Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 20(1): e2305095, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653614

RESUMEN

Ammonia is an efficient and clean hydrogen carrier that promises to tackle the increasing energy and environmental problems. However, more than 90% of ammonia is produced by the Haber-Bosch process, and its enormous energy consumption and CO2 emissions require the development of novel alternatives. Chemical looping technology can decouple the one-step ammonia synthesis reaction into separated nitridation and hydrogenation processes at atmospheric pressure, thereby achieving the mild ammonia synthesis based on renewable energy. The strategy of stepwise reactions circumvents the problem of competing adsorption of N2 and H2 /H2 O at the active sites and provides additive freedom for optimal regulation of sub-reactions. This review introduces the concept and mechanism of chemical looping ammonia production (CLAP), and comprehensively summarizes the state-of-art research from the perspective of reaction pathways and nitrogen carriers. The challenges faced by CLAP and strategies to address them in terms of nitrogen carriers, methods, equipment, and technological processes are also proposed.

2.
Mass Spectrom Rev ; : e21835, 2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36776107

RESUMEN

Selected ion flow tube mass spectrometry (SIFT-MS) is now recognized as the most versatile analytical technique for the identification and quantification of trace gases down to the parts-per-trillion by volume, pptv, range. This statement is supported by the wide reach of its applications, from real-time analysis, obviating sample collection of very humid exhaled breath, to its adoption in industrial scenarios for air quality monitoring. This review touches on the recent extensions to the underpinning ion chemistry kinetics library and the alternative challenge of using nitrogen carrier gas instead of helium. The addition of reagent anions in the Voice200 series of SIFT-MS instruments has enhanced the analytical capability, thus allowing analyses of volatile trace compounds in humid air that cannot be analyzed using reagent cations alone, as clarified by outlining the anion chemistry involved. Case studies are reviewed of breath analysis and bacterial culture volatile organic compound (VOC), emissions, environmental applications such as air, water, and soil analysis, workplace safety such as transport container fumigants, airborne contamination in semiconductor fabrication, food flavor and spoilage, drugs contamination and VOC emissions from packaging to demonstrate the stated qualities and uniqueness of the new generation SIFT-MS instrumentation. Finally, some advancements that can be made to improve the analytical capability and reach of SIFT-MS are mentioned.

3.
J Chromatogr A ; 1726: 464946, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38744185

RESUMEN

On-line coupled high performance liquid chromatography-gas chromatography-flame ionisation detection (HPLC-GC-FID) was used to compare the effect of hydrogen, helium and nitrogen as carrier gases on the chromatographic characteristics for the quantification of mineral oil hydrocarbon (MOH) traces in food related matrices. After optimisation of chromatographic parameters nitrogen carrier gas exhibited characteristics equivalent to hydrogen and helium regarding requirements set by current guidelines and standardisation such as linear range, quantification limit and carry over. Though nitrogen expectedly led to greater peak widths, all required separations of standard compounds were sufficient and humps of saturated mineral oil hydrocarbons (MOSH) and aromatic mineral oil hydrocarbons (MOAH) were appropriate to enable quantitation similar to situations where hydrogen or helium had been used. Slightly increased peak widths of individual hump components did not affect shapes and widths of the MOSH and MOAH humps were not significantly affected by the use of nitrogen as carrier gas. Notably, nitrogen carrier gas led to less solvent peak tailing and smaller baseline offset. Overall, nitrogen may be regarded as viable alternative to hydrogen or helium and may even extend the range of quantifiable compounds to highly volatile hydrocarbon eluting directly after the solvent peak.


Asunto(s)
Hidrocarburos , Aceite Mineral , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Gases/métodos , Aceite Mineral/química , Aceite Mineral/análisis , Hidrocarburos/análisis , Nitrógeno/análisis , Helio/química , Hidrógeno/química , Ionización de Llama/métodos , Gases/química
4.
J Chromatogr A ; 1728: 465018, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38815478

RESUMEN

Municipal wastewater treatment plants are required to monitor persistent organic pollutants (POPs) in their wastewater treatment related discharges and to assess the impact of the discharges on the environment and public health. One tool for monitoring chlorinated organic pollutants particularly is a gas chromatographic (GC) system coupled to a pair of halogen-specific electron capture detectors (ECDs) with helium (He) as the mobile phase. He supplies, however, has become inconsistent and unreliable lately. In its place, N2 gas is evaluated in this study as a potential substitute for He in quantifying organochlorine pesticides, polychlorinated biphenyls, chlordane congeners and toxaphene in wastewater treatment related matrices (influent, effluent, benthic sediment, mussel tissue, and biosolids/sludge). N2 is inert, inexpensive and requires no additional hardware to incorporate into the basic functions of a GC-ECD. Our results show that, with the usual data quality controls (blank, laboratory control, matrix spike/duplicate and proficiency testing samples, and the fact that certified reference materials data met requirements), N2 can replace He for regulatory purposes. And when necessary, the N2-based retention times (tN) can be predicted reliably from He-based retention times (tHe), irrespective of column chemistry or POPs (here: tN = 1.90tHe + 0.04, R2 = 0.996).


Asunto(s)
Helio , Nitrógeno , Aguas Residuales , Contaminantes Químicos del Agua , Cromatografía de Gases/métodos , Aguas Residuales/química , Aguas Residuales/análisis , Helio/química , Nitrógeno/química , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Orgánicos Persistentes/química , Hidrocarburos Clorados/análisis , Bifenilos Policlorados/análisis , Animales , Bivalvos/química , Plaguicidas/análisis
5.
J Am Soc Mass Spectrom ; 34(12): 2630-2645, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37988479

RESUMEN

Selected ion flow tube mass spectrometry, SIFT-MS, has been widely used in industry and research since its introduction in the mid-1990s. Previously described quantitation methods have been advanced to include a gas standard for a more robust and repeatable analytical performance. The details of this approach to calculate the concentrations from ion-molecule reaction kinetics based on reaction times and instrument calibration functions determined from known concentrations in the standard mix are discussed. Important practical issues such as the overlap of product ions are outlined, and best-practice approaches are presented to enable them to be addressed during method development. This review provides a fundamental basis for a plethora of studies in broad application areas that are possible with SIFT-MS instruments.

6.
Sci Bull (Beijing) ; 67(20): 2124-2138, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36546112

RESUMEN

Ammonia, primarily made with Haber-Bosch process developed in 1909 and winning two Nobel prizes, is a promising noncarbon fuel for preventing global warming of 1.5 °C above pre-industrial levels. However, the undesired characteristics of the process, including high carbon footprint, necessitate alternative ammonia synthesis methods, and among them is chemical looping ammonia production (CLAP) that uses nitrogen carrier materials and operates at atmospheric pressure with high product selectivity and energy efficiency. To date, neither a systematic review nor a perspective in nitrogen carriers and CLAP has been reported in the critical area. Thus, this work not only assesses the previous results of CLAP but also provides perspectives towards the future of CLAP. It classifies, characterizes, and holistically analyzes the fundamentally different CLAP pathways and discusses the ways of further improving the CLAP performance with the assistance of plasma technology and artificial intelligence (AI).


Asunto(s)
Amoníaco , Inteligencia Artificial , Nitrógeno/química
7.
J Mass Spectrom ; 57(5): e4830, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35472728

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) with Cold EI is based on interfacing GC and MS with a supersonic molecular beam (SMB) and sample compounds ionization with a fly-through ion source as vibrationally cold compounds in the SMB (hence the name Cold EI). We explored the use of nitrogen and hydrogen as carrier and make-up gases with Cold EI and found: Nitrogen is very effective in cooling compounds in SMB and while helium requires 60 ml/min nitrogen provides effective cooling with only 7-8 ml/min combined column and make-up flow rate. Hydrogen is less effective than helium and requires higher flow rates. The transition from helium to nitrogen (or hydrogen) is simple and fast and requires just closing the helium valve and opening the nitrogen valve. The same column used with helium can be used with nitrogen or hydrogen. The same elution times could be obtained with nitrogen or hydrogen as with helium. The GC separation with nitrogen was reduced compared with helium and peak widths were increased by an average factor of 1.5 for similar elution times. Hydrogen provided ~0.7 narrower peak widths than helium. The signal with nitrogen was reduced compared with helium by an average factor of 3.3 and the signal loss was reduced with higher compounds mass. With hydrogen the signal loss was about a factor of 1.5 but the baseline noise was higher thus with similar S/N as with nitrogen. USEPA 8270 semivolatile mixture was easily analyzed with both nitrogen and hydrogen carrier gases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA