoencefalografía , Memoria a Corto Plazo , Humanos , Masculino , Femenino , Memoria a Corto Plazo/fisiología , Anciano , Envejecimiento/fisiología , Envejecimiento/psicología , Adulto , Persona de Mediana Edad , Adulto Joven , Encéfalo/fisiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Cognición/fisiología , Pruebas Neuropsicológicas , Anciano de 80 o más Años , Modelos Neurológicos
13.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38316564

RESUMEN

We recorded directly from the orbital (oPFC) and ventromedial (vmPFC) subregions of the orbitofrontal cortex (OFC) in 22 (9 female, 13 male) epilepsy patients undergoing intracranial electroencephalography (iEEG) monitoring during an experimental task in which the participants judged the accuracy of self-referential autobiographical statements as well as valenced self-judgments (SJs). We found significantly increased high-frequency activity (HFA) in ∼13% of oPFC sites (10/18 subjects) and 16% of vmPFC sites (4/12 subjects) during both of these self-referential thought processes, with the HFA power being modulated by the content of self-referential stimuli. The location of these activated sites corresponded with the location of fMRI-identified limbic network. Furthermore, the onset of HFA in the vmPFC was significantly earlier than that in the oPFC in all patients with simultaneous recordings in both regions. In 11 patients with available depression scores from comprehensive neuropsychological assessments, we documented diminished HFA in the OFC during positive SJ trials among individuals with higher depression scores; responses during negative SJ trials were not related to the patients' depression scores. Our findings provide new temporal and anatomical information about the mode of engagement in two important subregions of the OFC during autobiographical memory and SJ conditions. Our findings from the OFC support the hypothesis that diminished brain activity during positive self-evaluations, rather than heightened activity during negative self-evaluations, plays a key role in the pathophysiology of depression.


Asunto(s)
Epilepsia , Memoria Episódica , Humanos , Masculino , Femenino , Juicio , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Imagen por Resonancia Magnética
14.
J Neurosci ; 44(21)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38621996

RESUMEN

From deciding which meal to prepare for our guests to trading off the proenvironmental effects of climate protection measures against their economic costs, we often must consider the consequences of our actions for the well-being of others (welfare). Vexingly, the tastes and views of others can vary widely. To maximize welfare according to the utilitarian philosophical tradition, decision-makers facing conflicting preferences of others should choose the option that maximizes the sum of the subjective value (utility) of the entire group. This notion requires comparing the intensities of preferences across individuals. However, it remains unclear whether such comparisons are possible at all and (if they are possible) how they might be implemented in the brain. Here, we show that female and male participants can both learn the preferences of others by observing their choices and represent these preferences on a common scale to make utilitarian welfare decisions. On the neural level, multivariate support vector regressions revealed that a distributed activity pattern in the ventromedial prefrontal cortex (VMPFC), a brain region previously associated with reward processing, represented the preference strength of others. Strikingly, also the utilitarian welfare of others was represented in the VMPFC and relied on the same neural code as the estimated preferences of others. Together, our findings reveal that humans can behave as if they maximized utilitarian welfare using a specific utility representation and that the brain enables such choices by repurposing neural machinery processing the reward others receive.


Asunto(s)
Recompensa , Humanos , Masculino , Femenino , Adulto , Adulto Joven , Conducta de Elección/fisiología , Corteza Prefrontal/fisiología , Toma de Decisiones/fisiología , Imagen por Resonancia Magnética , Mapeo Encefálico
15.
Biostatistics ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39140988

RESUMEN

In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.

16.
FASEB J ; 38(5): e23514, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466151

RESUMEN

In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.


Asunto(s)
Estructuras de la Membrana Celular , Glioma , Nanotubos , Humanos , Comunicación Celular , Citoesqueleto de Actina
17.
Nature ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538903
18.
Nature ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840006
19.
Nature ; 632(8024): 233, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39090281
20.
Nature ; 627(8005): 744-745, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38509288
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA